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Abstract

Group testing—where multiple samples are tested together
using a single test kit and individual tests are performed only
for samples in positive groups—is a popular strategy to opti-
mize the use of testing resources. We investigate how to ef-
fectively group samples for testing based on a transmission
network. We formalize the group assembling problem as a
graph partitioning problem, where the goal is to minimize the
expected number of tests needed to screen the entire network.
The problem is shown to be computationally hard and thus we
focus on designing effective heuristics for it. Using realistic
epidemic models on real contact networks, we show that our
approaches save up to 33% of resources—compared to the
best baseline—at 4% prevalence, are still effective at higher
prevalence, and are robust to missing transmission data.

Introduction
Cost-efficient, timely, and massive testing is a key chal-
lenge in many domains. Population-scale testing during a
pandemic is likely the first scenario with such a challenge
that comes to mind (Taipale, Romer, and Linnarsson 2020).
However, one could argue that testing plays an even bigger
role in manufacturing, for products ranging from resistors to
drugs (Du, Hwang, and Hwang 2000).

A popular approach to increase testing capacity is group
testing (Dorfman 1943), which was originally proposed to
test American soldiers for syphilis during WWII. The idea
was to pool multiple individuals into groups and test each
group using a single test kit. A negative test for the group
would indicate that none of the group members had the
pathogen. In case the group test returned positive, each in-
dividual in the corresponding group would be tested alone.
This strategy is provably effective when the prevalence (or
frequency) of the pathogen is low, as most groups will be
negative. Group sizes have to be optimized according to the
prevalence—large groups might be uninformative. In prac-
tice, larger groups also make it harder to detect the pathogen
at the group level due to dilution (Ghosh et al. 2020). Today,
group testing is also applied to problems outside of health-
care, such as in computer networks, and production lines
(Du, Hwang, and Hwang 2000). There are more recent ap-
proaches for group testing (Aldridge 2020; Broder and Ku-
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mar 2020) but Dorfman’s design remains attractive due to
its easy implementation. In particular, higher savings can be
achieved with more rounds and stages of testing at the cost
of more intricate procedures and/or longer wait times.

Dorfman assumed that groups were assembled at random.
Later studies have identified the importance of the grouping
step to minimize the use of testing resources. For instance,
when screening for a pathogen, a common guideline is to put
together family members and other closely connected sub-
groups (Fang et al. 2020; Augenblick et al. 2020). However,
we know that people tend to maintain a complex network
of contacts (Newman 2002; Salathé et al. 2010) and thus
effectively assembling the groups becomes a challenge.

This paper investigates the problem of designing groups
for testing based on a transmission network—e.g., discov-
ered based on contact tracing. Individual tests are performed
only for samples belonging to positive groups. We formal-
ize our problem as a graph partitioning problem, where the
goal is to select groups that will likely minimize the num-
ber of tests required to screen the entire network. Figure 1
illustrates how groups are assembled and tested.

COVID-19. A major motivation for this work is the coro-
navirus disease (COVID-19), which has become one of the
worst healthcare crises in history. While many experts agree
that a vaccine is the only effective long-term solution, a com-
bination of social-distancing, testing and contact-tracing has
been advocated as a viable alternative to control the spread
of the virus (Taipale, Romer, and Linnarsson 2020). How-
ever, most countries have failed to provide large-scale and
rapid testing for SARS-COVID-2 (the virus), as cases have
increased faster than the testing infrastructure. The most
widely used testing protocol, the qRT-PCR (Corman et al.
2020), costs approximately $100 per test and requires (1)
swab collection, (2) RNA purification, and (3) reverse tran-
scription and quantitative PCR. Steps 2 and 3 are performed
in a lab, requiring a trained technician, reagents, and special-
ized equipment. Therefore, there is a significant effort by re-
searchers and healthcare providers to speed-up and decrease
the cost of testing for SARS-COVID-2. Several countries are
using group testing with this purpose.12

1https://www.scientificamerican.com/article/coronavirus-test-
shortages-trigger-a-new-strategy-group-screening2/

2https://www.nytimes.com/2020/05/07/opinion/coronavirus-
group-testing.html
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Figure 1: Group testing on a network. Groups are assembled
based on a transmission network. Tests are first performed
for groups and nodes are tested if their group is positive.
This network can be screened with 7 tests, instead of 12.

We summarize the contributions of this paper as follows:

• We introduce the problem of group testing on a network,
formulate it as a graph partitioning problem and provide
a characterization of its computational hardness.

• We propose efficient heuristics for group testing on a net-
work. Topology-based approaches only assume knowl-
edge of the transmission network, while sampling-based
ones minimize the expected number of tests over samples
from the transmission process.

• We evaluate our heuristics using simulations of epidemics
on real contact networks. Results show that the proposed
solutions: (a) lead to savings in testing resources of up to
33% compared to the best baseline for a 4% prevalence;
(b) are still effective when prevalence values reach 32%;
and (c) are robust to missing transmission links.

Background
We describe processes on networks and Dorfman’s design.

Processes on Networks
We start formalizing the notion of a transmission network.

Definition 1. Transmission network: Graph G(V,E,W )
where V is the set of nodes and E is the set of edges. Edge
weights W : E → R are such that wu,v = W (u, v).

An example of a transmission network is shown in Fig-
ure 1. There is an extensive literature on network processes
and we refer to (Barrat, Barthelemy, and Vespignani 2008)
for an overview. Here, we assume a generic process with
parameters θ that can be sampled from a distribution P—
see Problem Definition for details. The transmission pro-
cess will also define the role played by edge weights W in
the transmission network. As an example, the network SIR
process (Kiss, Miller, and Simon 2017; Eubank et al. 2004;
Keeling and Eames 2005) is defined as follows.

Network Susceptible, Infected, Recovered (SIR) Pro-
cess (θ = [τ, γ,N ]): At any discrete time t ∈ [1, T ], each
vertex v ∈ V can be in one of the following states/sets: S
(Susceptible), I (Infected), and R (Recovered). At t = 0,
S=V −N and I=N and R=∅, where N ⊆V is the set of
initial infections. A vertex v moves from S to I with prob-
ability τ × wu,v after one of its neighbors u ∈ I . Vertices
move from I to R a probability γ after infection.

We will apply SIR simulations on synthetic and real trans-
mission networks in our experiments.

Algorithm 1 Dorfman’s Group Test

Require: Group Ci
Ensure: Test results Rv , ∀v ∈ Ci

1: Apply test to group Ci
2: if group test is positive then
3: for member v ∈ Ci do
4: Rv ← individual test for v
5: end for
6: else
7: Rv ← negative, ∀v ∈ Ci
8: end if

Dorfman’s Group Testing
We focus on the two-stage design originally proposed by
Dorfman, where individual tests are performed in the second
stage (Dorfman 1943). Algorithm 1 formalizes the group
testing procedure for a given group Ci. It returns a result
(true or false) for each member of Ci while using a varying
number of tests ranging from 1 to |Ci|+ 1.

A group test (line 1) returns positive if at least one of the
members of Ci is positive. Notice that this approach is fully
accurate given our assumption that tests are noiseless (see
further discussion in the Related Work). Our work is focused
on the problem of assembling the groups for testing.

Problem Definition
The Group Testing on a Network (GTN) problem consists of
partitioning the set of nodes into (non-overlapping) groups
C = {C1, C2, . . . Cm} of bounded size as to minimize the
expected number of tests needed to screen the entire net-
work. LetP(G, θ) be a probability distribution over possible
outcomes for a transmission in G given parameters θ (e.g.,
infection rate, seed nodes). Each outcome maps the set of
nodes in G to a set of states X : V → {0, 1}|V | (nega-
tive or positive). Moreover, let r(X,Ci) be a function that
computes the number of tests required by Algorithm 1 for a
group Ci given an outcome X . The total number of tests for
X given groups C is given by:

R(X,C) =

m∑
i=1

r(X,Ci) (1)

We define σ(G, θ, C) as the expected number of tests for
C under the distribution P(G, θ):

σ(G, θ, C) = EX∼P(G,θ)[R(X,C)] (2)
Notice that we do not assume that an analytical expression

for P exists, instead we approximate σ using Monte Carlo
simulations. We are now able to define our problem:
Definition 2. Group Testing on a Network (GTN): Given
a transmission network G, epidemic parameters θ and a
maximum group size k, partition the vertices V into groups
{C1, . . . Cm} such that |Ci| ≤ k, ∀i, and the expected num-
ber of tests σ(G, θ, C) to screen V is minimized.

We emphasize that the number of groups m is not an in-
put of the problem. Moreover, group sizes are only upper-
bounded by k. In the next section, we will expand Equation
2, which is the objective to be minimized in GTN.
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A Probabilistic Model for Group Tests
Based on our problem definition, we will formalize how the
groups affect the expected number of tests. Intuitively, under
a fixed prevalence, the group design should maximize the
probability of co-infection within relatively small groups.
As positive cases are transmitted through the network, its
structure can be used to optimize the group design.

Let the outcomes of a process X = 〈X1, X2, . . . Xn〉,
n = |V |, be a multivariate Bernoulli random variable
(Teugels 1990) with parameters pv = Prob(Xv = 1) for
all v. Given a fixed set of m groups C, we have that:

σ(G, θ, C) = m+
m∑
j=1

|Cj | ×Prob(
∑
v∈Cj

Xv ≥ 1) (3)

= n+m−
m∑
j=1

|Cj | × E[
∏
v∈Cj

(1−Xv)] (4)

The above equation shows the trade-off between the num-
ber of groups and the probability of a positive case within
each group in minimizing the σ. The expectation is a mono-
tonic non-decreasing function of the group sizes and m ≤
σ ≤ m + n. While small groups lead to many tests at the
first stage, large groups might lead to many positive groups
and thus a large number of tests in the second stage.

The original analysis of Dorfman’s design assumed that
groups were assembled at random and with fixed size |Cj | =
k (i.e. m = n/k) and that infections were i.i.d with pv = p
for all v. In such setting, one can show that:

E[
∏
v∈Cm

(1−Xv)] = (1− p)k (5)

Here, we are interested in the case where positive cases
are transmitted through the network and thus we need to ac-
count for the correlation/covariance between variables Xv .
For instance, in the case of two variables, Xu and Xv:

E[(1−Xu)(1−Xv)] = 1− pu− pv + pupv + covu,v (6)

where covu,v is the covariance between variables Xu and
Xv . For k variables, the expectation is a polynomial of de-
gree k—i.e. a function of moments of the Bernoulli distri-
bution with order up to k.

The key idea of our network-based group testing design
is to minimize the objective in Equation 3 by exploiting
our knowledge of the transmission network structure—the
driver of the correlations between node outcomes Xv—and
also the transmission process. In the next section, we will fo-
cus on characterizing the computational hardness of GTN.

The Hardness of Group Testing on a Network
We will show that the Group Testing on a Network is NP-
hard, as is the case for many other graph partitioning prob-
lems (Fortunato 2010; Andreev and Racke 2006). This result
forces us to search for approximate algorithms and heuris-
tics to solve GTN for large graphs, which is the focus of the
next section. Moreover, we also show that computing the ex-
pected number of tests for a given set of groups in a network
is #P-hard (Valiant 1979; Arora and Barak 2009).

Theorem 1. The Group Testing on a Network (GTN) prob-
lem (Definition 2) is NP-hard.

Proof. The proof is by a reduction from 3-partition (3P),
for which an instance contains a set of integers A =
{a1, a2, . . . an}, where n = 3k′, and a threshold h such that:

h

4
< ai <

h

2
, ∀ai ∈ A (7)

n∑
i=1

ai = k′.h (8)

The problem asks whether elements of A can be partitioned
into triplets such that each triplet sums to h and is known to
be strongly NP-complete (Garey and Johnson 1979).

We reduce an instance of 3P to an instance of GTN as fol-
lows. Create a graph G that is a union of n cliques, one for
each element ai ∈ A, where clique i has ai vertices. Edge
weights We = 1 and the maximum group size k = h. The
last step is to define a process for which we must guaran-
tee that the prevalence is small enough so that each group
has exactly k members. This is achieved with a process that
selects a seed node from V uniformly at random with prob-
ability 1/(|V | + 1). The seed will infect the entire clique
it belongs to with probability 1—e.g. as for an independent
cascade process with edge probability 1 (Goldenberg, Libai,
and Muller 2001; Kempe, Kleinberg, and Tardos 2003).

It follows that 3P has a solution iff its corresponding
GTN solution is such that the expected number of tests σ is
m+k/(|V |+1). That is due to the fact that each clique will
be contained in exactly one group, which guarantees that in-
fections do not leave the group from which they originated.

We also analyze the counting complexity of computing
the expected number of tests σ (see Equations 2 and 3).
Theorem 2. The problem of computing the expected number
of tests σ(G, θ, C) for a group assignment C is #P-hard.

Proof. We show a reduction from the influence function
of influence maximization under the Linear Threshold (LT)
process, which is known to be #P-hard (Chen, Yuan, and
Zhang 2010). Given a graph G′(V ′, E′,W ′), with edge
weights W ′ : V ′ × V ′ → [0, 1], vertex thresholds Λ : V ′ →
[0, 1], and a seed set of vertices S ⊆ V ′, the influence func-
tion ψ(S) gives the expected number of vertices in V ′ acti-
vated by an LT process with S as seeds. According to LT, a
vertex v is activated at a discrete time t if the weighted sum
of its activated neighbors satisfies:∑

u is active at t

W (u, v) ≥ Λ(v)

We convert the problem of computing ψ(S) to the prob-
lem of computing σ for an instance of GTN as follows. Let
the graph G and the transmission process P be the same as
in the influence maximization problem—same seed set S.
Finally, let each group in C contain a single vertex from V
(i.e., k = 1). It follows that σ(G, θ, C) = |V |+ ψ(S).

Notice that Theorems 1 and 2 are not redundant, as they
reflect the hardness of different aspects of the problem.
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Algorithm Pseud. ∆ Time (O)
Greedy-Top. Alg. 2 Eq. 9 |V |(log(|V |)+kd)

KL-Top. Alg. 3 Eq. 10 stm2k2d
Greedy-Samp. Alg. 2 Eq. 11 |V |(log(|V |)+kqz)

KL-Samp. Alg. 3 Eq. 12 stm2k2qz

Table 1: Summary of our algorithms, where Pseud. is the
pseudo-code for the high-level approach, ∆ is the scoring
function, Time is the running time complexity, d is the max
degree, q is the max vertex prevalence, k is the max group
size, z is the number of samples, m is the number of groups,
and s and t are numbers of iterations for Kernighan-Lin.

Algorithms for Group Testing on Networks
We propose two types of approaches for group testing on
networks. The first type consists of partitioning algorithms
based on the graph topology with the group size constraint.
For the second, we minimize the expected number of tests by
sampling from the network process. Because both the topol-
ogy and sampling-based algorithms apply the same high-
level strategies, we start by describing these strategies.

Algorithm 2 (Greedy) is a bottom-up scheme that starts
with singleton groups and merges smaller groups by max-
imizing a generic score function ∆g . Similarly, Algorithm
3 (Kernighan-Lin) starts with groups C(0) and then swaps
members between pairs of groups while maximizing a
generic score function ∆kl (Kernighan and Lin 1970). Table
1 summarizes our algorithms and their time complexities.

Topology-based Algorithms
For the topology-based methods, we will assume the trans-
mission network G to be undirected. Our first approach,
Greedy-Topology, combines Algorithm 2 with a density-
based scoring function. More specifically, we apply a func-
tion ∆g as to maximize the total weight of edges inside the
groups while bounding the size of new groups by k:

∆g(Ci, Cj , θ, k) =


∑

u∈Ci,v∈Cj

wu,v, |Ci ∪ Cj |≤k

−1, otherwise
(9)

We also propose KL-Topology. It combines Algorithm 3
with another scoring function also based on density. Let
δ(u,Ci, Cj) be the change in within-group weight for mov-
ing vertex u fromCi toCj ,

∑
v∈Ci

wu,v−
∑
v∈Cj−{u} wu,v .

Then ∆kl for KL-Topology is defined as:

∆kl(u, v, Ci, Cj , θ) = δ(u,Ci, Cj) + δ(v, Cj , Ci) (10)

Sampling-based Algorithms
The solutions described in the previous section are indepen-
dent of the network process, which leads to two limitations:
(1) group sizes cannot be adaptive to different regions of the
transmission network and (2) prior information about the
process (e.g., edge directions) cannot be easily accounted
for. Here, we avoid these limitations by sampling from the
process and minimizing our objective (Eq. 3) over samples.

Algorithm 2 Greedy

Require: Graph G, group size k, process parameters θ
Ensure: Groups C

1: C =
⋃
v∈V {v}

2: (Ci, Cj) = arg maxCa,Cb∈C ∆g(Ca, Cb, θ, k)
3: while ∆g(Ci, Cj , θ, k) ≥ 0 do
4: C = (

⋃
q 6=i,j Cq) ∪ (Ci ∪ Cj)

5: (Ci, Cj) = arg maxCa,Cb∈C ∆g(Ca, Cb, θ, k)
6: end while

Algorithm 3 Kernighan-Lin

Require: Graph G, group size k, process parameters θ, ini-
tial groups C(0), numbers of iterations s and t

Ensure: Groups C
1: C = C(0)

2: for 1, . . . s do
3: for Ci, Cj ∈ C do
4: (u, v) = arg max

a∈Ci,b∈Cj

∆kl(a, b, Ci, Cj , θ)

5: for 1, . . . t do
6: if ∆kl(u, v, Ci, Cj , θ) > 0 then
7: Ci=(Ci−{u})∪{v}; Cj =(Cj−{v})∪{u}
8: (u, v) = arg max

a∈Ci,b∈Cj

∆kl(a, b, Ci, Cj , θ)

9: end if
10: end for
11: end for
12: end for

We estimate the expected number of tests σ from process
samples X(1), X(2), . . . X(z) ∼ P(G, θ) as:

σ′(G, θ, C) = m+

m∑
j=1

|Cj |
z

z∑
i=1

1
{ ∑
v∈Cj

X(i)
v ≥ 1

}
From bounds on sampling proportions (Ott and Long-

necker 2015), the error of σ′ is bounded by:
|σ(G, θ, C)− σ′(G, θ, C)| ≤ ε

where ε = O(n/
√
z) and n = |V |. Although computing σ

exactly is #-P hard, σ′ can be made arbitrarily close.
To describe Greedy-Sampling, let us define f(Ci, Cj) as:
f(Ci, Cj , θ) = Z(Ci) + Z(Cj)− Z(Ci ∪ Cj) + 1

where Z(Cj) = |Ci|
∑z
i=1 1{

∑
v∈Ci

Xv ≥ 1} is the ex-
pected number of tests for Ci and can be computed in time
O(kqz) for prevalence q. The function ∆g is defined as:

∆g(Ci, Cj , θ, k) =

{
f(Ci, Cj , θ), |Ci ∪ Cj |≤k
−1, otherwise

(11)

Our last algorithm is KL-Sampling, which applies Algo-
rithm 3 and the following scoring function:

∆kl(u, v, Ci, Cj , θ) = Z(Ci) + Z(Cj) (12)
−Z((Ci − u) ∪ {v})− Z((Cj − v) ∪ {u})

To allow the KL algorithm to adaptively discover group
sizes, we also consider node transfers (besides swaps) be-
tween groups in Algorithm 3 (lines 6-9).

4351



|V | |E| time
Primary School (PS) 242 2,242 2 days

High School (HS) 326 2,141 1 week
Company (CP) 212 1,428 2 weeks

Conference (CF) 393 2,334 2 days
Erdos-Renyi (ER) 500 2,500 -

Gauss. Rand. Part. (GRP) 400 2,200 -
Gowalla (GW) 1,899 3,565 7 months

Table 2: Summary of transmission networks.

Experiments
We evaluate our algorithms and baselines using epidemic
processes on real and synthetic contact networks. 3 4

Experimental Settings
Evaluation metrics: We compare testing approaches in
terms of number of tests per person/vertex—the lower the
better. We also analyze the running time of the methods.

Transmission networks (Table 2): We apply five real
contact networks and two synthetic ones as transmission
networks in our experiments. Table 2 summarizes the main
statistics of each dataset. Primary School (PS), High School
(HS), Company (CP), and Conference (CF) are real face-to-
face contact networks over varying periods of time (from
2 days to 2 weeks) from sociopatterns (Génois and Bar-
rat 2018).5 We set edge weights for these networks as the
(max) normalized total contact time between two people.
Erdos-Renyi (ER) and Gaussian Random Partition (GRP)
are unweighted synthetic graphs generated with the respec-
tive models (Erdős and Rényi 1959; Brandes, Gaertler, and
Wagner 2003). For GRP, we set the average cluster size to
10, the variance in cluster sizes to 5, and the intra and inter
cluster edge probabilities to .8 and .01, respectively. Gowalla
(GW) is a co-location network based on user check-ins from
the (now extinct) Gowalla social network (Liu et al. 2013).
Edges in GW indicate that one user visited a place within
1 minute after another. Different from the previous datasets,
we make GW directed to simulate an indirect transmission
of a virus—e.g. via touching a contaminated surface.

Monte Carlo epidemic simulations: Given a transmis-
sion network G, we run multiple network SIR processes
(see Background Section) with a single seed node selected
at random (i.i.d.). The other parameters of the process are set
for each network, according to their weight distribution, to
produce a slow progression of the infection, with γ varying
from .1 and 1.5 and τ varying from 1 to 40. Each simula-
tion is stopped when q.|V | nodes in the network are infected
or recovered, where q ∈ [0, 1] is the prevalence value. A
node is considered to be positive if it is either infected or
recovered—i.e. as in an antibody test. Our simulations are
implemented using the open-source EON Python module6.

3Code: https://github.com/arleilps/group-testing
4See supplementary material for details and extra experiments.
5http://www.sociopatterns.org/datasets/
6https://epidemicsonnetworks.readthedocs.io

We report the average and standard deviation of the number
of tests over 10,000 simulations.

Group Testing Approaches: We divide the approaches
into three groups: I) those that do not consider the transmis-
sion network (Random and Origami); II) those that exploit
knowledge of the network topology but not the epidemic
process (Modularity, Greedy-Topology and KL-Topology);
and III) those that sample directly from the epidemic pro-
cess (Greedy-Sampling and KL-Sampling).

Random applies randomly selected groups as in (Dorf-
man 1943). Modularity (Girvan and Newman 2002) is a
classical community detection method for which we build
groups with nodes within the same community. Origami
(Kainkaryam and Woolf 2008) is a non-adaptive method
(single-stage) that assigns each node to multiple groups ac-
cording to precomputed publicly-available assays.7 For a
given prevalence, we generate infections that match the di-
mension of each assay. In case there are false negatives, we
add a second stage of individual tests (similar to Dorfman’s).
Results for the best assay are reported. For the topology-
based approaches, we search over a range of group sizes
and pick the best values, while for the sampling-based ones
we constraint the largest group size, k, to 64. Finally, we
apply the greedy methods (Greedy-Topology and Greedy-
Sampling) to initialize the Kernighan-Lin methods (KL-
Topology and KL-Sampling, respectively). We found this
strategy to work better than random initialization. The num-
ber of samples, z, for the sampling-based methods was set
to 1,000 in all experiments.

Testing Performance
Table 3 shows the performance of testing approaches for
seven networks and a prevalence of 4%.8 Random achieves
the worst results but still leads to savings of at least 60%.
Origami performs well, especially for CP and ER. These are
transmission networks where groups are not good clusters.
Conversely, for networks with community structure (PS, HS,
CF, and GRP), topology-based approaches are among the
top-performing ones. Notice that our methods consistently
outperform Modularity. However, the KL steps do not lead
a noticeable improvement over Greedy. We have also tried
an initialization using Random and found that results are not
better. Methods that sample the epidemic process achieve
the best performance for most of the datasets, outperforming
Random and Origami by up to 40% and 33%, respectively.
Moreover, results for GW illustrate the importance of pro-
cess sampling in case prior information (in this case, edge
directions) about the process is available.

In Figure 2, we show the testing performance of some of
the approaches (Random, Origami, KL-Topology, and KL-
Sampling) using four networks (PS, HS, CF, and GW) for
values of prevalence varying from 2% to 32%.9 Results for
the remaining datasets follow a similar pattern and are omit-
ted due to space constraints. Origami achieves good results
for very low values of prevalence (below 3%), but its perfor-

7https://www.smarterbetter.design/origamiassays/
8See the appendix for SARS-COVID-2 prevalence in the US.
916% for GW as the number of reachable vertices is often small.
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Method PS HS CP CF GW ER GRP

No network Random .39 ± .02 .40 ± .01 .40 ± 0.2 .39 ± .02 .38 ± .01 .39 ± .01 .38 ± .01
Origami .29 ± .0 .35 ± .00 .28 ± .00 .34 ± .00 .31 ± .00 .33 ± .00 .32 ± .04

Topology-based
Modularity .32 ± .05 .27 ± .04 .32 ± .06 .33 ± .04 .36 ± .01 .38 ± .02 .32 ± .04

Greedy .28 ± .04 .23 ± .05 .29 ± .05 .29 ± .04 .32 ± .01 .36 ± .02 .31 ± .04
KL .28 ± .04 .23 ± .05 .29 ± .05 .29 ± .04 .32 ± .01 .36 ± .02 .31 ± .04

Sampling-based Greedy .28 ± .05 .23 ± .05 .29 ± .05 .29 ± .04 .21 ± .03 .37 ± .02 .32± .03
KL .28 ± .04 .22 ± .05 .28 .± .05 .28 ± .04 .20 ± .02 .36 ± .02 .30 ± .03

Table 3: Comparison of testing schemes in terms of tests/person for the datasets described in Table 2 and a prevalence of 4%.
Results for varying values of prevalence are shown in Figure 2. Our best approach (KL-Sampling) outperforms Random and
Origami for most of the datasets and by up to 40% and 33%, respectively.
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Figure 2: Testing performance of our approaches (with standard deviation) and some of the baselines at varying prevalence
levels using the PS, HS, CF and GW datasets. Our best method (KL-Sampling) outperforms all competing approaches for
values of prevalence beyond 2% and is still effective (for PS, HS and CF) when prevalence reaches 32%.

mance quickly degrades as the prevalence grows due to the
increase in the number of false positives. When the preva-
lence reaches 32%, both Random and Origami become as
effective as individual testing. However, the network-based
approaches are still able to save up to 38% (HS) of testing
resources at such a high prevalence rate.

Robustness to Missing Transmission Links

So far, we have assumed full knowledge of the transmission
network in our experiments. However, in practice, the col-
lection of such transmission data (e.g., from contact tracing)
is subject to errors. Here, we evaluate the robustness of our
group testing approaches to missing edges in the transmis-
sion network. For the HS dataset, we first run the epidemics
on the entire network and then remove a random fraction of
the edges before applying our group testing approaches.

Figure 3a shows the number of tests/person achieved by
KL-Topology and KL-Sampling for a rate of missing edges
varying from 0-80%. We also show the performance for
Random and Origami for comparison. Results show that
the savings are quite robust to missing edges. That is ev-
idence that the groups discovered by our approaches—of
high school classmates in this case—are quite dense. Even
with 40% of edges missing, our approaches are still able to
save up to 38% and 25% of test kits on average compared
to Random and Origami, respectively. However, notice that
KL-Sampling is unable to sample at a prevalence of 4% in
the extreme case where 80% of edges are missing, which is
due to the fragmentation of the network.
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Figure 3: Testing performance for varying amounts of miss-
ing edges in the HS network (a) and scalability of the meth-
ods in terms of the number of vertices (b). When 80% of
edges are missing, KL-Sampling is unable to sample at the
needed prevalence as the network becomes fragmented.

Scalability
Figure 3b shows the scalability of KL-Topology and KL-
Sampling for networks of increasing sizes generated by the
ER model. We set the number of edges in the graph and sam-
ples used by KL-Sampling both as five times the number of
vertices. Results show that sampling the transmission pro-
cess leads to an overhead in running time compared to the
topology-based approach. For 800 vertices, KL-Sampling
and KL-Topology take approximately 600 and 200 secs to
finish, respectively. In practice, we expect our approaches to
be applied to networks with a few thousand vertices—e.g. a
large office, retirement home, or university campus. More-
over, the Kernighan-Lin methods are easily paralelizable.
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Related Work
In this paper, we consider the group testing procedure orig-
inally proposed in (Dorfman 1943). Dorfman’s design is
adaptive, as the outcome of tests in the first stage decides
the tests in the second. Group testing can also apply more
than two stages, by recursively partitioning groups at the
cost of longer wait times for results (Hwang 1972). There are
also non-adaptive schemes, where each individual sample
is assigned to multiple groups (e.g., Origami) (Kainkaryam
and Woolf 2008; Aldridge, Johnson, and Scarlett 2019) and
mixed schemes (Aldridge 2020). Moreover, we have as-
sumed that the tests are noiseless but there are methods that
account also for test errors (Atia and Saligrama 2012).

Group testing has regained popularity recently due to
COVID-19 (Mallapaty 2020; Brault, Mallein, and Rup-
precht 2020; Gollier and Gossner 2020; Taipale, Romer, and
Linnarsson 2020; Broder and Kumar 2020). While some of
these recent studies follow the lines of earlier, more theo-
retical or simulation-based work (Beunardeau et al. 2020;
Cuturi, Teboul, and Vert 2020; Gajpal et al. 2020; Broder
and Kumar 2020), others are based on laboratory experi-
ments with real SARS-COVID-2 patients (Schmidt et al.
2020; Ghosh et al. 2020). Recent studies very related to ours
are (Fang et al. 2020), (Augenblick et al. 2020) (Nikolopou-
los et al. 2020), and (Bertolotti and Jadbabaie 2020), which
demonstrate the benefit of correlation to reduce the costs
in group testing. However, these works assume that corre-
lated groups are known a priori. Here, we focus on how such
groups can be discovered based on a transmission network,
which we show to be computationally hard. In (Cheraghchi
et al. 2012), a graph structure constrains the pooling proce-
dure, playing a different role than in our problem.

This work is also related to the study of diffusion pro-
cesses on networks (Kiss, Miller, and Simon 2017; Gra-
novetter 1978; Rogers 2010; Domingos 2005; Adar and
Adamic 2005). For instance, influence maximization is a
graph combinatorial problem defined in terms of influence
processes (Kempe, Kleinberg, and Tardos 2003). We focus
on a graph partitioning problem, which is similar to (Barbi-
eri, Bonchi, and Manco 2013). However, their problem def-
inition does not take into account partition size constraints.

There is extensive literature on graph partitioning (Gir-
van and Newman 2002; Karypis and Kumar 1998; Fortu-
nato 2010). K-partition (Andreev and Racke 2006), of which
graph bisection is a special case (Garey, Johnson, and Stock-
meyer 1974), also searches for balanced partitions. How-
ever, these problems do not have the partition size as a
hard constraint and thus bi-criteria solutions are acceptable,
which is not our case. Still, we are able to apply ideas from
existing heuristics for balanced partition to our problem
(Kernighan and Lin 1970; Fiduccia and Mattheyses 1982).

Conclusion
This paper proposes a group testing design based on knowl-
edge of an underlying transmission network. We have for-
malized our problem, characterized its computational hard-
ness, and proposed heuristics for it. In our experiments, we
have evaluated these heuristics, and other alternatives, using

simulated epidemics on real and synthetic transmission net-
works. Results have shown that our approaches can save up
to 33% of testing resources for a prevalence of 4%. More-
over, we are able to achieve savings even for higher values of
prevalence (32%), for which competing approaches are inef-
fective, and when part of the transmission edges are missing.

The evaluation of our methods using real infections would
provide further evidence of their effectiveness, but large-
scale network infection data is not publicly available. A few
promising studies might release such data in the future (Gud-
bjartsson et al. 2020; Klepac, Kissler, and Gog 2018).

The epidemic transmission network is based on highly
sensitive contact data (Ahmed et al. 2020; Chan et al. 2020;
Cho, Ippolito, and Yu 2020; Troncoso et al. 2020). Contact
tracing apps have been developed to address the COVID-19
crisis and there is a growing effort to guarantee the privacy
of their users. Implementing our algorithms on a private net-
work is an interesting direction for future research.
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Appendix
Discussion on Hardness of Approximation
We have proposed heuristics for Group Testing on Networks
(GTN), which is NP-hard (Theorem 1). However, we have
not discussed whether our heuristics produce any approx-
imation guarantee or if GTN can be approximated at all.
We claim that there is no polynomial-time algorithm with
a meaningful approximation guarantee for GTN.

First, let us define an edge sampling process in an undi-
rected graph, where each vertex v ∈ V becomes a seed with
probability proportional to its degree and the process dies
after the seed vertex infects one of its neighbors. This sim-
ple process selects edges e ∈ E uniformly. Moreover, let us
assume that group sizes are exactly k—this is the case if the
prevalence is small enough. For a given group assignment
C, it follows that σ = m + k(1 + φ(C)/|E|), where φ(C)
is the number of edges connecting different groups—also
known as the graph cut induced by C as partitions. More-
over, given an input network, m, k and E are constants, and
thus one could directly minimize φ(C) under the constraint
that groups have size k. This problem is equivalent to the
balanced (a.k.a., k-partition) problem, which is NP-hard to
approximate (Andreev and Racke 2006).

Notice that the above claim holds because we have re-
moved the constant part k(m + 1) from the objective. Re-
turning to the original objective σ, because φ(C) ≤ E, then
any algorithm can achieve an m + 2k solution, which is a
constant factor approximation but also an upper bound on σ.

COVID Prevalence in the US (May, 2020)
Connecticut 5%, Louisiana 6%, NYC 7%, Philadelphia 3%,
San Francisco 1% (Havers et al. 2020). Our experiments
cover prevalence values in the same scale.
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