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Abstract

Learning representations for graphs plays a critical role in a
wide spectrum of downstream applications. In this paper, we
summarize the limitations of the prior works in three folds:
representation space, modeling dynamics and modeling un-
certainty. To bridge this gap, we propose to learn dynamic
graph representation in hyperbolic space, for the first time,
which aims to infer stochastic node representations. Working
with hyperbolic space, we present a novel Hyperbolic Vari-
ational Graph Neural Network, referred to as HVGNN. In
particular, to model the dynamics, we introduce a Temporal
GNN (TGNN) based on a theoretically grounded time encod-
ing approach. To model the uncertainty, we devise a hyper-
bolic graph variational autoencoder built upon the proposed
TGNN to generate stochastic node representations of hyper-
bolic normal distributions. Furthermore, we introduce a repa-
rameterisable sampling algorithm for the hyperbolic normal
distribution to enable the gradient-based learning of HVGNN.
Extensive experiments show that HVGNN outperforms state-
of-the-art baselines on real-world datasets.

Introduction
Recent years have witnessed a surge of representation learn-
ing on graphs (Perozzi, Al-Rfou, and Skiena 2014; Tang
et al. 2015; Xhonneux, Qu, and Tang 2020). Its basic idea
is to map each node to a vector in a low-dimensional repre-
sentation space. By learning graph representations, classical
machine learning algorithms can be applied to solve various
graph analysis tasks, such as link prediction and node clas-
sification (Kipf and Welling 2016a).

In this paper, we summarize the limitations of the prior
graph representation learning works in three folds:
1) Representation Space. Most of existing studies (Kipf and
Welling 2016b; Xu et al. 2020) model graphs in the Eu-
clidean space. Euclidean models tend to have distortions
when representing real-world graphs with latent hierarchies
(Chami et al. 2019; Chen et al. 2013). In particular, for
such graphs, the number of nodes surrounding to a center
node grows exponentially w.r.t. radius. However, the size
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of the Euclidean space only grows polynomially w.r.t. ra-
dius, while this size grows exponentially in hyperbolic space
(Krioukov et al. 2010). Hyperbolic space provides a more
promising alternative. Actually, recent results (Papadopou-
los et al. 2012; Liu, Nickel, and Kiela 2019) show that hy-
perbolic space is well-suited for modeling graphs.
2) Modeling Dynamics. Most of existing models (Li et al.
2020; Tu et al. 2018; Wang, Cui, and Zhu 2016) consider
the graphs to be static. Actually, graphs are usually dynamic
and constantly evolving over time. Dynamic graphs have
been typically observed in social networks, transportation
networks and financial transaction networks (Zhou et al.
2018b). Ignoring the inherent dynamics of graphs usually
leads to questionable inference. Such models may mistak-
enly utilize future information for predicting past interac-
tions as the evolving constraints are disregarded.
3) Modeling Uncertainty. Most of existing models (Liu et al.
2020; Grover and Leskovec 2016) map nodes to determinis-
tic vectors. However, the formation and evolution of graphs
are full of uncertainties, especially for low-degree nodes
which deliver less information and bear more uncertainties
(Zhu et al. 2018). Actually, uncertainty is an inherent char-
acteristic of graphs. The deterministic representation cannot
model uncertainty. Alternatively, stochastic representation
provides a promising approach to model such characteris-
tic. It naturally captures the uncertainty to represent nodes
as normal distributions, i.e., the mean and variance.

To address the aforementioned limitations, we propose to
learn dynamic graph representation in hyperbolic space, for
the first time, which aims to learn stochastic node represen-
tations modeling graph dynamics and its uncertainty.

To this end, we present a novel Hyperbolic Variational
Graph Neural Network, referred to as HVGNN. In HVGNN,
to address the first limitation, instead of the Euclidean space,
we utilize hyperbolic space as the representation space. To
address the second limitation, we introduce a novel Tem-
poral GNN (TGNN) to model the dynamics. In particular,
TGNN performs a time-aware attention based on a theo-
retically grounded time encoding approach, which distin-
guishes nodes in time domain. To address the third limita-
tion, we devise a hyperbolic graph variational autoencoder
built upon TGNN to jointly model the uncertainty and dy-
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namics. In particular, we generate stochastic representations
of wrapped normal distributions, the generalized normal dis-
tributions in hyperbolic space, whose parameters are defined
by TGNN. Furthermore, we introduce a reparameterisable
sampling algorithm for wrapped normal distributions to en-
able the gradient-based learning of HVGNN.

We evaluate HVGNN by two typical downstream tasks on
graph data: link prediction and node classification. Exten-
sive experiments on real-world datasets show that HVGNN
outperforms several state-of-the-art methods.

Overall, main contributions of our work are listed below:

• To the best of our knowledge, this is the first attempt to
learn the node representations for dynamic graphs in hy-
perbolic space.

• We propose a novel Hyperbolic Variational Graph Neu-
ral Network, HVGNN, which generates stochastic repre-
sentations to model graph dynamics and its uncertainty in
hyperbolic space.

• Experimental results show the superiority of HVGNN on
several real-world datasets.

Preliminaries: Hyperbolic Geometry
For the in-depth expositions, refer mathematical materials
(Loomis 2013; Hopper and Andrews 2010). Throughout the
paper, we denote the Euclidean norm and inner product by
‖ · ‖ and 〈·, ·〉, respectively.

Riemannian Manifold
A manifoldM is a space that generalizes the notion of a 2D
surface to higher dimensions (Ganea, Bécigneul, and Hof-
mann 2018). For each point x ∈ M, it associates with
a tangent space TxM of the same dimensionality as M.
Intuitively, TxM contains all possible directions in which
one can pass through x tangentially. On the associated tan-
gent space TxM, the Riemannian metric, gx(·, ·) : TxM×
TxM → R, defines an inner product specifying the geom-
etry of M. A Riemannian manifold is then defined as the
tuple of (M, g).

Mapping between the tangent space and the manifold
is done via exponential and logarithmic maps. For a point
x ∈M in the manifold, the exponential map at x, expx(v) :
TxM → M, projects the vector v ∈ TxM onto the mani-
foldM. The logarithmic map at x, logx(y) :M→ TxM,
projects the vector y ∈ M back to the tangent space TxM.
Mapping between tangent spaces is done via parallel trans-
port. For two points x,y ∈ M in the manifold, the parallel
transport from x to y, Px→y(v) : TxM → TyM, carries
the vector v ∈ TxM to TyM along the geodesic, a smooth
path on the manifold of minimal length between x and y.

As one of the fundamental objects, the hyperbolic space
is a Riemannian manifold with constant negative curvature.
There are four common equivalent models of hyperbolic
space: the Poincaré disk model, Poincaré half-plane model,
Lorentz (a.k.a. hyperboloid/Minkowski) model and Klein
model (Liu, Nickel, and Kiela 2019). Next, we give more
details of the latter two, which will both be utilized in this
paper, for further discussions.

The Lorentz Model
We denote Ld,K as the Lorentz model in d dimensions
with constant negative curvature −1/K where K > 0.
The Lorentz model Ld,K is defined on a subset of Rd+1,
Ld,K = {x ∈ Rd+1|〈x,x〉L = −K}, where 〈·, ·〉L :
Rd+1 × Rd+1 → R is Lorentzian inner product defined as,

〈x,y〉L = −x0y0 + x1y1 + x2y2 + · · ·+ xdyd. (1)

We denote TxLd,K as the tangent space of x ∈ Ld,K . We
have TxLd,K = {v ∈ Rd+1|〈v,x〉L = 0} and ‖v‖L =√
〈v,v〉L is the norm of v. For u,v ∈ TxLd,K , we can give

the Riemannian metric tensor gKx (u,v) = 〈u,v〉L.
Next, we give the closed form equations of exponential

map, logarithmic map and parallel transport. For any x,y ∈
Ld,K and v ∈ TxLd,K , we have the following equations:

expKx (v) = cosh

(
‖v‖L√
K

)
x +
√
K sinh

(
‖v‖L√
K

)
v

‖v‖L
, (2)

logKx (y) =
dKL (x,y)∥∥y + 1
K 〈x,y〉Lx

∥∥
L

(
y +

1

K
〈x,y〉Lx

)
, (3)

PKx→y(v) = v −

〈
logKx (y),v

〉
L

dKL (x,y)2

(
logKx (y) + logKy (x)

)
, (4)

where dKL (x,y) =
√
K cosh−1 (−〈x,y〉L/K).

The Klein Model
We denote Kd,K as the Klein model in d dimensions with
constant negative curvature−1/K where K > 0. The Klein
model Kd,K is defined on a subset of Rd, Kd,K = {x ∈
Rd | ||x||2 < K}. A point x ∈ Kd,K is projected from the
corresponding y ∈ Ld,K . We derive the projection with the
ith entry:

πKL→K(yi) =
√
K
yi
y0
, (5)

whose inverse is given as

πKK→L(x) = ηK(x)(
√
K,x), ηK(x) =

√
K

K − ‖x‖2
, (6)

where ηK(x) is the function defining the Lorentz factor, and
(·, ·) denotes concatenation.

Problem Definition
In this paper, we consider a dynamic graph where edges
evolve over time. The emergence/disappearance of nodes
will lead to the addition/deletion of a set of incident edges
concurrently, which can be easily modeled with our pro-
posed approach in a similar way. Formally, we give the def-
inition of a dynamic graph as follows:
Definition 1 (Dynamic Graph). A dynamic graph is de-
fined as a triple G = (V,E, T ), where V = {v1, v2,
· · · , vn} is the node set and each node vi is associated with
a feature vector xi ∈ Rf . E = {(vi, vj)} is the edge set,
and T = {tk} is the timestamp set. Each edge (vi, vj) is as-
sociated with a timestamp tk ∈ T representing that vi and
vj interact with each other at time tk.

Without loss of generality, we consider the dynamic graph
to be attributed. The timestamps on edges record every in-
teraction among nodes, and thereby fine-grained graph dy-
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namics is captured. We are interested in inferring stochas-
tic representations in account of graph dynamics and its un-
certainty in hyperbolic space. We prefer to work with the
Lorentz model Ld,K of hyperbolic space owing to its nu-
merical stability and clean closed form expressions with
Lorentzian inner product (Law et al. 2019; Nickel and Kiela
2018; Chami et al. 2019). In the Lorentz model, we uti-
lize generalized normal distributions to generate stochastic
representations, where the mean and variance are innate to
model the uncertainty. Formally, we define the problem of
representation learning on dynamic graphs as follows:
Definition 2 (Representation Learning on Dynamic
Graphs). For a dynamic graph G = (V,E, T ), the repre-
sentation learning problem in this paper is to find a map
Φ : V → Ld,K so that, for each node vi, we can infer
stochastic representation zi(t) at any time t in hyperbolic
space Ld,K . The stochastic representation is drawn from a
generalized normal distribution in hyperbolic space, model-
ing graph dynamics and its uncertainty.

HVGNN: Hyperbolic Variational GNN
In a nutshell, HVGNN generates stochastic representations
jointly modeling graph dynamics and uncertainty. Specifi-
cally, to model the dynamics, we propose a novel Tempo-
ral Graph Neural Network (TGNN). To model the uncer-
tainty, we introduce a hyperbolic Variational Graph AutoEn-
coder (VGAE), where we utilize TGNN as encoder and give
task-oriented decoder for specific task, e.g., link prediction
and node classification. Next, we elaborate on the build-
ing blocks of HVGNN, i.e., temporal GNN and hyperbolic
VGAE, respectively.

Temporal GNN
We propose the novel TGNN to model graph dynamics in
two types of representation spaces: hyperbolic space Ld,K
and Euclidean space Rd. Similar to GAT (Veličković et al.
2018), the basic idea of TGNN follows the graph attention
network. However, the attention itself cannot handle graph
dynamics. To bridge this gap, the key is to design the fol-
lowing theoretically grounded time encoding approach, dis-
tinguishing nodes in time domain.

Hyperbolic Time Encoding We propose a novel time en-
coding approach to equip graph attention with the ability
of modeling dynamics. Formally, we aim to learn a map
φL : T → Ld,K from a point in time domain T to a vector
in hyperbolic space Ld,K , encoding the temporal informa-
tion. The time domain T is [0, tmax] and tmax denotes the
maximum time point in the observed data.

Usually, it is the relative timespan rather than the abso-
lute value of time that reveals critical temporal information.
Thus, in learning the map φL : T → Ld,K , we are interested
in the patterns between the relative timespan |ti−tj | and the
Riemannian metric of hyperbolic space, i.e., Lorentzian in-
ner product. We thereby define a Lorentzian kernelKL : T×
T → R with KL(ti, tj) = 〈φL(ti), φL(tj)〉L. It is ideal that
the kernel can be expressed as a function of relative times-
pan, namely, translation invariance. Formally, KL(ti, tj) =
ψL(ti − tj) for some function ψ : [−tmax, tmax]→ R.

Instead of investigatingKL(ti, tj) explicitly, we propose a
two-step approach for hyperbolic time encoding as follows:
Step 1: Construct a translation invariant Euclidean
time encoding map. We study its Euclidean counterpart
KR(ti, tj) = 〈φR(ti), φR(tj)〉 where φR : T → Rd. Note
that,KR is positive semidefinite as it is defined by Euclidean
inner product. Accordingly, we have KR translation invari-
ant,KR(ti, tj) = ψR(ti−tj). Thus,KR satisfies the assump-
tion of the Bochner’s theorem (Loomis 2013): A translation-
invariant kernel KR(ti, tj) = ψR(ti− tj) is positive definite
iff there exists a nonnegative measure p(ω) on R such that
ψR(·) is the Fourier transform of the measure.

According to the Bochner’s theorem, we have

KR (ti, tj) =
∫
R e

iω(ti−tj)p(ω)dω = Eω
[
ξω (ti) ξω (tj)

∗]
, (7)

where ξω(t) = eiωt, i is the imaginary unit, and ∗ denotes
the conjugate complex. As both kernelKR and its associated
map φR are real, we extract the real part of the expectation in
Eq. (7), which can be approximated by Monte Carlo integral
(Rahimi and Recht 2007), i.e.,

KR (ti, tj) ≈ 1
d

d∑
i=1

[cos (ωiti) cos (ωitj) + sin (ωiti) sin (ωitj)].

(8)
According to the formulation above, we define φR below,

φR(t) =
√

1
d (cos (ω1t+ θ1) , cos (ω2t+ θ2) , . . . , cos (ωdt+ θd)) ,

(9)
where (·, ·) denotes the concatenation, and we will learn the
ωs and θs with different subscripts as model parameters.
Step 2: Project Euclidean time encoding to the hyperbolic
space. We refer to (

√
K, 0, · · · , 0) as the origin of Lorentz

model, denoted as O. For x ∈ Rd, we have (0,x) live in the
tangent space of the origin TOLd,K , since 〈O, (0,x)〉L = 0.
Then, (0,x) can be projected onto the Ld,K via the expo-
nential map. Finally, we define the projection as

πKR→L(x) = expKO ((0,x)) , (10)

and obtain φL(t) = πKR→L(φR(t)), i.e.,

φL(t) =
(√

K cosh
(√

1
K ‖φR(t)‖

)
,
√
K

‖φR(t)‖ sinh
(√

1
K ‖φR(t)‖

)
φR(t)

)
.

(11)
Now, we prove the translation invariance of Lorentzian

kernelKL(ti, tj) with the hyperbolic time encoding map φL.
Theorem 1 (Translation Invariance). The Lorentzian ker-
nel KL(ti, tj) = 〈φL(ti), φL(tj)〉L with the proposed φL(·)
is translation invariant, i.e., KL(ti, tj) = ψL(ti − tj).

Proof. We prove the translation invariance of the Lorentzian
kernel KL(ti, tj) by proving the existence of the function
ψL. Expanding the Lorentzian product with the definition
given in Eq. (1), we have the following equation hold:

〈φL(ti), φL(tj)〉L = A〈φR(ti), φR(tj)〉+B, (12)

where

A = −K sinh

(
φR(ti)√
K

)
sinh

(
φR(tj)√

K

)
1

‖φR(ti)‖‖φR(ti)‖
,

B = −K cosh

(
φR(ti)√
K

)
cosh

(
φR(tj)√

K

)
,

(13)
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Figure 1: HYPTGA Layer. In the time-aware neighborhood,
the timestamps t1, · · · , t4 are prior to the given time t. Ein-
stein midpoint is calculated with the aid of Klein model.

According to the Bochner’s theorem, we have KR(ti, tj) =
〈φR(ti), φR(tj)〉 = ψR(ti − tj). Thus, for given ti and tj ,

KL(ti, tj) = 〈φL(ti), φL(tj)〉L = ψL(ti − tj),

where φL = f ◦ ψR and f(x) = Ax+B.

Hyperbolic Operators In TGNN, we generalize aggre-
gation, addition and linear transformation from Euclidean
space Rd to hyperbolic space Ld,K . Aggregation is to cal-
culate a weighted midpoint in Euclidean space (Gulcehre
et al. 2019). The Euclidean midpoint is generalized to Ein-
stein midpoint in hyperbolic space. Specifically, we have a
vector set {xi|xi ∈ Ld,K , i ∈ Ω}, where Ω is the index set
and each xi is associated with a weight αi. Their Einstein
midpoint AGGK

(
{αi,xi}i∈Ω

)
is calculated as

AGGK
(
{αi,xi}i∈Ω

)
=
∑

i

[
αiη

K (xi)∑
` α`η

K (x`)

]
xi, (14)

where ηK(·) is defined in Eq. (6), and x’s are the coordinates
in Klein model. Fortunately, different models of hyperbolic
space are essentially the same. We can transform coordinates
between Klein and Lorentz model via Eqs. (5) and (6). Addi-
tionally, we regard the weighted addition ⊕K as its special,
and have x1 ⊕K x2 = AGGK({αi,xi}i∈ {1,2}).

Linear transformation in hyperbolic space is realized by
matrix vector multiplication, denoted as ⊗K . We define ⊗K
via exponential and logarithmic maps as follows:

W ⊗K x = expKO

(
W logKO (x)

)
, (15)

where W is the weight matrix. The intuition is that we per-
form linear transformation in the Euclidean tangent space
and then map the result back onto hyperbolic space.

Hyperbolic Temporal Graph Attention We denote hy-
perbolic TGNN in hyperbolic space Ld,K as TGNNL. We
build TGNNL by stacking its sole building block layer, i.e.,
the hyperbolic temporal graph attention (HYPTGA) layer.
The HYPTGA layer aims to renew node representations at
time point t, modeling graph dynamics.

As opposed to static graph attention (e.g., GAT) receiv-
ing all the neighbors’ feature, we conduct aggregation in ac-
count of the interaction time between the neighbors. Specif-
ically, for a target node vi at time t, we define its time-aware
neighborhoodNi,t = {v1, · · · , vN} such that the timestamp

tj of the interaction between vi and vj ∈ Ni,t is prior to t.
HYPTGA layer takes node representations h(t) and times-
tamps of node union {vi ∪Ni,t} as the input.

In addition to graph attention, the HYPTGA layer further
integrates the time encoding φL(·) so that we can distinguish
the neighbors in time domain to model graph dynamics.
We focus on relative temporal pattern across the neighbors,
which remains the same between a shift. Thanks to transla-
tion invariance of φL(·), we can encode t̂j = |t − tj | for
each neighbor vj since |ti− tj | = |(t− ti)− (t− tj)|. Then,
we obtain the time-aware representation h̃j(t) as follows:

h̃j(t) = φL(t̂j)⊕K W ⊗K hj(t), (16)

where ⊕K and ⊗K are defined before. ⊗K always has a
higher priority than ⊕K , similar to their Euclidean counter-
parts. As shown in Fig. 1, target node representation hi(t) is
updated by aggregating time-aware representations in Ni,t,

hi(t) = AGGK({αij , h̃j(t)}j∈Ω), Ω = i ∪Ni,t, (17)

where we add a self-loop for the target node with t̂j = 0. The
attention weight αij is calculated by the attention function
ATTN(·, ·). Naturally, we define ATTN(·, ·) by Lorentzian in-
ner product with a nonlinear activation as follows,

ATTN(h̃i(t), h̃j(t)) = h(γ〈h̃i(t), h̃j(t)〉L + c), (18)

where γ and c are weight and bias, respectively. The bias is
placed as Lorentzian inner product is restricted in Ld,K , i.e.,
〈x,y〉L < −K. We define h(·) as sigmoid(·). Recalling
Eq. (15), TGNNL parameters live in the Euclidean tangent
space. Such design will facilitate the model learning.

In TGNNL, for Euclidean input features, we use πKR→L(·)
in Eq. (10) to project them onto hyperbolic space Ld,K .
Meanwhile, we give its Euclidean counterpart, TGNNR. In
particular, we utilize Euclidean time encoding φR(·), and re-
place hyperbolic operators of TGNNL with Euclidean ones.

Hyperbolic VGAE
To model the uncertainty, we introduce a Hyperbolic Varia-
tional Graph AutoEncoder (HVGAE) built upon TGNN. At
the time point t, HVGAE infers stochastic representations
z(t) of generalized normal distributions with a variational
approach in hyperbolic space Ld,K . We bridge the gaps of
variational approach in hyperbolic space, which are 1) gen-
eralizing the (usual) normal distribution, and 2) defining its
variational family in hyperbolic space.

Wrapped Normal Distribution A canonical approach for
generalization is to map a usual normal distribution onto hy-
perbolic space. Such a probability measure is referred to as
wrapped normal distribution (Mathieu et al. 2019). We de-
rive the Probability Density Function (PDF) in Ld,K :

NK
L (z | µ, diag(σ2))

=FN ([PKµ→O(u)]− | 0, diag(σ2)) sinh(

√
1

K
‖u‖L)1−d,

(19)

where F =
(
‖u‖L√
K

)d−1

, u = logKµ (z) and [x]− = x2:d+1

for x ∈ Rd+1. The wrapped normal distribution owns two
parameters, i.e., a mean µ ∈ Ld,K in Lorentz model, and a
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variance σ ∈ Rd of a normal distribution N (0, diag(σ2))
in Euclidean space. The advantage of wrapped normal dis-
tribution is that the PDF is differentiable w.r.t. the parame-
ters, so that we can introduce a reparameterisable sampling
algorithm, Algorithm 1, to enable the gradient-based learn-
ing. Specifically, for a wrapped normal sample, a) we sample
a vector from usual normal distribution in Euclidean space
(Line 1), b) move the vector to the mean µ (Line 2 and 3),
and c) map it onto hyperbolic space Ld,K (Line 4).

Algorithm 1: Reparametrisable Sampling

Input: parameter µ ∈ Ld,k, σ ∈ Rd
Output: a sample z ∼ NK

L (z | µ, diag(σ2))
1 Sample ṽ ∼ N (0, diag(σ2)) ∈ Rd;
2 Construct v = (0, ṽ) ∈ TOLd,K ;
3 Transport v to u = PO→µ(v) ∈ TµLd,K via Eq. (4);
4 Map u to z = expµ(u) ∈ Ld,K via Eq. (2).

Hyperbolic Variational Family In HVGAE, we need to
define a prior distribution and the family of corresponding
variational posterior in hyperbolic space. In particular, the
prior is the standard distributionNK

L (·|0, I), The variational
family is {NK

L (·|µ, diag(σ2)) |µ ∈ Ld,K ,σ ∈ Rd}, where
we propose to define the parameters as µ = TGNNL(G)
and logσ = TGNNR(G). The novelty is two-fold: 1) We
define the distribution parameters by the time-aware TGNN,
so that the uncertainty is jointly modeled with the dynamics.
2) We introduce a reparametrisable sampling algorithm to
enable the gradient-based learning.

Overall Architecture
Thanks to reparameterisable sampling, HVGNN can be
learned in an end-to-end approach with a specific learning
task. HVGNN is built with an encoder-decoder framework,
illustrated in Fig. 2, and the aforementioned representation
learning map Φ can be defined by the encoder. In particu-
lar, we utilize TGNN encoder and a task-oriented decoder.
In this paper, we provide the decoder for link prediction and
node classification.

Encoder For node vi at time t, we denote the stochastic
representation as zi(t) ∈ Ld,K , summarized in Zt, and de-
note the class label as yi = k ∈ [1, C], summarized in Y .
With the TGNN encoder, we give the posterior as follows:

q(Zt | G) =
∏n

i=1
q (zi(t) | G) , (20)

where n is the number of nodes in the graph. q (zi(t)|G) is
defined by the hyperbolic variational family above.

Decoder For the task of link prediction, we utilize the
Fermi-Dirac decoder. Formally, we have

p(G|Zt) =
∏

(vi,vj)∈E
p ((vi, vj) ∈ E|zi(t), zj(t)) ,

(21)
whose likelihood is defined by the Fermi-Dirac function
(Chami et al. 2019). For node classification, we utilize the
hyperbolic multinomial logistic decoder, formally,

Figure 2: The overall architecture of HVGNN.

p(Y|Zt) =
∏n

i=1
p (yi = k | zi(t)) , (22)

whose likelihood is defined by the hyperbolic multinomial
logistic function (Ganea, Bécigneul, and Hofmann 2018).

Learning objective We formulate the learning objective
following the vanilla Variational AutoEncoder (Kingma and
Welling 2014). The decoder is trained together with the en-
coder by evidence lower bound (ELBO) defined as follows:

J = Eq(Zt|G)[log p(· | Zt)]−KL[q(Zt | G)‖p(Zt)], (23)

where p(· | Zt) is the likelihood of corresponding decoder.
KL[·‖·] is the Kullback-Leibler (KL) divergence between
posterior q(Zt | G) and prior p(Zt) =

∏
iNK

L (zi(t)|0, I).
The reparametrisable sampling enables the evaluation of
the gradient of the ELBO w.r.t. of TGNN parameters liv-
ing in Euclidean spaces. Consequently, we can make use of
usual optimizer to learn the model. With the learned model,
stochastic representations can be inferred inductively mod-
eling graph dynamics and uncertainty in hyperbolic space.

Experiments
We evaluate HVGNN by link prediction and node classifica-
tion on several datasets. We repeat each experiment 10 times
and report the mean with the standard deviations.

Experimental Setups
Datasets We choose three real-world datasets, i.e., Reddit
(Xu et al. 2020), Wikipedia (Kumar, Zhang, and Leskovec
2019) and DBLP (Zhou et al. 2018a). In Reddit, we col-
lect active users and their posts under subreddits, yielding
a dynamic graph with 12, 000 nodes and 763, 055 times-
tamped edges. In Wikipedia, we collect top edited pages and
active users, yielding a graph of 9, 300 nodes and 160, 572
timestamped edges. DBLP is a citation network from several
CV conferences, yielding a graph of 1, 909 nodes and 8, 237
edges with publication time as timestamps.

Comparison Method We compare the proposed model,
HVGNN, against the models that can be evaluated in both
transductive and inductive settings. In particular, Euclidean
models include two baselines for static graphs, i.e., GAT
(Veličković et al. 2018) and GraphSAGE (Hamilton, Ying,
and Leskovec 2017), and a recent one for dynamic graphs,
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Reddit Wikipedia DBLP
Model Accuracy AP Accuracy AP Accuracy AP
GAT 90.54± 0.18 95.05± 0.21 87.05± 0.33 94.52± 0.20 88.24± 0.54 94.71± 0.28

GraphSAGE 91.21± 0.22 95.12± 0.16 85.21± 0.28 93.16± 0.25 87.36± 0.12 94.08± 0.35
TGAT 92.52± 0.25 96.11± 0.20 87.65± 0.24 95.02± 0.08 89.11± 0.46 95.46± 0.17
HGCN 92.03± 0.41 95.86± 0.08 87.12± 0.33 94.67± 0.38 88.83± 0.45 95.18± 0.14
TGNNR 92.18± 0.06 96.03± 0.27 88.11± 0.47 95.36± 0.32 89.25± 0.32 95.67± 0.29
TGNNL 93.36± 0.31 97.25± 0.07 89.74± 0.08 96.62± 0.22 91.12± 0.51 97.12± 0.36
EVGNN 93.20± 0.27 97.37± 0.35 90.05± 0.62 96.85± 0.39 90.89± 0.06 97.18± 0.14
HVGNN 94.72± 0.32 98.79± 0.48 91.67± 0.40 98.02± 0.15 92.17± 0.21 98.25± 0.09

Table 1: The performance of transductive link prediction in terms of Accuracy and AP (%).

Reddit Wikipedia DBLP
Model Accuracy AP Accuracy AP Accuracy AP
GAT 88.12± 0.22 93.37± 0.28 82.14± 0.31 91.12± 0.39 84.26± 0.12 91.88± 0.61

GraphSAGE 87.63± 0.15 94.64± 0.24 82.26± 0.42 90.86± 0.33 83.75± 0.26 92.35± 0.39
TGAT 89.25± 0.21 95.12± 0.33 85.05± 0.18 93.51± 0.27 86.38± 0.51 94.47± 0.36
HGCN 89.07± 0.29 95.18± 0.26 84.93± 0.49 93.18± 0.35 86.41± 0.29 94.02± 0.26
TGNNR 89.08± 0.40 94.87± 0.57 85.63± 0.26 93.95± 0.23 86.24± 0.02 94.13± 0.41
TGNNL 90.34± 0.20 96.11± 0.39 87.05± 0.38 95.14± 0.19 88.60± 0.45 95.35± 0.17
EVGNN 90.27± 0.03 95.93± 0.57 87.52± 0.48 95.08± 0.42 88.48± 0.10 95.22± 0.35
HVGNN 91.89± 0.06 97.67± 0.20 89.13± 0.11 97.15± 0.45 90.33± 0.07 97.36± 0.13

Table 2: The performance of inductive link prediction in terms of Accuracy and AP (%).

i.e., TGAT (Xu et al. 2020). Hyperbolic model includes
HGCN (Chami et al. 2019), a recent model for static graphs.
These methods generate deterministic representations and
thereby cannot capture uncertainty.

Ablation Study We include the proposed dynamic graph
models, i.e., TGNNR and TGNNL, without modeling the
uncertainty as baselines. Additionally, we design the Eu-
clidean variant of HVGNN, namely EVGNN, which mod-
els dynamic graphs with the uncertainty in Euclidean space.
Specifically, we utilize two TGNNR to parameterize usual
normal distributions. EVGNN is then optimized with repa-
rameterisable trick of the standard VAE. On the one hand,
we can study the importance of modeling uncertainty by
comparing HVGNN (EVGNN) against TGNNL (TGNNR).
On the other hand, we can study the effect of the represen-
tation space by comparing hyperbolic models against their
Euclidean counterparts. In the experiment, we stack the cor-
responding attention layer twice in the models above. Refer
Supplementary Material for further experimental details.

Transductive and Inductive Settings The transductive
setting examines output representations of the nodes that
have been observed in training. The inductive setting exam-
ines output representations of unseen nodes while training.
Node representations are initialized as its raw feature. We
do chronological train-validation-test split with 80%−5%−
15% according to the timestamps.

Link Prediction
The task of link prediction is to predict the probability of
two nodes being connected. For hyperbolic models, we uti-
lize the Fermi-Dirac decoder with Lorentz inner product to

compute the probability based on the learned representa-
tions. For Euclidean models, we replace the Lorentz inner
product with normal inner product. The graph models are
trained by minimizing the cross-entropy loss using negative
sampling. We randomly sample an equal amount of negative
node pairs to the positive links, and employ the and classi-
fication Accuracy and Average Precision (AP) as evaluation
metrics. The performances under transductive and inductive
settings are reported in Tables 1 and 2, respectively. The pro-
posed model, HVGNN, consistently outperforms its com-
petitors. For example, on Wikipedia dataset, HVGNN ob-
tains 3% and 3.64% performance gains against its best com-
petitor in transductive and inductive settings, respectively.
The reason is that HVGNN models the inherent character-
istics of graphs, i.e., the dynamics and uncertainty, in the
promising hyperbolic space. Additionally, we provide fur-
ther insights though the ablation study: 1) Hyperbolic mod-
els (HVGNN and TGNNL) outperform the Euclidean coun-
terparts (EVGNN and TGNNR). This suggests hyperbolic
space is a more promising representation space well-suited
for modeling real-world graphs. 2) HVGNN and EVGNN
achieve better performance than TGNNL and TGNNR, re-
spectively. This shows that the uncertainty cannot be ignored
for modeling graphs.

Node Classification
The task of node classification is to predict the label of
the node based on node representations. We utilize usual
multinomial logistic loss for Euclidean models, while the
hyperbolic multinomial logistic loss for hyperbolic models.
We train the comparison models together with the link pre-
diction loss above. Owing to the label imbalance on the
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Transductive Setting Inductive Setting
Model Reddit Wikipedia DBLP Reddit Wikipedia DBLP
GAT 64.12± 0.48 81.54± 0.80 78.48± 1.29 62.55± 0.61 79.18± 0.12 77.03± 0.55

GraphSAGE 60.86± 0.59 82.05± 0.72 77.67± 0.05 59.63± 0.47 79.67± 0.31 76.12± 0.19
TGAT 64.88± 0.67 83.28± 0.56 78.73± 0.12 63.24± 0.33 80.05± 0.80 77.86± 0.36
HGCN 64.67± 0.42 82.96± 0.13 79.42± 0.45 63.98± 0.16 80.12± 0.92 77.51± 0.23
TGNNR 64.53± 0.14 83.19± 0.49 78.79± 0.72 63.17± 0.39 79.89± 0.61 77.95± 0.47
TGNNL 65.92± 0.54 84.55± 0.96 80.05± 0.33 64.03± 0.25 81.27± 0.35 79.16± 0.29
EVGNN 66.35± 0.69 84.71± 0.15 81.13± 0.24 65.18± 0.61 82.02± 0.54 80.24± 0.56
HVGNN 68.13± 0.51 86.22± 0.42 82.67± 0.14 67.26± 0.75 83.96± 0.24 81.72± 0.58

Table 3: The performance of transductive and inductive node classification in terms of AUC (%).

(a) Link Prediction (b) Node Classification

Figure 3: The effects of curvature−1/K for inductive learn-
ing on Wikipedia dataset.

datasets, we employ the area under the ROC curve (AUC)
as the evaluation metric. We summarize the performances
under transductive and inductive settings in Table 3. As re-
ported in Table 3, HVGNN achieves the best performance
consistently. For example, on Wikipedia dataset, HVGNN
outperforms its best competitor by 2.94% and 3.84% in
transductive and inductive settings, respectively. Addition-
ally, the superiority of hyperbolic space and the importance
of modeling dynamics and uncertainty are supported in the
experimental results.

The Curvature of Hyperbolic Space
In HVGNN, we consider the curvature of hyperbolic space,
controlled by K, as a hyperparameter. In fact, the hyper-
bolic spaces with different curvatures are essentially the
same (Loomis 2013). However, owing to the limited ma-
chine precision and normalization, hyperbolic spaces with
different curvatures lead to different performances (Chami
et al. 2019). For instance, as shown in Figure 3, we obtain
performance gain by adjusting the curvature. Motivated by
this observation, instead of a fixed curvature, in HVGNN,
we give the generalized formulation of a trainable curvature
to improve its learning capacity.

Related Work
Graph Representation Learning
Graph representation learning generates vector representa-
tions for graphs, and thereby activates advances in machine
learning with vector inputs, e.g., a recent strong classifier
(Xia et al. 2019) whose inputs are coarse granular fea-
tures. Thus, it is attracting increasing attentions, and finds
itself from network alignment (Sun et al. 2019; Su et al.

2018) to text classification (Peng et al. 2019). Among graph
modeling methods, GNNs (Wang, Cui, and Zhu 2016; Ma
et al. 2019; Kipf and Welling 2016a) play an important role.
In general, graph modeling is widely studied in static set-
tings while models for dynamic graphs are still scant. Re-
cently, several solutions (Zhou et al. 2018b; Xhonneux, Qu,
and Tang 2020) for dynamic graphs are proposed. For ex-
ample, EvolveGCN (Pareja et al. 2020) models dynamics
with a sequence of snapshots. JODIE (Kumar, Zhang, and
Leskovec 2019) models the node trajectories. VGRNN (Ha-
jiramezanali et al. 2019) further models the uncertainty. To
our knowledge, all prior models for dynamic graphs con-
sider node representations in Euclidean space,

Hyperbolic Representation Learning
Most of representation learning methods assume the repre-
sentation space to be Euclidean. Actually, hyperbolic space
provides an exciting alternative. It is well-suited to model
hierarchical data (Krioukov et al. 2010; Papadopoulos et al.
2012). An increasing number of studies report hyperbolic
model compares favorably to its Euclidean counterpart in
a wide spectrum of applications, such as word embed-
ding (Nickel and Kiela 2017; Tifrea, Becigneul, and Ganea
2019), question answering (Tay, Tuan, and Hui 2018), clus-
tering (Monath et al. 2019), network alignment (Sun et al.
2020) and reasoning in knowledge graph (Balazevic, Allen,
and Hospedales 2019). Most of existing methods generate
deterministic vectors living hyperbolic space, while some
recent works (Mathieu et al. 2019; Nagano et al. 2019)
study the generalized normal distributions for stochastic
representations. Recently, hyperbolic graph models (Ganea,
Bécigneul, and Hofmann 2018; Liu, Nickel, and Kiela 2019)
have been proposed where the graph is considered to be
static. Distinguishing from these studies, we propose the first
hyperbolic model for dynamic graphs.

Conclusion
We have presented a novel HVGNN for dynamic graph rep-
resentation learning in hyperbolic space. HVGNN captures
graph dynamics and uncertainty in the stochastic represen-
tations of wrapped normal distributions in hyperbolic space.
HVGNN further incorporates a reparameterisable sampling
algorithm to enable its gradient-based learning. Experimen-
tal results show the superiority of HVGNN for link predic-
tion and node classification on several real-world datasets.
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Broader Impact
This paper introduced a novel research problem: dynamic
graph representation learning in hyperbolic space. This pa-
per broadens the current graph representation learning re-
search in multiple dimensions, e.g., hyperbolic representa-
tion space, dynamic graphs, and stochastic representation
learning, to new stages and greatly enriches the current
graph neural network studies. This paper possibly motivates
further studies on representation learning in the Rieman-
nian manifolds in a more general and elegant way. Further-
more, the model (HVGNN) proposed in this paper has trans-
formative impacts in various real-world applications and a
wide spectrum of interdisciplinary studies on graph data,
such as online social computing, recommender systems, bio-
medical studies, and neural science. Both results and source
code will be released to the public, and others who otherwise
have limited access to the models can use our open-source
materials in their researches or applications. We would en-
courage researchers to explore further applications of our
approach, and also welcome the discussion on any theoreti-
cal and empirical details, and all kinds of improvements and
enhancements from any research field.
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relational Poincaré graph embeddings. In Advances in
NeurIPS, 4465–4475.
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