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Abstract

When exposed to an item in a recommender system, a user
may consume it (known as success exposure) or neglect it
(known as failure exposure). The recently proposed meth-
ods that consider both success and failure exposure merely
regard failure exposure as a constant prior, thus being capa-
ble of neither modeling various user behavior nor adapting to
overdispersed data. In this paper, we propose a novel model,
hierarchical negative binomial factorization, which models
data dispersion via a hierarchical Bayesian structure, thus al-
leviating the effect of data overdispersion to help with per-
formance gain for recommendation. Moreover, we factorize
the dispersion of zero entries approximately into two low-
rank matrices, thus reducing the updating time linear to the
number of nonzero entries. The experiment shows that the
proposed model outperforms state-of-the-art Poisson-based
methods merely with a slight loss of inference speed.

Introduction
In personalized recommender systems, a principal goal is
to recommend each user a set of previously unseen items
that she likes and will likely consume in the future. We use
historical user feedback, which often appears in the form of
user-item relationship, to infer user’s preference, and then
suggest items according to the inferred preference.

In general, recommendation can be categorized into two
modes: explicit rating and implicit feedback. In the first
mode, an explicit rating can be regarded as a positive or neg-
ative response from a user to an item, which may represent
that a user likes an item or not, and then we can use ratings to
infer user’s preference to predict the missing ratings. Practi-
cally, explicit rating is of limited use due to data acquisition
difficulty since it needs users to take part in rating directly.
In the second mode, implicit feedback expresses one or a set
of binary decisions of item consuming (also called implicit
count), e.g., clicking, purchasing, and playing, and then we
aim to predict which previously unseen items she would like.
Compared with its counterpart, implicit feedback, which is
obtained from the record of user behavior, is much more eas-
ily accessible but difficult to exploit for recommendation.

The current challenges of recommendation on implicit
feedback include recommendation performance and compu-
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tational cost. The Gaussian-based models that model user
exposure (Hu, Koren, and Volinsky 2008; Liang et al. 2016)
achieve better performance. However, they are not feasible
for large datasets with limited computational resources since
they require much time and memory to compute an inverse
matrix for each user and each item per iteration. By con-
trast, Poisson-based models (Cemgil 2009; Gopalan, Hof-
man, and Blei 2015) can efficiently update with time lin-
ear to the number of nonzero entries despite sacrificing per-
formance and thus widely applied to various applications,
such as recommender systems and topic modeling (Charlin
et al. 2015; Schein et al. 2015; Hosseini et al. 2018; da Silva,
Langseth, and Ramampiaro 2017). To the best of our knowl-
edge, there have been no works yet to bridge the gap be-
tween performance and computational cost, which inspires
us to find a trade-off from the perspective of the negative
binomial distribution (NB) since modeling implicit count as
Poisson suffers the following problems.

Firstly, real-world implicit data are often overdispersed
(Basbug and Engelhardt 2016; Kuo, Chou, and Chen 2018;
Gouvert, Oberlin, and Févotte 2018) since a user may al-
ways consume a handful few items she likes (Gopalan, Hof-
man, and Blei 2015), which causes substantial values of the
corresponding entries in a utility matrix. Kuo et al. (Kuo,
Chou, and Chen 2018) address that these entries (called out-
liers in their paper) may disturb optimizing a PF model and
the effect of outliers is unavoidable since the consuming dis-
tribution follows a power-law distribution approximately in
real-world data. Since the problem is attributable to the lim-
ited variance of the Poisson distribution, the effect of data
overdispersion could be mitigated as long as the variance
assumed by the model is larger than the variance of data.

Moreover, the failure exposure, which denotes the event
that a user saw an item but neglected it, is difficult to be
modeled. The value of an entry in a utility matrix denotes
the number of times by which a user consumed an item,
which is called success exposure count (SEC) in the pa-
per. By contrast, the number of times a user neglected an
exposed item is called failure exposure count (FEC). To
model FEC, prior works (Gouvert, Oberlin, and Févotte
2018; Zhou 2018; Gouvert, Oberlin, and Févotte 2019) as-
sume an entry in a utility matrix to be a negative bino-
mial distribution (NB). However, in those NB-based models,
the structure for modeling FEC is single-layered to avoid
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the non-conjugacy of the Bayesian structure and simplify
the computation, thus leading to unsatisfying performance.
Since FEC varies with user-item consuming behavior, a hier-
archical structure, where FEC is modeled as a latent variable
rather than a constant, is required.

In this paper, we propose a novel model, hierarchical neg-
ative binomial factorization (HNBF)1, where a hierarchical
Gamma-NB structure is introduced to estimate data disper-
sion. To the best of our knowledge, HNBF is the first model
utilizing hierarchical structure to estimate data dispersion
for implicit feedback. By contrast, all the previous works
(Basbug and Engelhardt 2016, 2017; Gouvert, Oberlin, and
Févotte 2018, 2019) merely utilize a single-layered disper-
sion model, which is doubted to be adaptive to various user-
item behaviors. Our contributions are listed as follows.
• To address the fact that various user-item consuming behaviors

lead to different FECs, we propose HNBF, the first model utiliz-
ing hierarchical factorized structure to estimate FEC, thus miti-
gating data overdispersion.

• Even if the hierarchical NB-based structure does not follow con-
jugate prior, we show it can be updated via variational inference.

• Since the proposed Gamma-NB structure is easily implemented
and essentially generic in Bayesian learning, the structure can
also be used in many other domains with overdispersed count
data, such as ads prediction, infection prediction, and insurance
demand analysis, including but not limited to recommendation.

• We discuss the performance and speed gap between Gaussian-
based and Poisson-based models. After observing the data
property adaptive to Poisson-based methods, we explain why
Gaussian-based outperforms better in most cases.

The remainder of the paper is organized as follows. We
firstly discuss the related works, including matrix factoriza-
tion for recommendation and exposure modeling in Section
2. In Section 3, we propose HNBF and FastHNBF, followed
by the updating algorithm based on variational inference. In
Section 4, a comprehensive empirical analysis is conducted,
followed by our conclusion in Section 5.

Related Works
Nonnegative matrix factorizations (NMF) (Lee and Se-
ung 1999, 2001) are widely-used for recommendation
on implicit feedback. Compared with Gaussian (Schmidt,
Winther, and Hansen 2009), Poisson distribution can repre-
sent non-negativity naturally without imposing constraints
(Cemgil 2009). Hierarchical Poisson factorization (HPF)
(Gopalan et al. 2014; Gopalan, Hofman, and Blei 2015)
models the user-item consumption by assuming each entry
to be a factorized Poisson. Poisson factorization has several
merits: down-weighting the effect of matrix sparsity, model-
ing the long-tail of users and items, and fast inference.

Despite these merits, HPF performs worse on overdis-
persed data. To tackle this, Kuo et al. (Kuo, Chou, and
Chen 2018) apply pair-wise learning to rank, which merely
considers the item permutation for each user to avoid data
overdispersion. Apart from personalized ranking, one can
also estimate the data dispersion of entries. Basbug et

1Source code and supplementary materials can be downloaded
at https://github.com/iankuoli/HNBF

al. (Basbug and Engelhardt 2016, 2017) introduce com-
pound Poisson factorization, which captures the missing-
data mechanism by coupling HPF with an arbitrary data-
generating model. Gouvert et al. (Gouvert, Oberlin, and
Févotte 2018) assume data to be NB and propose negative
binomial factorization (NBF) with the high computational
cost. Gouvert et al. (Gouvert, Oberlin, and Févotte 2019)
also propose a compound PF with a dispersion model to rep-
resent user behavior in listening sessions. All the previous
compound PF-based methods merely utilize a single-layered
dispersion model to be accessible to various distribution as-
sumptions of dispersion for generality, which is doubted to
adaptive to various user behaviors. Though negative bino-
mial factor analysis (NBFA) (Zhou 2018) has a hierarchical
structure, where an item is represented by a beta variable,
we argue that NBFA is not adaptive to the recommender sys-
tems since the success probability of NB is related to user-
item consuming behavior and should have been modeled in
a factorized manner.

Exposure modeling, which tries to clarify the ambiguity
associated with zero values, is related to data dispersion es-
timation. BPR (Rendle et al. 2009) regards user consump-
tion as pair-wise learning to rank problem, thus leading to
good performance on a sparse matrix. WMF (Hu, Koren,
and Volinsky 2008) considers nonzeros as positive prefer-
ence feedback and zeros as negative preference feedback
to indicate varying confidence levels. Logistic matrix fac-
torization (Johnson 2014) models the probability of entries
as the indication via the logistic function. ExpoMF (Liang
et al. 2016) directly incorporates user exposure to items into
collaborative filtering. Despite the outstanding performance,
these methods need much time and memory for updating,
and thus they may not be feasible to large data with limited
computing resources.

Methodology
In this section, we introduce NB briefly, followed by HNBF
and its speed-up version, FastHNBF, where a factorized
Poisson-gamma mixture is introduced to approximate the
dispersion of zero entries. Then we propose the updating al-
gorithm based on variational inference for FastHNBF and
analyze the computational cost.

Preliminary
Given user set U and item set I, where |U| = M and
|I| = N , consider a nonnegative utility matrix X ∈ RM×N ,
where the value of entry (u, i), denoted by xui, represents
the relationship between u and i, such as song play count and
rating. Given two K-dimensional latent factors θu and βi,
ground truth value xui of entry (u, i) can be approximated
via maximizing probability p(xui|θ>u βi). We can stack the
latent factors {θu|u ∈ U} and {βi|i ∈ I} to form matrices
θ ∈ RM×K and β ∈ RN×K , respectively. The inference
score θ>u βi can be seen as the estimation of xui.

NB in this paper is defined as follows. Assume that user u
has consumed item i for θ>u βi times and neglected i for rui
times. Considering a binary event that denotes whether user
u consumes item i or not, the number of successes (SEC) is
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denoted by θ>u βi, and the number of failures (FEC) is de-
noted by rui. As such, user u has been exposed to item i
for (rui + θ>u βi) times. Thus, the success probability is de-

fined by pui =
θ>
u βi

rui+θ>
u βi

In NBF, observation xui of entry
(u, i), regarded as ground-truth success exposure count, is
sampled from the generative process xui ∼ NB(rui, pui),
where mean is E[xui] = θ>u βi and variance is Var[xui] =

θ>u βi(1 + θ>u βir
−1
ui ). When θ>u βi is fixed, the variance is

controlled by FEC rui. With the increasing of rui, which
means that the occurred failure exposures increase, the vari-
ance is reduced and gradually approaches the expectation
because the number of occurred events raises. As such, the
NB is reduced to the Poisson distribution when rui → ∞.
By contrast, when we have not observed any occurred failure
exposure yet (i.e., rui ≈ 0), we cannot estimate the expected
number of success exposures certainly, thus leading to large
variance, which may represent the fact that a user always
plays the same songs on her own initiative. Hence, compared
with Poisson, where the mean equals the variance, NB can
reasonably model data with large variance.

NB is equivalent to a Poisson-gamma mixture (Lawless
1987; Gardner, Mulvey, and Shaw 1995) denoted by

dui ∼ Ga(rui, rui), xui ∼ Poi(duiθ
>
u βi),

where latent variable dui denotes the dispersion of variable
xui. Since the variance of dui is r−1ui , we can control the
variability of dui via tuning rui. When rui is too small, dui
will correlate with θ>u βi freely, thus leading to overfitting
to nonzero entries. In contrast, if rui is too large, the model
will not well estimate overdispersed data since dui can only
vary slightly around its mean (i.e., E[dui] = rui/rui = 1).

In light of this, we introduce a hierarchical Bayesian
structure, where rui is modeled by a latent variable rather
than a constant prior. As such, rui can be estimated precisely
according to dui and its prior. Thus, the proposed model is
more feasible and robust to overdispersed data.

Hierarchical Negative Binomial Factorization
The generative process of HNBF consists of two parts: HPF
(Gopalan, Hofman, and Blei 2015) as the inference model to
estimate the expectation of an entry value; a hierarchical dis-
persion model to estimate its dispersion, as shown in Table 1.
Figure 1 (a) shows the Bayesian graphical model of HNBF.
Entry value xui can be defined by a Poisson distribution pa-
rameterized in terms of inference θ>u βi and dispersion dui.

In the dispersion model, for each entry (u, i), we intro-
duce a dispersion variable dui and its prior rui to estimate
the dispersion of xui. According to the Poisson-gamma mix-
ture, dispersion dui is a gamma variable with shape and rate
parameter that shares the same latent variables, rui, which
represents FEC. When rui is low, the failure exposure event
is seldom observed, which causes high uncertainty, thus rais-
ing dispersion dui. When rui is high, the failure exposure
event has happened many times, which leads to low uncer-
tainty, thus reducing dispersion dui. Since the success prob-
ability pui =

θ>
u βi

rui+θ>
u βi

of NB is beta distributed, which

can be parameterized by two gamma variables θ>u βi and rui
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Figure 1: The Bayesian graph models of HNBF.

according to conjugate prior, we assume variable rui to be
gamma distributed.

In HNBF, we estimate the dispersion of Poisson variable
xui by introducing a dispersion model, where dui can be
updated precisely by the conditional p(dui|xui,θ>u βi, rui).
Though the setting enhances the model expressiveness,
HNBF is not practical for large datasets owing to the com-
putational cost O(MN) caused by the introduced disper-
sion model, which estimates dui for each entry (u, i). Thus,
to improve the efficiency of model updating, reducing the
number of variables is necessary.

FastHNBF
From the observation of Basbug et al. (Basbug and En-
gelhardt 2016, 2017), the variance of entry value drasti-
cally varies when the probability of non-missingness (i.e.,
the probability of a zero entry being nonzero) equals zero,
whereas the nonzero entries (i.e., data with the probability
of non-missingness 1) in test datasets often have lower vari-
ance. We can explain that the meaning of zero entries is am-
biguous because zero entry (u, i) represents two possibili-
ties: 1) u does not like i; 2) u has not seen i yet. Conse-
quently, we develop a nonzero dispersion model and a zero
dispersion model for the dispersion of nonzero entries and
zero ones, respectively, because of their different behaviors.

In MF for recommender systems, latent factors are up-
dated primarily according to the ground truth values in
nonzero/observed entries. Hence, the precision of the esti-
mation in nonzero entries determines the performance of
model inference. In light of this, we model the dispersion
of a Poisson variable for each nonzero entry in the nonzero
dispersion model. By estimating the dispersion individually,
one can obtain precise dispersion dui, thus updating θu and
βi precisely by the conditionals p(θu|xui, dui,βi, εu, a)
and p(βi|xui, dui,θu, ηi, a), respectively.
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HNBF FastHNBF

Dispersion Model Dispersion Model
• ∀(u, i), draw FEC rui ∼ Ga(g, g

h
) • ∀(u, i) ∈ X+, draw FEC rui ∼ Ga(g, g+

h+ )
• ∀(u, i), draw dispersion dui ∼ Ga(rui, rui) • ∀(u, i) ∈ X+, draw dispersion dui ∼ Ga(rui, rui)

• ∀u, draw exposure factor µu ∼ Ga(g0, g0

h0 )
• ∀u, draw dispersion factor γu ∼ Ga(µu, µu)

• ∀i, draw exposure factor πi ∼ Ga(g0, g0

h0 )
• ∀i, draw dispersion factor δi ∼ Ga(πi, πi)

Inference Model Inference Model
• ∀u, draw user activity εu ∼ Ga(b, b

c
) • ∀u, draw user activity εu ∼ Ga(b, b

c
)

• ∀u, draw user preference θu ∼ Ga(a, εu) • ∀u, draw user preference θu ∼ Ga(a, εu)
• ∀i, draw item popularity ηi ∼ Ga(b, b

c
) • ∀i, draw item popularity ηi ∼ Ga(b, b

c
)

• ∀i, draw item attribute βi ∼ Ga(a, ηi) • ∀i, draw item attribute βi ∼ Ga(a, ηi)
• ∀(u, i), draw score xui ∼ Poi(duiθ

>
u βi) • ∀(u, i) ∈ X+, draw score xui ∼ Poi(duiθ

>
u βi)

• ∀(u, i) ∈ X 0, draw score xui ∼ Poi( 1
K
γ>

u δiθ
>
u βi)

Table 1. The generative processes of the proposed model, where FEC denotes failure exposure count.

On the other hand, since zero entries are unobserved and
most of them are undesirable, precise estimation of disper-
sion for zero entries is unnecessary. When θ>u βi of zero en-
try (u, i) is large, we have dui � 1 since duiθ>u βi should
approach its observation xui = 0 to maximize likelihood
p(xui|duiθ>u βi). As such, considering dui ∼ Ga(rui, rui)
with variance r−1ui and expectation 1, FEC rui should be
small to make dui be far from its expectation, i.e., dui � 1.
Hence, latent variables dui and rui are affected by factor-
ized model inference θ>u βi. Since the inference model is
based on MF, we utilize MF to approximate the dispersion
of zero entries as well. Although the concept is also ap-
plied in prior works (Basbug and Engelhardt 2016, 2017;
Liang et al. 2016), none of them utilize a hierarchical struc-
ture for the estimation of dispersion. Hence, in the zero dis-
persion model, we factorize the dispersion of zero entries
via a hierarchical structure, which comprises dispersion fac-
tors γ = [γuk] ∈ RM×K and δ = [δik] ∈ RN×K , where
each entry is gamma distributed, i.e., γuk ∼ Ga(µu, µu)
and δik ∼ Ga(πi, πi), where µu and πi denote the fac-
tor of FEC with respect to u and i, respectively. We call
µ = [µu] ∈ RM and π = [πi] ∈ RN failure exposure
factors, which differ from FEC rui.

FastHNBF comprises three models, namely, inference
model, nonzero dispersion model and zero dispersion
model, each of which is based on the favorable Poisson-
gamma structure, as shown in Figure 1 (b), where X+ =
{(u, i)|xui > 0} denotes the nonzero entry set and X 0 =
{(u, i)|xui = 0} denotes the zero entry set. The generative
process is shown in Table 1. By utilizing a factorized disper-
sion model for zero entries, we can reduce the computational
cost from O(MN) to O(|X+|). Hence, FastHNBF is feasi-
ble to large datasets since |X+| �MN in real-world data.

Variables Estimation
We use variational inference (VI) to estimate the poste-
rior probability. VI is a method for approximating poste-
rior distributions by maximizing the evidence lower bound

(ELBO), which is equivalent to minimizing the KL diver-
gence from the true posteriors to the approximate ones (Jor-
dan et al. 1999; Hoffman et al. 2013).

To factorized an entry, let xui = [xui1, ..., xuiK ] ∈ RK

be a K-dimensional vector of counts in entry (u, i), namely,
xui =

∑
k xuik, which can be modeled as a multinomial

distribution. The complete conditional for this vector is

ϕui|xui,θu,βi ∼ Mult(xui,
θukβik∑
k θukβik

). (1)

Recall that dispersion factors γuk and δik, and dispersion
dui are assumed to be the gamma distribution, of which the
rate and the shape parameters share the same variable, which
does not follow the conjugate prior relationship. Even so, the
variational parameters can be estimated by the definition of
ELBO, and thus the traditional coordinate ascent algorithm
for fitting the variational parameters is still applicable. Next,
we will show how to update this kind of gamma variables.
Without loss of generality, we assume that a gamma poste-
rior,

∏n
i=1 Ga(di; r, r)Ga(r; g, gh ), is given. In this assump-

tion, both the shape and rate parameters of gamma variable
di share the same gamma variable, denoted by r, represent-
ing the unconjugated structure in HNBF. According to the
ELBO, we have the conditional

L(r) =
n∑
i

Eq[log Ga(di; r, r)] + Eq[log Ga(r; g,
g

h
)]−

Eq[log Ga(r; rshp, rrte)] + const.

To derive the coordinate ascent update, we take the gradient

∇rL ∝Eq[n log(r)− nΨ(r) +
g − 1

r
− rshp − 1

r
]+

n+
n∑

i=1

log(di)−
n∑

i=1

d− g

h
+ rrte,

where q is only related to r since q is the variational prob-
ability of r. Thus, we split the gradient of L into two parts:
terms with expectation Eq[·] and the others, each of which
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Latent Variable Type Complete Conditional Variational Parameter

εu Ga b+Ka, b
c

+
∑

k θuk ε̃shpu , ε̃rteu

ηi Ga b+Kd, b
c

+
∑

k βik η̃shpi , η̃rtei

θuk Ga a+
∑N

i=1 xuiϕuik, εu +
∑

i∈I+
u
βikdui + 1

K

∑
i∈I0

u
βik

∑K
k′=1 γuk′δik′ θ̃shpuk , θ̃rteuk

βik Ga a+
∑M

u=1 xuiϕuik, ηi +
∑

u∈U+
i
θukdui + 1

K

∑
u∈U0

i
θuk

∑K
k′=1 γuk′δik′ β̃shp

ik , β̃rte
ik

µu Ga g0 +Kµu(log µu −Ψ(µu)), g0

h0 +
∑K

k=1 γuk −
∑K

k=1 log γuk −K µ̃shp
u , µ̃rte

u

πi Ga g0 +Kπi(log πi −Ψ(πi)), g0

h0 +
∑K

k=1 δik −
∑K

k=1 log δik −K π̃shp
i , π̃rte

i

γuk Ga µu, µu + 1
K

∑
i∈I0

u
δik

∑K
k′=1 θuk′βik′ γ̃shp

uk , γ̃rte
uk

δik Ga πi, πi + 1
K

∑
u∈U0

i
γuk

∑K
k′=1 θuk′βik′ δ̃shpik , δ̃rteik

dui Ga rui + xui, rui +
∑K

k=1 θukβik dshpui , drteui

rui Ga g+ + rui(log rui −Ψ(rui)), g+

h+ + dui − log dui − 1 rshpui , rrteui

xui Mult logθuk + logβik ϕui

Table 2. Latent variables, variational parameters and their complete conditionals of FastHNBF.

Algorithm 1 Updating of FastHNBF
1: Input: Utility matrix X, number of latent factors K,
2: Output: Trained latent factors θ and β
3: Initialize variables (θ,β, ε,η,d, r,γ, δ,µ,π);
4: while not converge do
5: For each (u, i) ∈ X+, update

ϕui ∝ exp{Ψ(θuk)− log θuk + Ψ(βik)− log βik};
6: For each (u, k), update (θ̃shpuk , θ̃

rte
uk , θuk), and

for each (i, k), update (β̃shp
ik , β̃rte

ik , βik);
7: For each user u, update (ε̃shpu , ε̃rteu , εu), and

for each item i, update (η̃shpi , η̃rtei , ηi);
8: For each (u, i) ∈ X+, update dui and rui;
9: For each (u, k), update (γ̃shp

uk , γ̃rte
uk , γuk), and

for each (i, k), update (δ̃shpik , δ̃rteik , δik);
10: For each user u, update (µ̃shp

u , µ̃rte
u , µu), and

for each item i, update (π̃shp
i , π̃rte

i , πi);
11: end while

includes a variational parameter respectively. We treat them
individually and let the gradient be zero by setting

rshp = g + nr (log(r)−Ψ(r)) , (2)

rrte =
g

h
+

n∑
i=1

di −
n∑

i=1

log(di)− n. (3)

The latent variables, their variational parameters and com-
plete conditionals are shown in Table 2, where I+u =
{i|(u, i) ∈ X+} denotes the items consumed by u, I0u =
{i|(u, i) ∈ X 0} denotes the items that has not consumed by
u yet, U+

i = {u|(u, i) ∈ X+}, and U0
i = {u|(u, i) ∈ X 0}.

Updating Algorithm and Complexity Analysis
The updating algorithm is shown in Algorithm 1. In Line
5, we compute the K-factor log expectation of θuk and βik
for each nonzero entry, which costs O(|X+|K). In Line 6,
it costs O(|X+|K) to update variables θ̃shpuk and β̃shp

ik since
ϕui of each nonzero entry is computed twice (i.e., for θ̃shpuk

and β̃shp
ik ). To update parameters θ̃

rte
= [θ̃rteuk ] ∈ RM×K

and β̃
rte

= [β̃rte
ik ] ∈ RN×K , the corresponding complete

conditionals in Table 2 is written in the form of matrix as

θ̃
rte

= ε1> + (D−D)β + γ(δ>β), (4)

β̃
rte

= η1> + (D−D)>θ + δ(γ>θ), (5)

where 1 ∈ RK denotes a K-dimensional vector of ones,
and M -by-N sparse matrices D = [dui] and D = [γ>u δi]
only record the true dispersion and estimated dispersion of
nonzero entries (u, i) ∈ R+ respectively. Hence, when up-
dating θ̃

rte
and β̃

rte
, we only consider the nonzero entries

to compute the second term, which costs O(|X+|K). Com-
puting the third term costs O(MK2 + NK2). In Line 8, it
takes O(|X+|) to update dui and rui for each nonzero en-
try. In Line 9, from Table 2, variational parameters γ̃rte =

[γ̃rteuk ] ∈ RM×K and δ̃
rte

= [δ̃rteik ] ∈ RN×K is updated by

γ̃rte = µ1> −Xδ + θ(β>δ), (6)

δ̃
rte

= π1> −X
>
γ + β(θ>γ), (7)

where M -by-N sparse matrix X = [θ>u βi] only records
the inference score of nonzero entries. Thus, it costs
O(|X+|K + MK2 + NK2) for updating. In Line 7 and
10, it costs O(MK +NK). Since |X+| �M,N and K is
constant, the time complexity of FastHNBF is O(|X+|).

Experimental Results
In this section, we conduct the experiments to compare the
performance and speed gap between Gaussian-based and
Poisson-based models and discuss their adaptability.

Experimental Settings
Datasets and data partition. The statistics are shown in
Table 3. The first three datasets are implicit count data.
Last.fm1K has long-tailed item popularity, where some
users consume more than 5,000 items, whereas most users
consume 50 items in Last.fm2K. In explicit rating data, ex-
cept for well-known MovieLens datasets, we use Jester2 and
EachMovie to test the performance on tall-and-skinny (i.e.,
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Dataset Users Items |X+| Density Value Range

Last.fm1K 992 174K 898K 0.520% 0-26K
Last.fm2K 1892 17.6K 93K 0.278% 0-353K
Last.fm360K 359K 293K 18M 0.017% 0-419K

MovieLens100K 943 1682 100K 6.304% 0-5
MovieLens1M 6040 3900 1M 4.245% 0-5
MovieLens20M 138K 25.8K 20M 0.529% 0-5

Jester2 55.6K 140 1.17M 15.03% 0-11
EachMovie 61.2K 1623 2.81M 2.828% 0-5

Table 3. The statistics of the datasets.

M � N ) utility matrices, which is more close to the real-
world since movies/artists (items) are much less than the au-
dience (users). We conduct experiments on large datasets,
Last.fm360K and MovieLens20M, to show the scalability.
We follow the works (Gopalan et al. 2014; Basbug and En-
gelhardt 2016, 2017) to randomly select 20% of nonzero en-
tries for each dataset to be used as a test set, and randomly
select 1% of the nonzeros in each dataset as a validation set.

Competing methods. We include 2 Gaussian-based
methods as baselines: WMF (Hu, Koren, and Volinsky 2008)
and ExpoMF (Liang et al. 2016). Additionally, 5 Poisson-
based baselines are included: HPF (Gopalan, Hofman, and
Blei 2015), BHPF (i.e., HPF on binarized data, where nonze-
ros are set to 1 and zeros are set to 0), PRPF (Kuo, Chou, and
Chen 2018), CCPF (Basbug and Engelhardt 2017), and NBF
(Gouvert, Oberlin, and Févotte 2018). We compare the dif-
ference of performance and updating time between the two
groups on various datasets. Since the paper’s scope is lim-
ited to the recommendation from implicit data, methods for
explicit ratings, e.g., PMF (Mnih and Salakhutdinov 2008),
are inapplicable to the baselines. Since FastHNBF performs
as well as HNBF, we only use FastHNBF in the experiments.

Initialization and stopping criterion. The variational
parameters are initialized based on the prior on the corre-
sponding latent variables and include small uniform noises
as random offsets. Empirically, the uniform noise covers
[0, 1]. Since θ>u βi is used to infer zero entries xui, we cal-
culate p(xui|θ>u βi) per 10 epochs on the validation set by
using validation-based early stopping.

Results and Discussion
Hyperparameters. According to the proposed model,
hyperparameters c, h+ and h0 control the expecta-
tion of the corresponding variables {εu, ηi}, rui and
{µu, πi}, respectively. In the inference model, prior pa-
rameter (a, b, c) is set to (3, 1, 0.1) on implicit count and
(0.3, 0.1, 1) on explicit ratings, respectively. Since h pri-
orly represents the expectation of failure exposure, we set
(g+, h+, g0, h0) to (100, 50, 10, 108) on implicit count and
(1, 1, 10, 106) on explicit rating. We empirically set h+ =

min(
EX+ [xui]

2

VarX+ [θuβi]
,
EX+ [xui]

3 ) and g+ = h+ per iteration dur-
ing the training phase.

Evaluation criteria. For each method, we select Z un-
consumed items with the highest predictive score θ>u βi for

each user u as the top-Z recommendations during valida-
tion and testing. To evaluate the top-Z recommendations,
we compute precision@Z, recall@Z, and nDCG@Z indi-
vidually, followed by computing the mean of the metrics for
each user. We calculate the mean and the standard deviation
by executing each method for ten runs separately.

Inference speed. HPF updates the fastest since HPF does
not consider data dispersion. FastHNBF updates faster than
NBF even though the former uses a hierarchical dispersion
model because FastHNBF estimates factorized dispersion
rather than entry-wise dispersion. Although FastHNBF takes
more iterations for convergence, it updates much more effi-
ciently per epoch. Hence, FastHNBF can not only inherit the
fast inference of HPF but be robust to overdispersed data,
thus performing the best in Poisson-based methods. On the
other hand, Gaussian-based methods modeling user expo-
sure (i.e., WMF and ExpoMF) outperform Poisson-based
ones with relatively large computing time per epoch. What
is worse, they may not be feasible for large datasets due
to colossal memory usage. On Last.fm360K and Movie-
Lens20M, they fail to train due to out of memory.

Results on implicit count data. The upper row of Table 4
shows the experimental results2. Owing to the limitation of
memory and time cost, we only compare four efficient meth-
ods with the updating time per epoch linear to the number
of nonzero entries on Last.fm360K. FastHNBF outperforms
the other Poisson-based methods on the three datasets. NBF
performs better than HPF because its dispersion model con-
tributes to the robustness of entry value estimation. Never-
theless, the failure exposure count in NBF is given as a prior,
thus limiting the model’s capability. In contrast, FastHNBF
utilizes a hierarchical Bayesian structure to enhance the ca-
pability for estimating dispersion, thus improving the infer-
ence performance. Data usually are too overdispersed to be
fitted by the models with limited data variance assumption
on implicit count, so that BHPF outperforms HPF.

Results on explicit rating data. The results are shown
in the lower row of Table 4. Only three methods can run on
MovieLens20M owing to the limitation of memory. Since
HPF performs better than BHPF, which factorizes a bina-
rized utility matrix, value rather than exposure of nonzero
entries is vital to performance on explicit rating. Notice that
HNBF outperforms HPF even though data are not overdis-
persed because the well-estimated dispersion can also be
viewed as a correction term of the model inference. The esti-
mation for data dispersion can smooth the updating of latent
variables, thus helping the inference model optimize. Hence,
HNBF outperforms the Poisson-based models since the hier-
archical structure estimates data dispersion more accurately.

Effect of long-tailed item popularity. The performance
gap between Gaussian-based models and Poisson-based
ones reduces when M � N , as shown in Table 5. In Each-
Movie, FastHNBF outperforms ExpoMF in terms of all the
criteria except for Prec@5. Poisson-based models are prone
to slightly underestimate item popularity (i.e., how many
users consumed an item) and user activity (i.e., how many

2The experiment is conducted on PC with Quad-Core Intel Core
i5 CPU @ 1.4GHz and 16GB main memory.
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Last.fm1K Last.fm2K Last.fm360K
Prec@5 Rec@5 nDCG@5 time Prec@5 Rec@5 nDCG@5 time Prec@5 Rec@5 nDCG@5 time

WMF 57.8±0.2 2.40±0.0 59.8±0.3 68.9 22.3±0.2 10.3±0.1 24.0±0.2 11.56
ExpoMF 55.3±0.2 2.20±0.0 57.3±0.2 85.1 24.1±0.2 11.2±0.1 26.9±0.2 11.15

HPF 34.8±1.1 1.39±0.1 35.5±1.2 0.78 14.8±0.5 6.84±0.2 16.0±0.6 0.07 9.17±0.2 4.27±0.1 9.96±0.2 16.21
BHPF 45.4±1.0 1.70±0.1 46.9±1.0 0.81 20.1±0.3 9.29±0.1 22.6±0.3 0.07 10.0±0.2 4.70±0.1 11.0±0.2 16.24
PRPF 46.7±1.1 1.86±0.1 47.6±1.1 1257 20.6±0.5 9.55±0.2 23.0±0.5 14.37 9.95±0.2 4.64±0.1 10.9±0.1 16330
CCPF 33.5±1.6 1.37±0.1 34.3±1.6 111.9 14.1±0.8 6.52±0.4 15.1±0.9 16.42
NBF 36.4±0.7 1.51±0.0 37.5±0.8 5.96 15.7±0.8 7.29±0.4 17.0±1.0 0.82
FastHNBF 50.8±1.0 2.00±0.1 52.3±0.9 1.39 21.0±0.3 9.77±0.1 23.3±0.2 0.12 10.2±0.1 4.76±0.0 11.1±0.2 31.06

MovieLens100K MovieLens1M MovieLens20M
Prec@5 Rec@5 nDCG@5 time Prec@5 Rec@5 nDCG@5 time Prec@5 Rec@5 nDCG@5 time

WMF 45.7±0.2 14.7±0.1 42.7±0.1 0.67 40.8±0.1 9.17±0.0 38.1±0.0 10.31
ExpoMF 44.6±0.2 14.1±0.1 42.1±0.3 0.71 40.4±0.0 9.01±0.0 38.1±0.1 10.23

HPF 40.2±0.8 12.3±0.4 37.5±0.9 0.06 36.1±0.4 7.46±0.2 33.4±0.3 0.65 32.1±0.3 9.02±0.1 30.0±0.3 17.88
BHPF 39.6±0.9 12.4±0.3 35.5±0.8 0.06 35.9±0.4 7.49±0.2 32.2±0.3 0.65 31.9±0.3 9.11±0.1 29.0±0.3 17.94
PRPF 40.7±0.7 12.5±0.3 37.1±0.7 10.49 35.5±0.5 7.39±0.2 32.5±0.4 441.46
CCPF 39.0±1.0 11.6±0.3 36.2±0.7 0.74 35.9±0.4 7.45±0.1 33.1±0.4 13.55
NBF 40.0±0.7 12.2±0.4 37.3±0.8 0.16 36.1±0.3 7.46±0.2 33.4±0.3 1.63
FastHNBF 41.2±0.6 12.7±0.4 38.2±0.6 0.10 36.4±0.3 7.54±0.2 33.6±0.3 1.20 32.3±0.3 9.13±0.1 30.0±0.3 37.17

Table 4. The result on implicit count and explicit rating data represented in percentage with dimensionality K = 20.

Jester2

Prec@5 Rec@5 nDCG@5 time/epoch

WMF 25.7±0.3 24.7±1.0 28.8±0.7 9.29
ExpoMF 26.0±0.6 27.9±1.9 30.6±1.5 5.03

HPF 30.9±0.5 41.2±0.7 40.8±0.7 0.84
BHPF 31.3±0.5 43.0±0.7 40.6±0.6 0.85
PRPF 30.9±0.3 41.8±0.8 40.3±0.8 188.85
CCPF 30.7±0.5 41.3±1.3 40.7±0.7 5.28
NBF 30.9±0.3 41.3±1.0 41.1±1.0 1.45
FastHNBF 31.7±0.4 42.8±0.9 41.9±0.7 1.80

EachMovie

Prec@5 Rec@5 nDCG@5 time/epoch

WMF 40.0±0.3 34.1±1.0 50.7±0.7 45.21
ExpoMF 37.7±0.1 31.0±0.3 47.3±0.2 51.13

HPF 36.8±0.4 32.3±0.2 46.9±0.5 2.18
BHPF 37.0±0.3 32.5±0.1 47.6±0.2 2.16
PRPF 36.7±0.3 32.1±0.3 46.4±0.4 626.81
CCPF 36.4±0.2 32.0±0.2 46.2±0.2 70.60
NBF 36.7±0.3 32.1±0.3 46.7±0.4 5.39
FastHNBF 37.6±0.4 32.5±0.4 47.8±0.6 4.13

Table 5. The result on explicit rating data, where M � N ,
represented in percentage with dimensionality K = 20.

items a user consumed). Gaussian-based methods that con-
sider user exposure often overestimate them, as shown in
Figure 2. In Jester2, the item popularity distribution cen-
ters at 6,300 and does not appear in long-tail, making WMF
badly overestimate item popularity. Thus, all the Poisson-
based models perform better on Jester2. By contrast, on a
dataset with the long-tail of items, it is difficult for Poisson-
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Figure 2: Posterior predictive checks of the distributions of
item popularity and user activity. All the predicted values
larger than 0.8 are set to 1 and the rest are set to 0.

based models to fit the entries with values close to 0. Hence,
the long-tailed item popularity decreases the performance.

Conclusions
We firstly address that modeling user exposure requires a hi-
erarchical dispersion model due to the overdispersion caused
by different failure exposure counts. In light of this, we pro-
pose HNBF and its accelerated version, FastHNBF, which
outperforms Poisson-based methods with a slight loss of in-
ference speed. In the experiments, we discuss the perfor-
mance and speed gap between Gaussian-based and Poisson-
based models and show that Poisson-based methods perform
better on datasets with non-long-tailed item popularity.

4187



References
Basbug, M. E.; and Engelhardt, B. E. 2016. Hierar-
chical compound Poisson factorization. arXiv preprint
arXiv:1604.03853 .

Basbug, M. E.; and Engelhardt, B. E. 2017. Cou-
pled Compound Poisson Factorization. arXiv preprint
arXiv:1701.02058 .

Cemgil, A. T. 2009. Bayesian inference for nonnegative ma-
trix factorisation models. Computational intelligence and
neuroscience 2009.

Charlin, L.; Ranganath, R.; McInerney, J.; and Blei, D. M.
2015. Dynamic poisson factorization. In Proceedings of the
9th ACM Conference on Recommender Systems, 155–162.
ACM.

da Silva, E. d. S.; Langseth, H.; and Ramampiaro, H. 2017.
Content-based social recommendation with poisson matrix
factorization. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, 530–546.
Springer.

Gardner, W.; Mulvey, E. P.; and Shaw, E. C. 1995. Regres-
sion analyses of counts and rates: Poisson, overdispersed
Poisson, and negative binomial models. Psychological bul-
letin 118(3): 392.

Gopalan, P.; Hofman, J. M.; and Blei, D. M. 2015. Scalable
Recommendation with Hierarchical Poisson Factorization.
In UAI, 326–335.

Gopalan, P.; Ruiz, F. J.; Ranganath, R.; and Blei, D. 2014.
Bayesian nonparametric poisson factorization for recom-
mendation systems. In Artificial Intelligence and Statistics,
275–283.

Gouvert, O.; Oberlin, T.; and Févotte, C. 2018. Negative
Binomial Matrix Factorization for Recommender Systems.
arXiv preprint arXiv:1801.01708 .

Gouvert, O.; Oberlin, T.; and Févotte, C. 2019. Recommen-
dation from Raw Data with Adaptive Compound Poisson
Factorization. arXiv preprint arXiv:1905.13128 .

Hoffman, M. D.; Blei, D. M.; Wang, C.; and Paisley, J. 2013.
Stochastic variational inference. The Journal of Machine
Learning Research 14(1): 1303–1347.

Hosseini, S.; Khodadadi, A.; Alizadeh, K.; Arabzadeh, A.;
Farajtabar, M.; Zha, H.; and Rabiee, H. R. 2018. Recurrent
poisson factorization for temporal recommendation. IEEE
Transactions on Knowledge and Data Engineering .

Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative fil-
tering for implicit feedback datasets. In Data Mining, 2008.
ICDM’08. Eighth IEEE International Conference on, 263–
272. Ieee.

Johnson, C. C. 2014. Logistic matrix factorization for im-
plicit feedback data. Advances in Neural Information Pro-
cessing Systems 27.

Jordan, M. I.; Ghahramani, Z.; Jaakkola, T. S.; and Saul,
L. K. 1999. An introduction to variational methods for
graphical models. Machine learning 37(2): 183–233.

Kuo, L.-Y.; Chou, C.-K.; and Chen, M.-S. 2018. Personal-
ized Ranking on Poisson Factorization. In Proceedings of
the 2018 SIAM International Conference on Data Mining,
720–728. SIAM.
Lawless, J. F. 1987. Negative binomial and mixed Poisson
regression. Canadian Journal of Statistics 15(3): 209–225.
Lee, D. D.; and Seung, H. S. 1999. Learning the parts
of objects by non-negative matrix factorization. Nature
401(6755): 788.
Lee, D. D.; and Seung, H. S. 2001. Algorithms for non-
negative matrix factorization. In Advances in neural infor-
mation processing systems, 556–562.
Liang, D.; Charlin, L.; McInerney, J.; and Blei, D. M. 2016.
Modeling user exposure in recommendation. In Proceed-
ings of the 25th International Conference on World Wide
Web, 951–961. International World Wide Web Conferences
Steering Committee.
Mnih, A.; and Salakhutdinov, R. R. 2008. Probabilistic ma-
trix factorization. In Advances in neural information pro-
cessing systems, 1257–1264.
Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2009. BPR: Bayesian personalized ranking from
implicit feedback. In Proceedings of the twenty-fifth con-
ference on uncertainty in artificial intelligence, 452–461.
AUAI Press.
Schein, A.; Paisley, J.; Blei, D. M.; and Wallach, H. 2015.
Bayesian poisson tensor factorization for inferring multilat-
eral relations from sparse dyadic event counts. In Proceed-
ings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1045–1054. ACM.
Schmidt, M. N.; Winther, O.; and Hansen, L. K. 2009.
Bayesian non-negative matrix factorization. In International
Conference on Independent Component Analysis and Signal
Separation, 540–547. Springer.
Zhou, M. 2018. Nonparametric Bayesian negative binomial
factor analysis. Bayesian Analysis 13(4): 1061–1089.

4188


