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Abstract

Sequential recommender systems aim to model users’ evolv-
ing interests from their historical behaviors, and hence make
customized time-relevant recommendations. Compared with
traditional models, deep learning approaches such as CNN
and RNN have achieved remarkable advancements in rec-
ommendation tasks. Recently, the BERT framework also
emerges as a promising method, benefited from its self-
attention mechanism in processing sequential data. However,
one limitation of the original BERT framework is that it only
considers one input source of the natural language tokens. It
is still an open question to leverage various types of informa-
tion under the BERT framework. Nonetheless, it is intuitively
appealing to utilize other side information, such as item cat-
egory or tag, for more comprehensive depictions and better
recommendations. In our pilot experiments, we found naive
approaches, which directly fuse types of side information into
the item embeddings, usually bring very little or even nega-
tive effects. Therefore, in this paper, we propose the NOn-
inVasive self-Attention mechanism (NOVA) to leverage side
information effectively under the BERT framework. NOVA
makes use of side information to generate better attention dis-
tribution, rather than directly altering the item embeddings,
which may cause information overwhelming. We validate the
NOVA-BERT model on both public and commercial datasets,
and our method can stably outperform the state-of-the-art
models with negligible computational overheads.

1 Introduction
Recommender systems aim to model users’ profiles for per-
sonalized recommendations. They are challenging to design
yet business valuable. The sequential recommendation task
is to predict the next item a user would be interested in, given
his historical behaviors (Fang et al. 2019). Compared with
user-level or similarity-based static methods, sequential rec-
ommender systems also model the users’ varying interests,
hence are considered more appealing for real applications.

Recently, there is a trend to apply neural network ap-
proaches for sequential recommendation tasks, such as
RNN and CNN frameworks (Fang et al. 2019). The neu-
ral networks are now widely applied and generally perform
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(a) Invasive fusion approaches

(b) Non-invasive fusion approaches

Figure 1: An illustration of invasive and non-invasive meth-
ods. (a) Invasive methods fuse all kinds of information irre-
versibly, and then feed them into sequential models. (b) In
the non-invasive method, the side information only partic-
ipants in the attention matrix calculation, while item infor-
mation is kept in an independent vector space.

stronger than traditional models such as (Davidson et al.
2010), (Linden, Smith, and York 2003), (Rendle et al. 2012),
(Koren, Bell, and Volinsky 2009), (Rendle, Freudenthaler,
and Schmidt-Thieme 2010) and (He and McAuley 2016).

As stated in (Fang et al. 2019), within the family of
artificial neural networks, the transformer-based models
(Vaswani et al. 2017) are considered more advanced in han-
dling sequential data, for their self-attention mechanism.
Studies like (Sun et al. 2019; Chen et al. 2019b,a) that ap-
ply transformers for sequential recommendation tasks have
proved their superiority over other frameworks such as CNN
and RNN (Hidasi et al. 2015). The BERT (Bidirectional
Encoder Representations from Transformers) (Devlin et al.
2018) is a leading bidirectional self-attention transformer
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model, with which (Sun et al. 2019) achieves the SOTA ac-
curacy, obviously higher than the unidirectional transformer
methods (Radford et al. 2018; Kang and McAuley 2018).

Although the BERT framework has achieved SOTA per-
formances for many tasks, it has not been systematically
studied for utilizing different types of side information. In-
tuitively, in addition to item IDs, it is attractive to leverage
the side information, such as ratings and item descriptions,
for more comprehensive depictions hence higher prediction
accuracy. However, the BERT framework is originally de-
signed to take only one type of inputs (i.e., word IDs), limit-
ing the use of side information. Through pilot experiments,
we found that existing methods usually utilize side infor-
mation invasively (Figure 1), but with scarce effects. Theo-
retically, side information should be beneficial by providing
more data. Nonetheless, it is challenging to design models
that can efficiently make use of the extra information.

Hence, in this research, we study how to utilize vari-
ous side information efficiently under the successful BERT
framework. We propose a novel Non-inVasive self-Attention
mechanism (NOVA) that can consistently improve predic-
tion accuracy with side information and achieve state-of-the-
art performances in all our experiments. As shown in Figure
1, with NOVA, the side information acts as an auxiliary for
the self-attention module to learn better attention distribu-
tion, instead of being fused into item representations, which
might cause side effects such as information overwhelm-
ing. We verified the NOVA-BERT design on both laboratory
datasets and a private dataset collected from a real applica-
tion store. The results prove the superiority of the proposed
method. Three of our main contributions are:

1. We present the NOVA-BERT framework, which can ef-
ficiently employ various side information for sequential
recommendation tasks.

2. We also propose the non-invasive self-attention (NOVA)
mechanism, a novel design that enables self-attention for
compounded sequential data.

3. Detailed experiments and deployment are conducted to
prove the NOVA-BERT’s effectiveness. We also include
visualization analysis for better interpretability.

2 Related Works
The techniques for recommender systems have evolved for
a long time. Recently, researchers tend to adopt neural net-
works in the recommender system domain for their powerful
ability (Fang et al. 2019). Moreover, among the DNNs, the
trend has also shifted from CNN to RNN, and then Trans-
formers (Vaswani et al. 2017). One of the Transformer-based
models, BERT (Devlin et al. 2018) is considered an ad-
vanced sequential neural network, for its bidirectional self-
attention mechanism. (Sun et al. 2019) has proven the supe-
riority of BERT by achieving the SOTA performances.

In the sequential recommendation domain, it is also a
long-discussed topic to make full use of side information
to improve accuracy. As shown in Table 1, under differ-
ent frameworks such as CNN, RNN, Attention models, and
BERT, several previous works tried to leverage side informa-
tion. Nonetheless, most of them use side information with-

out too much investigation on how side information should
be added. Almost all of them use a simple kind of practices
we call ‘invasive’ fusion.

Invasive approaches Most previous works, like (Hidasi
et al. 2016), directly fuse side information into the item rep-
resentations, as shown in Figure 1(a). They usually use fus-
ing operations (e.g., summation, concatenation, gated sum)
to merge extra information with the item ID information,
and then feed the mixture to the neural network. We call this
kind of direct merging practices ’invasive approaches’ be-
cause they alter the original representations.

As shown in Table 1, previous CNN and RNN works
have tried to leverage side information by directly fusing
the side information into item embeddings with operations
such as concatenation and addition. Some other works like
GRU (Lei, Ji, and Li 2019) and (Hidasi et al. 2016) pro-
posed a more complex mechanism of feature fusion gate
and other training tricks, trying to make feature selection a
learnable process. However, according to their experiment
results, simple approaches cannot effectively leverage the
rich side information under various scenarios. Although (Hi-
dasi et al. 2016) improves prediction accuracy by deploying
a parallel subnet for each type of side information, the model
becomes cumbersome and inflexible.

Another research, (Bogina and Kuflik 2017), does not al-
ter the item embeddings directly, but includes dwell time
with RNN models by the trick called item boosting. The
general idea is to let the loss function be aware of dwell
time. The longer a user looks at an item, the more interested
he/she is. However, this trick heavily depends on heuristics
and is limited to behavior-related side information. On the
other side, some item-related side information (e.g., price)
describes items’ intrinsic features, which are not like dwell
time and cannot be easily utilized by this approach.

Method Backbone Method
CASER (Tang and Wang 2018) CNN Concat

p-RNN (Hidasi et al. 2016) RNN Addition
MCI (Twardowski 2016) RNN Concat

Zhang. (Zhang et al. 2014) RNN Concat
TISSA (Lei, Ji, and Li 2019) RNN Gating

IDT (Bogina and Kuflik 2017) RNN Loss fusion
SASRec (Kang and McAuley 2018) Attention Addition

CSAN (Huang et al. 2018) Attention Concat
ATrank (Zhou et al. 2018) Attention Concat

TISSA (Lei, Ji, and Li 2019) Attention Gating
M3C & M3R (Tang et al. 2019) Hybrid Concat

BERT4Rec (Sun et al. 2019) BERT Addition
Chen (Chen et al. 2019a) BERT Concat

Table 1: Previous studies involving side information fusion.

3 Methodology
In this section, we introduce the research domain and
our methodology in detail. In Sec. 3.1 to 3.3, we specify
the research problem and explain side information, BERT,

4250



and self-attention. Then, we present our Non-invasive Self-
attention and different fusion operations in Sec. 3.4. Finally,
the NOVA-BERT model is illustrated in Sec. 3.5. We denote
NOn-inVasive self-Attention by NOVA in short.

3.1 Problem Statement
Given a user’s historical interactions with the system, the se-
quential recommendation task asks the next item will be in-
teracted with, or the next action will be made. Let u denotes
a user, his/her historical interactions can be represented as a
chronological sequence:

Su = [v(1)u , v(2)u , . . . , v(n)u ]

where the term v
(j)
u represents the jth interaction (also

known as behavior) the user has made (e.g., download an
APP). When there is only one type of actions and no side
information, each interaction can be represented by simply
an item ID:

v(j)u = ID(k)

where ID(k) ∈ I, denoting the kth item’s ID.

I = {ID(1), ID(2), . . . , ID(m)}

is the vocabulary of all items to be considered in the system.
m is the vocabulary size, indicating the total number of items
in the problem domain.

Given the history of a user Su, the system predicts the next
item that the user will interact with most likely:

Ipred = ID(k̂)

k̂ = argmax
k

P (v(n+1)
u = ID(k)|Su)

3.2 Side Information
Side information can be anything that provides extra useful
information for recommendations, which can be categorized
into two types, item-related or behavior-related.

Item-related side information is intrinsic and describes the
item itself, besides item IDs (e.g., price, date of production,
producer). Behavior-related side information is bounded
with an interaction initiated by a user, such as type of action
(e.g., purchase, rate), time of execution, or the user feed-
back scores. The order of each interaction (i.e., position IDs
in original BERT) can also be taken as a kind of behavior-
related side information.

If side information is involved, an interaction becomes:

v(j)u = (I(k), b
(1)
u,j , . . . , b

(q)
u,j)

I(k) = (ID(k), f
(1)
k , . . . , f

(p)
k )

where b(·)u,j denotes a behavior-related side information of
the jth interaction made by user u. I(·) represents an item,
containing an ID and several pieces of item-related side in-
formation f

(·)
k . Item-related side information is static and

stores intrinsic features of each particular item. Hence the
vocabulary can be rewritten as:

I = {I(1), I(2), . . . , I(m)}

The goal is still to predict the next item’s ID:

Ipred = ID(k̂)

k̂ = argmax
k

P (v(n+1)
u = (I(k), b1, b2, . . . , bq)|Su)

where b1, b2, . . . , bq are the latent behavior-related side in-
formation, if behavior-related side information is consid-
ered. Noted that the model should still be able to predict the
next item regardless of the behavior-related side information
being assumptive or ignored.

3.3 BERT and Invasive Self-attention
BERT4Rec (Sun et al. 2019) is the first to utilize the BERT
framework for sequential recommendation tasks, achiev-
ing SOTA performances. As shown in Figure 2, under the
BERT framework, items are represented as vectors, which
are called embeddings. During training, some items are ran-
domly masked, and the BERT model will try to recover their
vector representations and hence the item IDs, using the
multi-head self-attention mechanism (Vaswani et al. 2017):

SA(Q,K, V ) = σ(
QKT

√
dk

)V

where σ is the softmax function, dk is a scale factor, Q, K
and V are derived components for query, key and value. The
BERT follows an encoder-decoder design, to generate a con-
textual representation for each item in the input sequence.
BERT employs an embedding layer to store m vectors, each
corresponding to an item in the vocabulary.

To leverage side information, conventional methods like
(Sun et al. 2019; Chen et al. 2019a) use separate embedding
layers to encode side information into vectors, and then fuse
them into the ID embeddings with a fusion function F . This
invasive kind of approach injects side information into the
original embeddings, and generate a mixed representation:

Eu,j = F(Eid(ID),

Ef1(f (1)), . . . , Efp(f (p)),

Eb1(b(1)u,j), . . . , Ebq(b
(q)
u,j))

where Eu,j is the integrated embedding for the jth interac-
tion of user u, E is the embedding layer that encodes objects
into vectors. The sequence of the integrated embeddings is
fed into the model as the input of user history.

The BERT framework will update the representations
layer by layer with self-attention mechanism:

Ri+1 = BERT Layer(Ri)

R1 = (Eu,1, Eu,2, . . . , Eu,n)

In original BERT (Devlin et al. 2018) and Transformer
(Vaswani et al. 2017), the self-attention operation is a posi-
tional invariant function. Therefore, a position embedding is
added to each item embedding to encode the position infor-
mation explicitly. Position embeddings can also be viewed
as a type of behavior-related side information (i.e., the order
of an interaction). From this perspective, the original BERT
also take positional information as the only side information,
using addition as the fusion function F .
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Figure 2: BERT4Rec. Item IDs and positions are encoded
into vectors respectively, and then added together as inte-
grated item representations. During training, item IDs are
randomly masked (shown as [M ]) for the model to recover.

3.4 Non-invasive Self-attention (NOVA)
If we consider the BERT framework end-to-end, it is an
auto-encoder with stacked self-attention layers. The identi-
cal embedding map is used in both encoding item IDs and
decoding the restored vector representations. Therefore, we
argue that the invasive methods have the drawback of com-
pound embedding space, because item IDs are irreversibly
fused with other side information. Mixing the information
from IDs and other side information might make it unneces-
sarily difficult for the model to decode the item IDs.

Accordingly, we proposed a novel method called non-
invasive self-attention (NOVA), to maintain the consistency
of embedding space, while exploiting side information to
model the sequences more efficiently. The idea is to modify
the self-attention mechanism and carefully control the in-
formation source of the self-attention components, namely
query Q, key K, and value V (Vaswani et al. 2017). More
than the integrated embedding E defined in Section 3.3, the
NOVA also keeps a branch for pure ID embeddings:

E
(ID)
u,j = Eid(ID)

Hence, for NOVA, the user history now consists of two sets
of representations, the pure ID embeddings and the inte-
grated embeddings:

R(ID)
u = (E

(ID)
u,1 , E

(ID)
u,2 , . . . , E(ID)

u,n )

Ru = (Eu,1, Eu,2, . . . , Eu,n)

NOVA calculate Q and K from the integrated embeddings
R, and V from the item ID embeddings E(ID). In practice
we process the whole sequence in tensor form (i.e., R and
R(ID) ∈ RB×L×h, where B is the batch size, L is the
sequence length and h is the size of embedding vectors).
NOVA can be formalized as:

NOVA(R,R(ID)) = σ(
QKT

√
dk

)V

with Q, K, V calculated by linear transform:

Q = RWQ,K = RWK , V = R(ID)WV

The comparison between NOVA and invasive ways for
side information fusing is illustrated in Figure3. Layer by
layer, the representations along the NOVA layers are kept
within a consistent vector space formed purely by the con-
text of item IDs, E(ID).

(a) Invasive feature fusion (b) Noninvasive feature fusion

Figure 3: Comparison between invasive and non-invasive
ways of self-attention for feature fusion. Both fuse item-
related and behavior-related side information with a fusion
function, but NOVA only fuse them in the Query & Key.

3.5 Fusion Operations
NOVA leverages side information differently from invasive
methods, treating it as an auxiliary and fusing side informa-
tion into Keys and Queries with the fusion function F . In
this research, we also study different kinds of fusion func-
tions and their performances.

As mentioned above, position information is also a kind
of behavior-related side information, and the original BERT
utilizes it with the straightforward operation of addition:

Fadd(f1, . . . , fm) =
m∑
i=1

fi

Moreover, we define the ‘concat’ fusor to concatenate all
side information, followed by a fully connected layer to uni-
form the dimension:

Fconcat(f1, . . . , fm) = FC(f1 � · · · � fm)

Inspired by (Lei, Ji, and Li 2019), we also design a gating
fusor with trainable coefficients derived from the context:

Fgating(f1, . . . , fm) =
m∑
i=1

G(i)fi

G = σ(FWF )

where F is the matrix form of all the features [f1, . . . , fm] ∈
Rm×h and WF is a trainable parameter of Rh×1, h is the
dimension of feature vectors to be fused, fi ∈ Rh
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3.6 NOVA-BERT

As illustrated in Figure 4, we implement our NOVA-BERT
model under the BERT framework with the proposed NOVA
operation. Each NOVA layer takes two inputs, the supple-
mentary side information and the sequences of item repre-
sentations, then outputs updated representations of the same
shape, which will be fed to the next layer. For the input of
the first layer, the item representations are pure item ID em-
beddings. Since we only use side information as auxiliary to
learn better attention distributions, the side information does
not propagate along with NOVA layers. The identical set of
side information is explicitly provided for each NOVA layer.

The NOVA-BERT follows the architecture of the origi-
nal BERT in (Devlin et al. 2018), except replacing the self-
attention layers by NOVA layers. Hence, the extra parame-
ters and computation overheads are negligible, mainly intro-
duced by the lightweight fusion function.

We believe that with NOVA-BERT, the hidden represen-
tations are kept in the same embedding space, which will
make the decoding process a homogeneous vector search
and benefit the prediction. Results in the next section also
empirically verify the effectiveness of NOVA-BERT.

Figure 4: NOVA-BERT. Each NOVA layer takes two inputs,
item representations and side information.

4 Experiments

In this section, we evaluate the NOVA-BERT framework on
both public and private datasets, aiming to discuss NOVA-
BERT more in the following aspects:
1. Effectiveness. Whether the NOVA-BERT approach out-
performs conventional invasive feature fusion methods?
2. Thoroughness. How do the components of NOVA-BERT
contribute to the improvements (e.g., different types of side
information, fusion function)?
3. Interpretability. How does side information affect the at-
tention distribution hence improve prediction accuracy?
4. Efficiency. How does NOVA-BERT perform in terms of
efficiency for future real-world deployments?

Dataset #records #users Len Side information available
ML-1m 988,129 6,040 165 year, genres, rating
ML-20m 19,723,277 138,493 142 year, genres, rating

APP 1,774,867 100,000 18 category, developer, size, tag

Table 2: Dataset statistics. ‘Len’ for mean sequence length.

4.1 Experiment Settings
Datasets We evaluated our methods on the public Movie-
Lens datasets and a real-world dataset called APP. Please
refer to Table 2 for detailed descriptions of the datasets.

We sort the rating/downloading records by chronological
order, to construct each user’s interaction history. Following
the practice of (Kang and McAuley 2018; Sun et al. 2019),
we use the heading subsequence for each user’s record with-
out the last two elements as the training set. The second last
items in the sequences are used as the validation set for tun-
ing hyper-parameters and finding the best checkpoint. The
last elements from these sequences construct the test set.
Short sequences having less than five elements are discarded
to eliminate disturbances from the cold-start problem. The
experiment aims to focus on side information fusion and
hold a fair comparison with other methods.

Hyper-parameter Settings For all the models in this re-
search, we train them with Adam optimizer using a learn-
ing rate of 1e-4 for 200 epochs, with a batch size of 128.
We fix the random seeds to alleviate the variation caused by
randomness. The learning rate is adjusted by a linear decay
scheduler with a 5% linear warm-up.

We also apply grid-search to minimize the bias of
our experiment results. The searching space contains
three hyper-parameters, hidden size ∈ {128, 256, 512},
num heads ∈ {4, 8} and num layers ∈ {1, 2, 3, 4}. In
the end we use 4 heads and 3 layers, as well as 512 hidden
size for MovieLens Datasets and 256 for the APP dataset.

4.2 Evaluation Metrics
Following (Kang and McAuley 2018), we employ two
widely-adopted evaluation metrics: Hit Ratio(HR@k), and
Normalized Discounted Cumulative Gain (NDCG@k), with
k ∈ {5, 10}. Particularly, we rank the whole vocabulary,
which means the model gives a prediction score on every
item, indicating the degree of recommendation.

Some practices, such as (Sun et al. 2019) uses a smaller
candidate set, for example, the ground truth plus 100 ran-
domly sampled negative items with chance proportional to
popularity. During pilot experiments, we found that the prac-
tice may result in severe bias. For example, the unpopular
ground-truth item is obvious among other negative candi-
dates, who are drawn because of their high popularity. The
model tends to take advantage of the loose metric. There-
fore, we rerun the baselines with the ranking-all metric.

4.3 Experiment Results
As stated before, (Sun et al. 2019) has proven the extraor-
dinary performance of the BERT framework under a wide
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Method Fusion func
ML-1m ML-20m APP

HR@10 ND@10 HR@5 ND@5 HR@10 ND@10 HR@5 ND@5 HR@10 ND@10 HR@5 ND@5
BERT4Rec Add (posID) 25.24 13.98 16.61 11.20 30.70 18.83 22.89 16.31 27.44 16.39 19.73 13.91

BERT + Invasive
methods

Add 24.65 13.73 16.82 11.23 31.00 18.94 23.09 16.39 27.57 16.45 19.82 13.95
Concat 24.92 14.00 16.57 11.30 31.21 19.21 23.38 16.68 27.38 16.11 19.38 13.53
Gating 24.60 13.61 16.39 10.98 31.29 19.25 23.44 16.71 27.61 16.36 19.72 13.82

NOVA-BERT
Add 28.34 16.55 20.22 13.95 31.65 19.40 23.59 16.76 27.73 16.54 19.88 14.02

Concat 27.70 16.18 19.82 13.64 31.68 19.42 23.59 16.81 28.00 16.65 20.02 14.08
Gating 28.65 16.80 20.45 14.16 31.22 19.15 23.30 16.60 27.85 16.68 20.08 14.17

Table 3: Experiment results in %, ‘ND’ stands for the NDCG metric. We evaluate NOVA-BERT by comparing it with the SOTA
model BERT4Rec (Sun et al. 2019) and its invasive modifications. The best results are boldfaced. For each dataset, we use all
available side information. The baseline BERT4Rec, however, does not support other side information except position ID.

range of scenarios. Therefore, in this paper, we choose their
SOTA method as the baseline and focus on leveraging side
information under the BERT framework. We also examine
the fusion functions of addition, concatenation, and gating.

In Table 3, the NOVA-BERT outperforms all other meth-
ods on the three datasets and all metrics. Compared with the
Bert4Rec(Sun et al. 2019) exploiting only position IDs, the
invasive approaches use several kinds of side information
but have very limited or even adverse improvements. On the
contrary, the NOVA-BERT can effectively leverage the side
information and stably outperform all other methods.

However, the improvements brought by NOVA are on dif-
ferent scales for the datasets. In our experiments, for larger
and denser datasets, the scale of improvement decreases. For
the ML-1m task, NOVA with gating fuser outperforms the
baseline by 13.51% in HR@10, while all invasive methods
perform worse than the baseline. However, in ML-20M and
APP tasks, the relative improvements brought by noninva-
sive approaches decrease to 3.19% and 1.48%, respectively.
We hypothesize that with a more affluent corpus, the mod-
els are possible to learn good enough item embeddings even
from the item context itself, leaving a smaller space for side
information to make supplements.

Furthermore, the results also demonstrate the robustness
of NOVA-BERT. No matter what fusion function is em-
ployed, the NOVA-BERT can consistently outperform the
baselines. The best fusion function may depend on the
dataset. In general, the gating method has a strong perfor-
mance, possibly benefited from its trainable gating mech-
anism. The results also suggest that for real-world deploy-
ments, the type of fusion function can be a hyper-parameter
and should be tuned according to the dataset’s intrinsic prop-
erties, to reach the best online performance.

4.4 Contributions of Different Side Information
In Section 3.2, we categorized side information as item-
related and behavior-related. We also investigate the con-
tributions of the two types of side information under the
ML-1m task. By definition, publishing year and category
are item-related, while rating score is behavior-related.

Table 4 shows the results of different types of side infor-
mation. The original BERT framework considers no side in-
formation except the position ID, denoted as None in the first
row. When complete side information is given, the NOVA-

BERT presents the most significant improvement. Mean-
while, in separate, the item-related and behavior-related side
information bring nonobvious benefits to the accuracy. Since
item-related side information (year and genre) is intrinsic
features of the movies, it might be latently derived from the
massive data sequences, hence resulting in the similar accu-
racy. On the other hand, if behavior-related side information
is also combined, the improvement is noticeable greater than
the sum of improvements brought by either of them. This
observation suggests that the impacts brought by different
types of side information are not independent. Moreover, the
NOVA-BERT benefits more from synthesis side information
and has a strong ability to utilize the rich data without being
troubled by information overwhelming.

In the case of ML-1m, comprehensive side information
can boost the accuracy most under NOVA-BERT. However,
it is reasonable to believe that the contributions of different
types of side information also depends on the data quality.
For that reason, we also consider side information selection
as a dataset dependent factor.

Side-info HR@10 NDCG@10 HR@5 NDCG@5
None 0.2809 0.1636 0.2015 0.1383
Item 0.2743 0.1609 0.1927 0.1346
Behavior 0.2815 0.1655 0.2005 0.1393
All 0.2865 0.1680 0.2045 0.1416

Table 4: Ablation study on side information type. NOVA-
BERT with gating fuser is tested on the ML-1m dataset.
Side information of each row: I) no extra side information
(posID only), II) item-related (year+genre), III) behavior-
related (rating), IV) all avaliable side information.

4.5 Visualization of Attention Distribution
To provide more discussions on NOVA-BERT’s inter-
pretability, we visualize the attention distribution of the
bottom NOVA layer. In Figure 5, we present the com-
parison of attention scores of 6 randomly chosen samples
(columns), each row represents a head from the multi-head
self-attention. Every pixel denotes the attention intensity
from the row item to the column item. All the attention
scores in a row sum to 1. In Figure 5(a), the attention scores
from the original BERT4Rec model is visualized. In Figure
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(a) BERT4Rec. Position ID is the only side information supported. (b) NOVA-BERT. All available side information employed.

Figure 5: Influence of side information on attention distribution. The graphs show attention matrices of different attention heads
(4 rows) from random samples (6 columns). Each matrix denotes the item-to-item attention. The darker the color, the higher
the score. Compared with the original BERT4Rec, the NOVA-BERT presents an articulate pattern of attention distribution.

5(b), we show the attention scores of the NOVA-BERT. The
model is fed with all available kinds of side information.

As shown in the graph, the attention scores from the
NOVA-BERT show a stronger pattern in terms of local-
ity, concentrating approximately along the diagonal. On the
other side, it is not observed in the graph for the baseline
model. The contrast is prevailing, according to our observa-
tion over the whole dataset. We noticed that side informa-
tion leads the model to form more explicit attention in early
layers. The observation demonstrates that the NOVA-BERT,
which takes side information as an auxiliary for calculating
attention matrix, can learn targeted attention distribution and
hence improve the accuracy.

Additionally, we also conduct case studies to understand
more about the attention distribution of NOVA, with more
detailed analysis. Please refer to the Appendix for details.

More explanations on NOVA’s attention matrix Be-
cause of the sophisticated high dimension embedding space
and the intricate network architecture, it is hard to fully com-
prehend how and why an item attended the other. However,
from the visualization results, we found that with side in-
formation provided, there is a trend for the NOVA-BERT to
learn a more structured pattern of attention scores.

Due to the limited interpretability of deep neural net-
works, we cannot assert that NOVA-BERT’s attention pat-
tern is absolutely better. Nonetheless, we found the observed
patterns similar to those in the study (Kovaleva et al. 2019),
which presents a correlation between this kind of attention
distributivity and better performances in natural language
processing tasks. Additionally, NOVA-BERT also shows the
correlation in sequential recommendation tasks, suggesting
that attention is indeed smartly distributed.

5 Deployment and Cost of NOVA-BERT
NOVA-BERT consistently surpasses the current deployed
methods in real-world scenarios, according to our online
tests. In Table 5, the efficiency results of NOVA-BERT and
part of the baseline models are listed. We evaluate the mod-

els in terms of FLOPs and sizes, with ‘addition’ being the
fusion function. As shown in the table, NOVA-BERT has al-
most no extra computational overheads and the same size
as the invasive method. Moreover, since the NOVA-BERT
is well supported by parallel computing and GPU accelera-
tion, the inference time is also approximately the same as the
original BERT. We also claim that since the parameters are
mainly brought by extra embedding layers, for deployment
we may use look-up table to replace the embedding layers
and result in similar model size as the original BERT.

#FLOPs (×109) Size (MB)
Ori-BERT 0.4796 35.5
Invasive-add 0.4986 42.6
NOVA-BERT (add) 0.4988 42.6

Table 5: Complexity in computation and model size.

6 Conclusion and Future Work

In this work, we present the NOVA-BERT recommender
system and the non-invasive self-attention mechanism
(NOVA). Instead of fusing side information directly into the
item representations, the proposed NOVA mechanism uti-
lizes the side information as directional guidance and keeps
the item representations undoped in their vector space. We
evaluate the NOVA-BERT on both experimental datasets
and industrial applications, achieving SOTA performances
with negligible overheads in computation and model size.

Although the proposed method reaches the SOTA perfor-
mance, there are still several intriguing directions for future
studies. For example, fusing side information at every layer
may not be the best approach, and stronger fusing functions
are also expected. Additionally, we will continue studying
and evolving our approach for higher online performances
as well as deploy it in industrial products.
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