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Abstract

This paper proposes a new paradigm for learning a set of
independent logical rules in disjunctive normal form as an
interpretable model for classification. We consider the prob-
lem of learning an interpretable decision rule set as training
a neural network in a specific, yet very simple two-layer ar-
chitecture. Each neuron in the first layer directly maps to an
interpretable if-then rule after training, and the output neuron
in the second layer directly maps to a disjunction of the first-
layer rules to form the decision rule set. Our representation
of neurons in this first rules layer enables us to encode both
the positive and the negative association of features in a deci-
sion rule. State-of-the-art neural net training approaches can
be leveraged for learning highly accurate classification mod-
els. Moreover, we propose a sparsity-based regularization ap-
proach to balance between classification accuracy and the
simplicity of the derived rules. Our experimental results show
that our method can generate more accurate decision rule sets
than other state-of-the-art rule-learning algorithms with better
accuracy-simplicity trade-offs. Further, when compared with
uninterpretable black-box machine learning approaches such
as random forests and full-precision deep neural networks,
our approach can easily find interpretable decision rule sets
that have comparable predictive performance.

Introduction
Machine learning is finding its way to impact every sec-
tor of our society, including healthcare, information tech-
nology, transportation, entertainment, business, and criminal
justice. In recent years, machine learning using neural net-
works have made tremendous advances in solving percep-
tual tasks like computer vision and natural language process-
ing, with breakthrough performance in classification accu-
racy and generalization capability. However, neural network
methods have generally produced black box models that are
difficult or impossible for humans to understand. Their lack
of interpretability makes it difficult to gain public trust for
their use in high-stakes human-centered applications like
medical-diagnosis and criminal justice, where decisions can
have serious consequences on human lives (Rudin 2019).

Indeed, interpretability is a well-recognized goal in the
machine learning community. One popular approach to
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interpretable models is the use of decision rule sets (Cohen
1995; Su et al. 2015; Lakkaraju, Bach, and Leskovec 2016;
Wang et al. 2017; Dash, Günlük, and Wei 2018), where the
model comprises an unordered set of independent logical
rules in disjunctive normal form (DNF). Decision rule sets
are inherently interpretable because the rules are expressed
in simple IF-THEN sentences that correspond to logical
combinations of input conditions that must be satisfied for a
classification. An example of a decision rule set with three
clauses is as follows:

IF (age ≤ 50) OR
(NOT smoker) OR
(cholesterol ≤ 130 AND blood pressure ≤ 120)

THEN low heart disease risk.

In this example, the model would predict someone to
have a low risk for heart disease if the person’s cholesterol
level and blood pressure are below the specified thresh-
olds. The model not only provides a prediction, but the
corresponding matching rule also provides an explanation
that humans can easily understand. In particular, the expla-
nations are stated directly in terms of the input features,
which can be categorical (e.g., color equal to red, blue, or
green) or numerical (e.g., age ≤ 50) attributes, where the
binary encoding of categorical and numerical attributes is
well-studied (Wang et al. 2017; Dash, Günlük, and Wei
2018).

In this paper, we propose a new paradigm for learning
accurate and interpretable decision rule sets as a neural net-
work training problem. In particular, we consider the prob-
lem of learning an interpretable decision rule set as training a
neural network in a simple two-layer fully-connected neural
network architecture called a Decision Rules Network (DR-
Net). In the first layer, called the Rules Layer, each train-
able neuron with binary activation directly maps to a logical
IF-THEN rule after training, where a positive input weight
corresponds to a positive association of the input feature, a
negative input weight corresponds to a negative association
of the input feature, and a zero weight corresponds to an ex-
clusion of the input feature. In the second layer, called the
OR Layer, the trainable output neuron with binary activa-
tion directly maps to a disjunction of the first-layer rules to
form the decision rule set.

By formulating the interpretable rules learning problem
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as a neural net training problem, state-of-the-art training
approaches (including recent advances) can be harnessed
for learning highly accurate classification models, includ-
ing well-developed stochastic gradient descent algorithms
for effective training. We are also able to leverage well-
developed regularization concepts developed in the neural
net community to trade off accuracy and model complexity
in the training process. In particular, we propose a sparsity-
based regularization approach in which the model complex-
ity in terms of the length of the rules and the number of
rules are captured in a regularization loss function. Minimiz-
ing the number of decision rules makes it easier for a user
to understand all the conditions that correspond to a clas-
sification, and minimizing the lengths of the decision rules
makes it easier for a user to interpret the explanations. This
regularization loss function can be combined with a binary
cross-entropy loss function that measures training accuracy,
so that the training process can balance between classifica-
tion accuracy and the simplicity of the derived rule set.

Other benefits of a neural net based formulation is
the availability of sophisticated development frameworks
(Abadi et al. 2016; Paszke et al. 2017) for model develop-
ment, powerful computing platforms (e.g., GPUs and deep
learning accelerators) for efficient learning and inference,
and other developments like federated learning (Konečný
et al. 2017) that enables multiple entities to collaboratively
learn a common, robust model without sharing data, which
addresses critical data privacy and security concerns.

In comparison with previous rule-learning approaches,
our approach has several notable advantages. In (Lakkaraju,
Bach, and Leskovec 2016; Wang et al. 2017), the pre-mining
of frequent rule patterns is first used to produce a set of can-
didate rules, from which various algorithmic approaches are
used to select a set of rules from these candidates. How-
ever, the requirement for pre-mining frequent rules limits
the overall search space, thus hindering the algorithms from
obtaining a globally optimized model. In (Su et al. 2015;
Dash, Günlük, and Wei 2018), the problem is formulated as
an integer-programming problem in which the pre-mining
of rules is not required, but approximations are required to
solve large scale problems. In contrast, our neural net based
approach does not require rules mining and can take advan-
tage of well-developed neural net training techniques to de-
rive better interpretable models. By connecting interpretable
rule-based learning to a neural network based formulation,
we hope to open a new line of research that will lead to fur-
ther fruitful results in the future.

Our experimental results show that our method can gener-
ate more accurate decision rule sets than other state-of-the-
art rule-learning algorithms with better accuracy-simplicity
trade-offs. Further, when compared with uninterpretable
black box machine learning approaches such as random
forests and full-precision deep neural networks, our ap-
proach can easily find interpretable decision rule sets that
have comparable predictive performance.

Decision Rules Network
Given a classification dataset with binarized input features,
our goal is to train a classifier in the form of a Boolean logic

function in disjunctive normal form (OR-of-ANDs). In par-
ticular, each of the lower level conjunctive clauses (logical
ANDs), which consists of a subset of input features and their
negations, individually serves as a decision rule. An instance
satisfies a conjunctive clause if all conditions specified in the
clause are true in the instance. In the upper level of the func-
tion, all conjunctive clauses are unified by a disjunction (log-
ical OR). Thus, a negative final prediction is produced only
if none of the conjunctive clauses are satisfied. Otherwise, a
positive final prediction will be made.

Mathematically, the training set contains N data samples
(xn, yn), n = 1, ..., N , where xn comprises D binarized
features xn,i ∈ {0, 1}, i = 1, ..., D, and yn ∈ {0, 1}.
The final decision rule set C learned from our method
comprises parallel rules that we denote as clauses: C =
{c1, c2, ..., cm}. We define a clause c to be a conjunction
of k predicates where 1 ≤ k ≤ D and a predicate to be ei-
ther an input feature xi or the negation of an input feature
xi. If an input feature or the negation of an input feature is
not present in clause c, then we say that feature is excluded
from clause c, i.e. whether xn,i is 0 or 1 has no effect to the
prediction of clause c. Under this definition, an instance xn

satisfies a clause only if all predicates in the clause are true
in the instance i.e. xn,i = 1 for xi and xn,i = 0 for xi.

In this section, we introduce the architecture of our Deci-
sion Rules Network (DR-Net), which is a simple two-layer
fully-connected neural network. The first layer, called the
Rules Layer, consists of trainable neurons that map to logical
IF-THEN rules, and the second layer, called the OR Layer,
contains a trainable output neuron that maps to a disjunc-
tion of the first-layer rules to form the decision rule set. The
goal of the design of this network is to simulate the logical
formula in disjunctive normal form so that a trained DR-
Net can be directly mapped to a set of interpretable decision
rules.

Handling of Categorical and Numerical Attributes
Common tabular datasets generally comprise binary, cate-
gorical and numerical features. While our method is based
on binary encoded input vectors, we employ the following
pre-processing procedures, which are well established and
studied in the machine learning literature, to binarize the
input features. In particular, the values of binary features
are left as what they are, whereas we apply standard one-
hot encoding to transform categorical attributes to vectors
of binary values. As for numerical features, we adopt quan-
tile discretization to get a set of thresholds for each feature,
where the original numerical value is one-hot-encoded into
a binary vector by comparing with the thresholds (e.g., age
≤ 25, age ≤ 50, age ≤ 75) and encoded as 1 if less than the
threshold or 0 otherwise. For example, considering a dataset
that consists of the categorical feature “color” chosen from
{red, green, blue} and a numerical feature “age” with thresh-
olds {25, 50, 75}, our pre-processing approach will encode
an instance [color: red, age: 30] as [red, green, blue, age ≤
25, age ≤ 50, age ≤ 75] = [1, 0, 0, 0, 1, 1]. Most other
rule-learning methods (Wang et al. 2017; Dash, Günlük, and
Wei 2018) require to convert binary, categorical and numeri-
cal features into both positive conditions, e.g., (color = blue)
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and (age≤ 50), and negative conditions, e.g., (color 6= blue)
and (age > 50), of the binary vectors in their pre-processing
procedures. On the other hand, our encoding approach only
involves those positive conditions without separately having
their negations included. Further explanations will be dis-
cussed in the next section.

Rules Layer
The essence of a fully-connected layer is the dot-product op-
eration shifted by a bias term. In this context, we notice that
with binarized input features, a neuron can be constructed
such that it effectively performs a logical AND operation by
dynamically adjusting the bias based on the weight values
and applying a binary step activation function afterwards.
Then, by interpreting the full precision weights in a certain
way, each neuron is effectively a conjunction of input fea-
tures and thus the whole layer can be mapped to a set of
clauses that can be later combined with disjunction to form
a DNF rule set.

Mathematically, given the input to the Rules Layer as x ∈
{0, 1}D and the output as y, a neuron in the Rules Layer
performs its operation as follows:

y =
D∑
i=0

wixi −
∑
wi>0

wi + 1. (1)

In Equation 1, the dot product of the weights and inputs is
added with a dynamic bias, which depends on the weights
of the neuron. With the dynamic bias and binarized inputs,
the range of the outputs of the neurons in the Rules Layer
is within (−∞, 1]. Note that the output y = 1 can only be
achieved when all inputs match the sign of the correspond-
ing weights: all positive weights should have the inputs of 1
and all negative weights should have the inputs of 0. Just like
the behavior of weights in regular neurons, the zero weights
in the Rules Layer mean that the corresponding inputs will
not have any effect on the output.

In order for the neuron in the Rules Layer to function as
a proper logical AND operation, we need to apply a binary
step activation function to its output:

f(x) =

{
1 if x = 1

0 otherwise
(2)

When applied at the Rules Layer, the binary step function
defined in Equation 2 simply maps the range (−∞, 1) to 0,
which ensures that the neuron is turned on only when Equa-
tion 1 evaluates to 1. With the dynamic bias and binary step
function, each neuron in the Rules Layer encodes a rule that
has k predicates, where k is the number of non-zero weights
of that neuron. As discussed earlier, in effect neuron in the
Rules Layer maps to a logical IF-THEN rule after training,
where a positive input weight corresponds to a positive as-
sociation of the input feature, a negative input weight corre-
sponds to a negative association of the input feature, and a
zero weight corresponds to an exclusion of the input feature.

However, as can be observed, the activations of the
first layer are discretized into binary integers that are not
naturally differentiable and the classic gradient computa-
tion approach doesn’t apply here. Therefore, we utilize the

straight-through estimator discussed in (Bengio, Léonard,
and Courville 2013) with the gradient clipping technique.
Denoted by ŷi the binarized activation based on yi, we com-
pute the gradient as follows:

gŷi =

{
0

if yi < 0
or yi > 1 ∂L

∂yi
< 0

gyi
otherwise

(3)

where gŷi and gyi are the gradients of classification loss
w.r.t. ŷi and yi, respectively. The condition yi < 0 simulates
the backward computation of the ReLU function, which in-
troduces non-linearity into the training process and empiri-
cally improves the performance; whereas our motivation of
the second condition is to address the saturation effect: we
suppress the update of the full-precision activations that are
greater than 1 and are still driven by the gradient to increase,
since further raising activations does not produce any differ-
ence after binarization.

As discussed in above, the addition of the negative con-
ditions in the input space is critical to the selection-based
methods (Wang et al. 2017; Dash, Günlük, and Wei 2018)
since they only consider the presence and absence of fea-
tures and cannot deduce negative correlations unless they are
explicitly provided in the input space. On the other hand, be-
sides the presence of a positive association or an exclusion,
our Rules Layer also learns the negation of an input feature
by assigning a negative weight to it, and hence, DR-Net can
directly derive negative conditions from the corresponding
input features. Therefore, appending negative conditions in
the input binary vector is redundant in DR-Net, and the in-
put space of our DR-Net is reduced by half comparing with
those selection-based method.

OR Layer
To produce the disjunction of the logical rules learned in the
Rules Layer, the OR Layer contains only one output neuron,
where the weights are binarized as follows:

ŵi =

{
0 if wi ≤ 0
1 otherwise (4)

The output neuron performs a dot product with a negative
bias −ε as follows:

y =
D∑
i=1

ŵixi − ε, (5)

where 0 < ε < 1 is a small value such that y is positive
when at least one input is activated. With a sigmoid activa-
tion function and a binary cross-entropy loss, this particular
neuron behaves as an OR gate: the output is by default turned
off because of the negative bias, while it produces a positive
value if at least one rule is activated with a corresponding
ŵi = 1, which exactly mimics the behavior of the logical
OR function. The binarized weights ŵi act as rule selectors
that filter out rules that do not contribute to the model’s pre-
dictive performance. An example of our complete network
structure is shown in Figure 1. We practically use ε = 0.5 in
our implementations.
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Figure 1: An example of the DR-Net architecture where three rules from the Rules Layer are included in the OR Layer, and one
rule is excluded. The decision rule set that the network directly maps into is shown in the box on the right. The dashed lines
represent the masked weights (weights that are set to zero). The green lines in the Rules Layer represent positive weights while
red lines represent negative weights. Please note that we represent (NOT age ≤ 50) as (age > 50) in the third rule, and it is not
included in the final rule set because it has been masked in the OR Layer.

Sparsity-Based Regularization
The neural network structure proposed above outlines a way
to derive a set of decision rules using stochastic gradient de-
scent. As discussed above, a zero weight for a Rules Layer
neuron corresponds to the exclusion of the corresponding in-
put feature. Similarly, a zero weight for the OR Layer output
neuron corresponds to the exclusion of the corresponding
rule from the rule set. Thus, it should be clear that maxi-
mizing the sparsity of the Rules Layer neurons corresponds
to simplifying the corresponding rules, and maximizing the
sparsity of the OR Layer neuron corresponds to minimizing
the number of rules.

However, to eliminate an input feature from a logical
rule or a logical rule from the complete rule set, the corre-
sponding weight has to be exactly zero, which is difficult to
achieve in the typical network training process. To achieve a
high degree of sparsity with exact zero weights, we explic-
itly incorporate a sparsity-based regularization mechanism
into the training process using an approach akin to L0 regu-
larization by explicitly training mask variables.

As discussed in (Louizos, Welling, and Kingma 2017) as a
way to achieve network sparsity through L0 regularization,
a binary random variable zi ∈ {0, 1} is attached to each
weight of the model to indicate whether the corresponding
weight is kept or removed. With this, we can reparameter-
ize each weight wi as the product of a weight w̃i and the
corresponding binary random variable zi:

wi = w̃izi. (6)

Assuming each zi is subject to a Bernoulli distribution with

parameter πi, i.e. q(zi|πi) = Bern(πi), the probability that
zi is 1 is just πi. In (Louizos, Welling, and Kingma 2017),
L0 regularization is implemented by summing all πi param-
eters as the penalty term in the loss function1. In order to
train the binary random variables with stochastic gradient
descent, two different gradient estimators have been pro-
posed in (Louizos, Welling, and Kingma 2017) and (Li and
Ji 2019), respectively, to approximate the Bernoulli distribu-
tion.

Applying the above regularization method to the Rules
Layer is straightforward: all weight parameters are replaced
by their product with the corresponding mask variables. For
the OR Layer, since the weights will ultimately be binarized,
we can just directly substitute the mask variables for the
weights to simplify the process. That is, we can simply treat
wi = zi, with no need for a separate w̃i variable2.

We then incorporate a sparsity-based regularization term
in the loss function to model the complexity of the rule set
represented by the neural network. We denote by π1,i,j and
π2,j the penalty of the non-zero mask variables of the Rules
Layer and the OR Layer, respectively, where i = 1, 2, . . . , D
is the feature index, and j = 1, 2, . . . ,m is the index to the
j-th neuron (rule). Then the regularization loss is defined as

1As explained below, we do not use L0 normalization as the
regularization term. Instead, we explicitly capture the model com-
plexity with Equation 7 as the regularization term.

2Since wi = zi is already binarized, there is no need to further
binarize wi to derive ŵi with Equation 4. i.e., we can just use ŵi =
wi = zi.
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follows:

LR =
1

m

 m∑
j=1

π2,j +
m∑
j=1

π2,j

D∑
i=1

π1,i,j

 , (7)

which explicitly captures the model complexity, as similarly
defined in (Dash, Günlük, and Wei 2018). In particular, the
model complexity of a rule set is defined as the sum of
the number of rules and the total number of predicates in
all rules. Following this definition, the first and the second
terms of Equation 7 quantify the losses for the number of
rules and the total number of predicates, respectively. Note
that, according to the second term in Equation 7, the loss for
the number of predicates in the j-th rule will be effectively
removed if π2,j is at or near zero: i.e., the j-th neuron in the
Rules Layer is disconnected from the OR Layer.

With the above sparsity-based regularization applied to
DR-Net, the overall loss function we optimize for can be
expressed as follows:

L = LBCE + λLR, (8)
where LBCE is the binary cross-entropy loss, LR is the reg-
ularization penalty that is specified by Equation 7, and λ is
the regularization coefficient that balances the classification
accuracy and rule set complexity.

Alternating Two-Phase Training Strategy
As previously discussed, each neuron in the first layer (the
Rules Layer) of our proposed network architecture encodes
an interpretable decision rule, whereas the output neuron in
the second layer (the OR Layer) chooses some of the rules
to be included in the set of decision rules. Empirically, we
noticed that it is more effective to train our DR-Net with
gradient-based optimizers (e.g., SGD) in an alternating man-
ner, potentially due to the reduced search space and simpler
optimization goals. In particular, our “alternating training
strategy” consists of two training phases. We first freeze the
OR Layer and only update the parameters in the Rules Layer
to learn plausible rules. In the second phase, the Rules Layer
is then fixed and we optimize the OR Layer such that redun-
dant rules are eliminated while necessary inactive rules can
also be re-enabled. The whole network is trained by alter-
nating between the two training phases until convergence.

In addition, since the sparsity of the Rules Layer is di-
rectly related to the simplicity of rules, whereas the second
layer is more focused on the selection of these derived rules,
we further allow the flexible weighting of the sparsity-based
regularization loss of the two layers. Specifically, as illus-
trated in Equation 8, the balance between classification loss
and regularization loss is implemented via the regularization
coefficient λ, where we can practically use different values
for the two phases. In other words, the Rules Layer and the
OR Layer are optimized overL1 andL2, respectively, where
L1 and L2 are defined as follows:

L1 = LBCE + λ1LR,
L2 = LBCE + λ2LR.

(9)

In this way, the trade-off between model simplicity and ac-
curacy in our experiments can be modulated by the adjust-
ments of λ1 and λ2.

Experimental Evaluation

The numerical experiments were evaluated on 4 publicly
available binary classification datasets, which all have more
than 10,000 instances and more than 10 attributes for each
instance before binarization. The first two selected datasets
are from UCI Machine Learning Repository (Dua and Graff
2017): MAGIC gamma telescope (magic) and adult census
(adult), which are also used in recent works on rule set clas-
sifiers (Dash, Malioutov, and Varshney 2014; Wang et al.
2017; Dash, Günlük, and Wei 2018). The magic dataset
is a dataset with pure numerical attributes while the adult
dataset has a mix of both categorical and numerical at-
tributes. The other two datasets are relatively recent datasets:
the FICO HELOC dataset (heloc) and the home price pre-
diction dataset (house), which have all numerical attributes.
In all datasets, pre-processing is performed to encode cate-
gorical and numerical attributes into binary variables, as dis-
cussed earlier in the paper. Also, we append negative condi-
tions for all other models except DR-Net.

Our goal is to learn a set of decision rules using our DR-
Net and compare our model with other state-of-the-art rule
learners and machine learning models. The results include
model accuracies and complexities. Apart from the model
complexity defined earlier (the number of rules plus the total
number of conditions in the rule set), we also define the rule
complexity, which is the average number of conditions in
each rule of the model. We consider three other rule learners
to directly compare with our work in terms of both accuracy
and interpretability: the RIPPER algorithm (Cohen 1995),
Bayesian Rule Sets (BRS) (Wang et al. 2017), and the Col-
umn Generation (CG) algorithm from (Dash, Günlük, and
Wei 2018). The first one is an old rule set learning algo-
rithm that is a variant of the Sequential Covering algorithm,
while the other two are representatives of recent works in
rule learning classifiers. We used open-source implementa-
tions on GitHub for all three algorithms, where the CG im-
plementation (Arya et al. 2019) is slightly modified from the
original paper. Other models used for comparison are the
scikit-learn (Pedregosa et al. 2011) implementations of the
decision tree learner CART (Breiman et al. 1984) and Ran-
dom Forests (RF) (Breiman 2001). We also include a full-
precision deep neural network (DNN) model with 6 layers,
50 neurons per hidden layer and ReLU activations. The last
two models are uninterpretable models intended to provide
baselines for typical performances that black-box models
can achieve on these datasets. These uninterpretable base-
line results serve as benchmarks for accuracy comparisons.

For DR-Net, we used the Adam optimizer with a fixed
learning rate of 10−2 and no weight decay across all ex-
periments. There are 50 neurons in the Rules layer to en-
sure there is an efficient search space for all datasets. The
alternating two-phase training strategy discussed earlier is
employed with 10,000 total number of training epochs and
1,000 epochs for each layer. For simplicity, the batch size
is fixed at 2,000 and the weights are uniformly initialized
within the range between 0 and 1. The parameters that are
related to sparsity-based regularization are set the same as in
the original paper (Louizos, Welling, and Kingma 2017).
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Classification Performance
We evaluated the predictive performance of DR-Net by com-
paring both test accuracy and complexity with other state-
of-the-art machine learning models. 5-fold nested cross val-
idation was employed to select the parameters for all rule
learners that explicitly trade-off between accuracy and inter-
pretability to maximize the training set accuracies. To ensure
that the final rule learner models are interpretable, we con-
strained the possible parameters for nested cross validation
to a range that results in a low model complexity. For DR-
Net, We fixed the λ2 to be 10−5 in Equation 9 and only λ1
was varied in the experiment. Although there are many pa-
rameters in BRS to control the rule complexity, we followed
the procedure used in (Dash, Günlük, and Wei 2018) and
only varied the multiplier κ in prior hyper-parameter to save
running time. For RIPPER, we varied the maximum number
of conditions and the maximum number of rules as hyper-
parameters of the implementation, which are directly related
to the complexity of the model. The CG implementation in
(Arya et al. 2019) doesn’t have the complexity bound pa-
rameter C as specified in (Dash, Günlük, and Wei 2018) but
instead provides two hyper-parameters to specify the costs
of each clause and of each condition, which were used in
our experiment to control the rule set complexity. We left
all other parameters for these three algorithms (CG, BRS,
RIPPER) as default. For CART and RF, we constrained the
maximum depth of trees to be 100 for all datasets to achieve
better generalization. For DNN, we used the same training
parameters (number of epochs, batch size, learning rate, etc.)
with a weight decay of 10−2. The test accuracy results of all
models on all datasets are shown in Table 1 and the corre-
sponding complexities are shown in Table 2. We omitted the
results of the complexities of CART, RF and DNN because
they have a different notion of model complexity and rule
complexity.

It can be seen in Table 1 that our method outperforms
other interpretable models on all datasets. For these better
accuracy results, our method does not establish a similar
superiority in the complexity comparison (Table 2). How-
ever, as shown Figure 2 and further discussed in the next
section, our DR-Net approach can often achieve higher ac-
curacy at comparable complexities. It is interesting to see
that DR-Net maintains a relatively good model complexity
compared with the corresponding rule complexity, which is
exactly because our regularization loss function is designed
specifically to minimize the model complexity instead of the
rule complexity. Compared with RIPPER, which greedily
mines good rules in each iteration to maximize the train-
ing accuracy, DR-Net is very competitive in the sense that
it has similar or better test performance while consistently
maintaining a lower model complexity. One advantage of the
BRS algorithm over other models is that it consistently gen-
erates sparse models across all datasets, but at the expense
of significantly inferior accuracies. The CART decision tree
algorithm turned out to be the worst performing model in
our experiments, which might result from overfitting. The
results in Table 1 and Table 2 suggest that our DR-Net ap-
proach is very competitive as a machine learning model for
interpretable classification. Finally, our DR-Net approach is

dataset magic adult heloc house

interpretable

DR-Net 84.42 82.97 69.71 85.71
(0.53) (0.51) (1.05) (0.40)

CG 83.68 82.67 68.65 83.90
(0.87) (0.48) (3.48) (0.18)

BRS 81.44 79.35 69.42 83.04
(0.61) (1.78) (3.72) (0.11)

RIPPER 82.22 81.67 69.67 82.47
(0.51) (1.05) (2.09) (1.84)

CART 80.56 78.87 60.61 82.37
(0.86) (0.12) (2.83) (0.29)

uninterpretable

RF 86.47 82.64 70.30 88.70
(0.54) (0.49) (3.70) (0.28)

DNN 87.07 84.33 70.64 88.84
(0.71) (0.42) (3.37) (0.26)

Table 1: Test accuracy based on the nested 5-fold cross vali-
dation (%, standard error in parentheses).

able to achieve accuracies within only 3% of the uninter-
pretable models (RF and DNN) on the datasets evaluated.

Accuracy-Complexity Trade-off
In this experiment, we compared the accuracy-complexity
trade-off of our DR-Net with other rule learning algorithms:
CG, BRS and RIPPER. The parameters that were selected to
be varied in this experiment are the same as ones in the first
experiment. Instead of using nested cross validation to select
best parameters on the validation set, we manually picked a
set of values for each selected parameters for each algorithm
to generate different sets of accuracy-complexity pairs. We
ran the experiments on all datasets and the results with the
average of the 5-fold cross validation are shown in Figure 2.
Apart from model complexity and rule complexity, we in-
cluded a third metric to show the average number of rules
in each generated rule set versus the test accuracy. For each
method compared, the dots connected by the line segments
shown correspond to Pareto efficient models where all other
points below the Pareto frontier have either lower accuracies
or higher complexities.

The characteristic of being able to attain a high test ac-
curacy with an acceptable model complexity for DR-Net in
Table 1 and Table 2 is carried over to Figure 2. For the magic,
adult and house datasets, DR-Net outperforms all other rule
learners in terms of the accuracy by a substantial margin
when the model complexity, the rule complexity or the num-
ber of rules exceeds a certain threshold. Although DR-Net
does not dominate RIPPER on the heloc dataset, their accu-
racy comparison is very close if enough model complexity
or number of rules is given. The only thing that DR-Net falls
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(a) magic

(b) adult

(c) heloc

(d) house

Figure 2: Accuracy-Complexity trade-offs on all datasets. Pareto efficient points are connected by line segments.

behind a little bit is in the rule complexity vs. accuracy com-
parison on the heloc dataset. In theory, DR-Net can achieve
relatively low rule complexity with a different regulariza-
tion loss function that can quantify the average number of
conditions in the rule set, which we leave as future work.
It is also interesting to note that the number of rules from
DR-Net varies in a relatively narrower range compared with
other approaches as shown in the third column of Figure 2,

which is directly resulted by fixing λ2 in Equation 9. BRS
does not demonstrate a clear accuracy-complexity trade-off
as its results all group in a very narrow range, which is also
noted and explained in (Dash, Günlük, and Wei 2018). This
experiment shows that DR-Net can be preferred over other
rule learners because of its potential for achieving a much
higher test accuracy with a relatively moderate complexity
sacrifice.
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dataset magic adult heloc house

DR-Net 109.4 86.0 13.8 85.0
5.22 13.54 6.33 6.31

CG 112.8 120.0 3.4 28.6
3.72 3.77 1.90 5.15

BRS 40.0 16.8 16.6 31.2
3.00 3.00 2.96 3.00

RIPPER 189.4 117.6 72.8 328.0
6.01 4.66 5.24 7.01

Table 2: Model complexity (upper) and rule complexity
(lower) corresponding to the accuracy results shown in Ta-
ble 1 based on the nested 5-fold cross validation. While DR-
Net, using parameters selected by the nested 5-fold cross
validation with the priority for accuracy, does not achieve the
best complexity in comparison with other models, it can be
observed in Figure 2 that our approach can generally achieve
a higher accuracy at the cost of comparable complexities.

Related Work
The learning of Boolean rules and rule sets is well stud-
ied with different variants. While the learning of two-level
Boolean decision rule set has an extensive history in dif-
ferent communities, most of them employ heuristic algo-
rithms that optimize for certain criteria that are not directly
related to classification accuracy or model simplicity. Repre-
sentatives of these methods include logical analysis of data
(Crama, Hammer, and Ibaraki 1988; Boros et al. 2000), as-
sociation rule mining and classification (Clark and Niblett
1989; Liu, Hsu, and Ma 1998), and greedy set covering (Co-
hen 1995).

With the increasing interest in the field of explainable
machine learning, researchers have in recent years added
model complexity to the optimization objective so that ac-
curacy and simplicity can be jointly optimized. Several ap-
proaches select rules from a pre-mined set of candidate rules
(Wang et al. 2017; Lakkaraju, Bach, and Leskovec 2016).
A Bayesian framework is presented in (Wang et al. 2017)
for selecting pre-mined rules by approximately construct-
ing a maximum a posteriori (MAP) solution. In (Lakkaraju,
Bach, and Leskovec 2016), the joint optimization prob-
lem is approximately solved by a local search algorithm.
In these methods, the requirement for rules pre-mining
limits the overall search space, hindering their ability to
find a globally optimized model. Other approaches based
on integer-programming (IP) formulations (Su et al. 2015;
Dash, Günlük, and Wei 2018) do not require rules pre-
mining, but they rely on approximate solutions for large
datasets. In (Dash, Günlük, and Wei 2018), the IP problem
is approximately solved by relaxing it into a linear program-
ming problem and applying the column generation algo-
rithm, whereas (Su et al. 2015) utilizes various optimization
approaches including block coordinate descent and alternat-
ing minimization algorithm.

Besides decision rule sets, decision lists (Rivest 1987;

Bertsimas, Chang, and Rudin 2012; Letham et al. 2015)
and decision trees (Breiman et al. 1984; Rokach and Mai-
mon 2005) are also interpretable rule-based models. In deci-
sion lists, rules are ordered in an IF-THEN-ELSE sequence.
However, the chaining of rules via an IF-THEN-ELSE se-
quence means that the interpretation of an activated rule
requires an understanding of all preceding rules. This can
make the explanation more difficult for humans to under-
stand. In decision trees, rules are organized into a tree struc-
ture. However, they are often prone to overfitting.

Conclusion and Extensions
In this paper, we presented a simple two-layer neural net-
work architecture, which can be directly mapped to a set of
interpretable decision rules, along with a procedure to ac-
curately train the network for classification. We described a
sparsity-based regularization approach that can capture the
complexity of the trained model in terms of the length of
the rules and the number of rules. The incorporation of this
regularization loss into the overall loss function enables the
training process to balance between classification accuracy
and model complexity. With our neural net formulation, we
are able to leverage state-of-the-art neural net infrastructures
to learn highly accurate and interpretable rule-based models.
Our experimental results show that our method can gener-
ate more accurate decision rule sets than other state-of-the-
art rule-learners with better accuracy-simplicity trade-offs.
When compared with uninterpretable black box models such
as random forests and full-precision deep neural networks,
our approach can easily learn interpretable models that have
comparable predictive performance.

We focus in this paper on the binary classification prob-
lem, but the approach can be easily extended to multi-class
classification by deploying separate output neurons for each
class and mapping each output neuron to a corresponding
set of rules for the respective class. A default class and a tie-
breaking function could be used in the event that no class
or more than one class is activated, respectively (Lakkaraju,
Bach, and Leskovec 2016), or these cases can be handled
by error correcting output codes (Schapire 1997). We plan
to investigate in future work potentially more powerful tie-
breaking mechanisms that can be directly trained as part of
the neural net formulation, for example by directly interpret-
ing softmax results.
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