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Abstract

Recently, multi-hop reasoning over incomplete Knowledge
Graphs (KGs) has attracted wide attention due to its desir-
able interpretability for downstream tasks, such as question
answer and knowledge graph completion. Multi-Hop reason-
ing is a typical sequential decision problem, which can be for-
mulated as a Markov decision process (MDP). Subsequently,
some reinforcement learning (RL) based approaches are pro-
posed and proven effective to train an agent for reasoning
paths sequentially until reaching the target answer. However,
these approaches assume that an entity/relation representa-
tion follows a one-point distribution. In fact, different enti-
ties and relations may contain different certainties. On the
other hand, since REINFORCE used for updating the policy
in these approaches is a biased policy gradients method, the
agent is prone to be stuck in high reward paths rather than
broad reasoning paths, which leads to premature and sub-
optimal exploitation. In this paper, we consider a Bayesian
reinforcement learning paradigm to harness uncertainty into
multi-hop reasoning. By incorporating uncertainty into the
representation layer, the agent trained by RL has uncertainty
in a region of the state space then it should be more efficient
in exploring unknown or less known part of the KG. In our
approach, we build a Bayesian Q-learning architecture as a
state-action value function for estimating the expected long-
term reward. As initialized by Gaussian prior or pre-trained
prior distribution, the representation layer drives uncertainty
that allows regularizing the training. We conducted extensive
experiments on multiple KGs. Experimental results show a
superior performance than other baselines, especially signifi-
cant improvements on the automated extracted KG.

1 Introduction
Knowledge graphs (KGs) such as WordNet (Bollacker et al.
2008), Yago (Suchanek, Kasneci, and Weikum 2007), NELL
(Mitchell et al. 2018) contain numerous well-structured facts
as triplets, e.g. (Trump, isPresident, USA), to support a
variety of downstream AI-applications such as question an-
swer (QA), semantic search, and recommendation system.
Knowledge graph reasoning (KGR) is a fundamental task to
fulfill answering complex queries on large-scale incomplete
knowledge graphs (Nickel et al. 2015; Ji et al. 2020). More
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Figure 1: An illustrated toy example which generated from
randomized two-dimensional Gaussian distribution for rep-
resenting entities and relations in a partial KG. The mean
of an entity indicates its position, and the variance indicates
uncertainty.

specifically, the reasoning agent is expected to infer miss-
ing knowledge based on observed knowledge, where is usu-
ally modeled as a link prediction problem to predict potential
candidate entities/relations for a query (es, r, ?)/(es, ?, et).

The past years have seen the rapid development of knowl-
edge graph embedding (KGE) in numerous studies (Bordes
et al. 2013; Wang et al. 2017) focusing on automated reason-
ing on KGs, where these approaches embed both entities and
relations into a continuous low-dimensional vector space.
However, these approaches only learn single-step reasoning.
To learn chains of reasoning paths over a KG, many rein-
forcement learning (RL) based methods (Xiong, Hoang, and
Wang 2017; Das et al. 2018; Shen et al. 2018; Lin, Socher,
and Xiong 2018) have been proposed to learn a query infer-
ring agent via effective path searching. These methods have
proven powerfully, and exhibit a desirable property that pro-
vides interpretable reasoning paths for queries. For exam-
ple, give a query (Trump, isPresident, ?), not only these
models output a confidence score, but also provide a se-
ries of paths to explain why isPresident(Trump,USA)

holds, such as Trump
isCitizenOf−→ USA, Trump WorkAt−→

WhiteHouse
LocatedIn−→ USA.
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Figure 2: An example of Knowledge Graph Reasoning based
on GaussianPath.

However, there are two limitations of existing RL-based
multi-hop reasoning approaches (Xiong, Hoang, and Wang
2017; Das et al. 2018; Shen et al. 2018). Firstly, these
approaches align each entity/relation a one-point distribu-
tion, i.e. a finite real-valued vector, whereas different en-
tities and relations may contain different certainties. As
Figure 1 shown, the uncertainty of relation Nationality
is larger than isBornIn and isLocatedIn when inferring
a query (Donald Trump, isCitizenOf, ?). Accordingly,
one-point distribution does not naturally express the uncer-
tainty of a concept semantic in a KG. Secondly, existing
methods employ the strategy of random sampling (Das et al.
2018) or greedy (Xiong, Hoang, and Wang 2017; Shen et al.
2018; Lin, Socher, and Xiong 2018) that results in a low
probability of reaching positive rewards.

An alternative strategy is Bayesian approach, which takes
into account the underlying uncertainty, and has proven ef-
fective in many traditional gaming tasks (Derman et al.
2020; Jeong and Lee 2018). The major incentives for in-
corporating Bayesian reasoning in RL are: 1) it provides an
elegant approach to action-selection as a function of the un-
certainty in learning, which is a principled way to tackle the
exploration-exploitation problem; 2) it implicitly facilitates
regularization. By assuming a prior on weights, we mitigate
the trap of letting a few reasoning paths steer the agent away
from the true parameters; and 3) it enables to incorporating
prior knowledge into Markov decision process (MDP).

In this paper, we advocate moving beyond one-point dis-
tribution estimate to Bayesian inference for modeling un-
certainty of multi-hop reasoning. Firstly, each entity/relation
is aligned with a multi-dimensional Gaussian distribution
(N (µ,Σ)). Therefore the state or the action at each time
t also follows a joint distribution dependent on the origi-
nal distributions. Secondly, we approximate the Q-function
by Bayesian neural network architecture, where Bayesian
LSTM (Fortunato, Blundell, and Vinyals 2017) encodes the
state and Bayesian linear regression as an output layer pre-
dicts the expected long-term rewards for the possible ac-
tions. Based on the Bayesian approach, Thompson sampling

(Thompson 1933) is used to pick an action that trades-off the
exploitation-exploration dilemma. Finally, by minimizing
Kullback-Leibler (KL) divergence with the true Bayesian
posterior of the reasoning paths, the model learns a varia-
tional approximation to the Bayesian posterior distribution
on the uncertainty of entity/relation representation. We em-
ploy unbiased Monte Carlo estimates of the gradients, Bayes
by Backprop (Blundell et al. 2015) to optimize the posterior
weights effectively.

Experimental results present that incorporating uncer-
tainty into RL-based multi-hop reasoning yields better per-
formance than one-point distribution representation, espe-
cially shows a significant improvement in noisy KGs. Ad-
ditionally, we find that pre-trained Gaussian embedding as
the prior distribution of each entity/relation can accelerate
the training process. We conducted both knowledge graph
completion tasks on standard benchmarks. The experimen-
tal results demonstrate the effectiveness of our approach.

Our contributions are as follows:
• We propose a Bayesian multi-hop reasoning paradigm,

GaussianPath, for knowledge graph reasoning, aiming to
capture the uncertainty of a reasoning path, which has
been rarely studied in existing RL-based approaches yet.

• We construct a trainable Bayesian neural network archi-
tecture to approximate Q-function, which allows learn-
ing uncertainty of concept semantics and dealing with the
trade-off between exploration and exploitation.

• We conducted extensive experiments on existing bench-
mark KGs. The results show that our model achieves com-
petitive performance.

2 Related Work
2.1 Knowledge Graph Reasoning
Automated reasoning on KGs has been being a challenging
problem as well as a hot topic. Earlier proposed symbolic
logical reasoning based on expert system (McCarthy 1960;
Quinlan 1990) suffers from poor generalization performance
and the curse of dimension, despite of its high accuracy. To
address the problem, KGE has been proposed to associate
entities and relations into low dimensional continuous vec-
tor spaces (Bordes et al. 2013; Yih et al. 2011; Nickel et al.
2015; Wang et al. 2017). Since then, embedded spaces based
on various geometry properties has been extensively studied
(Wang et al. 2014; Lin et al. 2015; Trouillon et al. 2017;
Xiao, Huang, and Zhu 2016a; Sun et al. 2018). Particularly,
KG2E (He et al. 2015) has first investigated the uncertainty
of KGE, and propose Gaussian embedding. Furthermore,
TransG (Xiao, Huang, and Zhu 2016b) demonstrates the
kind of uncertainty helps to handle multiple semantic issue.
Other works (Chen et al. 2019; Ding et al. 2018) have stud-
ied the uncertainty from different perspectives. However, as
single-hop reasoning methods, these approaches are limited
in dealing with multi-hop reasoning scenarios, such as QA
(Zhang et al. 2018).

2.2 Multi-Hop Reasoning
From its earlier on, PRA (Lao, Mitchell, and Cohen 2011)
builds a linear regression to aggregate discrete path features
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which are extracted from a KG via random walk. Unfortu-
nately, random walk is still computationally expensive due
to traversing the entire graph. Neelakantan et al. (Neelakan-
tan, Roth, and McCallum 2015) leverage a recurrent neural
network (RNN) to compose the implications of a reason-
ing chain about conjunctions of multi-hop relations. Neu-
ralLP (Yang, Yang, and Cohen 2017) proposes an end-to-
end differentiable logical rules learning system for knowl-
edge graph reasoning, but limited in expressing complex
rules nevertheless. DIVA (Chen et al. 2018) situates multi-
hop reasoning in the context of variational inference in latent
variable probabilistic graphical models.

Recently, reinforcement learning has shown promising
potential to model reasoning systems on a KG owing to
its flexibility and interpretability (Stoica et al. 2020; Li and
Cheng 2019; Bansal et al. 2019; Lv et al. 2019). DeepPath
(Xiong, Hoang, and Wang 2017) is the first RL-based multi-
hop reasoning approach for knowledge graph reasoning. For
dealing with its limitations of which is only applicable for
queries (es, ?, et), Das et al. (Das et al. 2018) propose MIN-
ERVA to extend DeepPath by encoding a state chain into
LSTM architecture. Afterwards, Lin et al. (Lin, Socher, and
Xiong 2018) propose a reward shaping method to reduce the
impact of false supervision for RL-based multi-hop reason-
ing methods. Additionally, it uses the trick termed as action
dropout technique so as to introduce randomness into path
search. More recently, Wan et al. (Wan et al. 2020) propose
a hierarchical reinforcement learning framework to perform
multi-hop reasoning. However, all of these approaches are
built on a policy gradients method (REINFORCE (Williams
1992)) which usually has a large variance and heavily de-
pends on an initial policy. Subsequently, Shen et al. (Shen
et al. 2018) propose M-walk to adopt Monte Carlo Tree
Search (MCTS) on Q-learning to deal with the issue. Nev-
ertheless, there are rare works incorporating uncertainty into
multi-hop reasoning methods.

3 Preliminaries and Notations

The notation table is shown in Table 1. Several key defini-
tions are given as follows.

Definition 1 (Knowledge Graph). A Knowledge Graph is a
directed graph G = (E ,R, U), where E is a set of entities,
R is a set of relations, and U is a set of edges. e ∈ E is an
entity. r ∈ R is a relation. u ∈ U is an edge (es, r, et) that
points from the source entity es to the target entity et.

Definition 2 (Knowledge Graph Reasoning). Given a query
among three cases (es, r, ?), (?, r, et), (es, ?, et), Knowl-
edge Graph Reasoning aims to predict the missing element
of ? through a k-hop reasoning path e1

r1−→ e2
r2−→ · · · rk−→

ek+1.

Example: Given (Trump, isPresident,?), a possible 2-hop
reasoning path is Trump WorkAt−→ WhiteHouse

LocatedIn−→
USA.

Symbol Meaning Symbol Meaning
E Entity set e Entity
R Relation set r Relation
es Source entity et Target entity
G KG U Edge set
S State set s State
A Action set a Action
R(·) Reward function γ Discount factor
π Policy θ Parameters
τ Trajectory D Training samples
φ Bayesian regression fx(·) Distribution of x
Q State-value function ; Concatenate

Table 1: Annotation table

4 Methodology
4.1 Knowledge Graph Reasoning as a Markov

Decision Process
We formulate knowledge graph reasoning as a MDP, which
is described as a tuple (S,A, T , R). Each elements is elab-
orated below.

States The state si at step i is defined as a tuple (ei, es, o),
where ei ∈ E is the current entity, es is the source en-
tity. o denotes the query objective. Concretely, o is et un-
der the task (es, ?, et), otherwise r under the task (es, r, ?).
Given a query pair (es, o), the starting state is represented as
(es, es, o). The final state is (et, es, o) if reaching the target
entity otherwise (′STOP ′, es, o) within the max length T .
After taking action, the agent will move to the next state.

Actions The action spaceAsi for the state si = (ei, es, o)
is the set of outgoing edges of the current entity ei, Asi =
{(r, e)|(ei, r, e) ∈ U, e /∈ {e0, e1, · · · , ei}}, where we re-
move entities to guarantee reasoning paths acylic. Beginning
with the source entity es, the agent uses the Q-function to
predict the most promising path, and it then extends its path
at each step until it reaches the target entity et.

Transition The transition T is the state transition proba-
bility used to identify the probability distribution of the next
state, which is defined as T (si+1|si, ai).

Reward For each step i within a trajectory τ , we set up
the reward function as R(si) = I[sEnd = (et, es, o)], where
sEnd is the terminal state of τ . To put it another way, if the
agent reaches the correct objective entities, it will receive a
reward of 1, otherwise 0.

4.2 Model Uncertainty of Multi-Hop Reasoning
As just mentioned, one-point distribution maybe insufficient
to model the uncertainty of entity/relation KGs. Therefore,
we propose to use a Gaussian distribution to represent an
entity/relation,

e ∼ N (µe,Σe)

r ∼ N (µr,Σr),
(1)

where µe, µr ∈ Rd are mean vectors, Σe,Σr ∈ Rd×d are
covariance matrices (currently with diagonal covariance for
computing efficiency). Obviously, a state or an action de-
fined in the above also follows a joint distribution function
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as

fS(si) :=

∫∫∫
fei(ei)fes(es)fo(o)deidesdo, (2)

fA(a) :=

∫∫
fe(e)fr(r)dedr. (3)

As iteratively interacting with the environment, the agent
following an unknown state-action distribution extends its
path from source entity to target entity. With training the
agent, the posterior of these Gaussian distributions will be-
gin to converge, and uncertainty can decrease, and so the
agent will become more deterministic. Accordingly, we can
describe the plausibility of a reasoning path τ under policy
π as

F(τ |π) = P(s0)
T∏
t=1

T (st+1|st, at, π, θ), (4)

where τ obeys Assumption 1 and its length 6 T . F is a
typical Bayesian inference over the Markov chain dependent
on the distributions of ∀e ∈ E , r ∈ R. We can observe that
the uncertainty of e, r will be sequentially transmitted to F ,
resulting in the uncertainty of predicting a reasoning path.

4.3 Bayesian State-action Value Function
We use reinforcement learning to train an agent that be-
haves like F . For each observation, the agent is evaluated
by a state-value function, i.e. Q-function. Let Qπ(st, a) de-
note Q-function. Thus, the corresponding Bellman equation
(O’Donoghue et al. 2018) under a policy π, starting off from
state st and taking action a in the action space Ast+1 ,

Qπ(st, a) = Eπ[R(st) + γEπ[Q(st+1, at+1)]]. (5)
Given the current state and action, the environment stochas-
tically proceed to a successor state st+1 under probability
T and provides a reward R(st). For a given policy π and
Markovian assumption of the model, we can rewrite the
equation for the Q-functions as follows:
Qπ(st, at) = R(st)+

γ
∑

st+1,at+1

T (st+1|st, at)π(at+1|st+1)Qπ(st+1, at+1).

(6)
Due to the large combination space of state-action pair

(s, a) in a KG environment, it is hard to obtain Q-function
directly from Eq. 6. For approximating the Q-function, we
utilize the DQN (Mnih et al. 2013) architecture with mod-
ification built by Bayesian neural networks (Hernández-
Lobato and Adams 2015), where the weights follow a prior
distribution. Firstly, we encode the current state st into a la-
tent vector h(t) via Bayesian LSTM (Fortunato, Blundell,
and Vinyals 2017),

h(t) = BayesianLSTM(st, h
(t−1)). (7)

Bayesian LSTM is trainable for random variables, allowing
the input of a probability distribution then outputting a prob-
ability distribution. Then we employ a Bayesian linear re-
gression layer φ(·) to learn the Q-value for each action,

Q(st, a) = φ(h(t))>wa, (8)
where wa = [rt+1; et+1], ∀a ∈ Ast .

4.4 Off-Policy for Efficiency Exploration
Existing RL-based approaches (Xiong, Hoang, and Wang
2017; Das et al. 2018; Lin, Socher, and Xiong 2018) usu-
ally use REINFORCE (Williams 1992) to optimize objec-
tive function. However, REINFORCE encourages extending
the next state with high reward, therefore biases the search-
ing optimal policies as well as leads to unstable training with
high variance (Guu et al. 2017; Agrawal and Goyal 2013).
In order to deal with the problem, we apply an off-policy to
find the optimal policy.

Our off-policy is divided into an optimization policy and
an execution policy. The optimization policy is defined as

Q∗(s, a) = max
a

(Q(s, a)), ∀a ∈ As. (9)

As any greedy with respect toQ∗ is optimal (Bellman 1958),
our optimization policy is a greedy policy for guaranteeing
exploitation. Then, the optimal state-action value function
of an action may be written in terms of the optimal of its
successor states as

Q∗π(st, at) = R(st)+

γ
∑

st+1,at+1

T (st+1|st, at)Q∗π(st+1, at+1), (10)

Notably, we do not know the transition kernel T in ad-
vance. As a consequence, we propose an execution policy
to determine the next action towards the next state. At each
step, we sample weights θ from the posterior distribution,
then the agent acts the action with the max rewards,

a∗ = arg max
a

([Qθ∼p(θ|D)(s, a)]), ∀a ∈ As. (11)

Eq. 11 is in fact equivalent to Thompson sampling (Thomp-
son 1933), which guarantees uncertainty through posterior
sampling, and allows the agent with high uncertainty to ex-
plore effectively.

4.5 Optimization and Training
Bayes Variational Learning as Training Objective For
estimating the posterior distribution P (θ|D), we apply
Bayesian variational learning to find θ of a distribution q(θ)
that minimizes the Kullback-Leibler (KL) divergence with
the true Bayesian posterior on the parameters:

L(θ∗) = min
θ
KL(q(θ)||P (θ|D))

= min
θ

∫
q(θ) log

q(θ)

P (θ)P (D|θ)
dθ

= min
θ
KL(q(θ)||P (θ))− Eθ∼q(θ)[logP (D|θ)],

(12)

where P (θ) is the prior distribution of θ. Minimizing Eq.
12 known as variational free energy (Wainwright and Jor-
dan 2008) is equivalent to maximizing the log-likelihood
P (D|θ) given training data D subject to a KL penalty that
acts as a regularizer.

Because the prior distribution of weights possesses un-
certainty and follows Gaussian distribution, Q(s, a) can be
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Datasets |E| |R| Triplets Relation Tasks
FB15K-237 14505 237 272115 20
NELL995 75942 200 154231 12
WN18RR 40903 11 141422 -

UMLS 135 49 141422 -
Kinship 1043 26 10686 -

Table 2: Datasets

decomposed into the sum of the mean value and a Gaussian
noise,

yt = Q̄θ(st, at) + ε, (13)

ŷt = r + γQ̄∗θ(st+1, at+1) + ε′, (14)

where ε, ε′ are zero mean Gaussian noise. Let P (yt =
ŷt|st, at, θ) be the predictive distribution P (D|θ). Accord-
ingly, the objective at the step t is to be

L(τ, θ) = KL(q(θ)||P (θ))−Eq(θ)[logP (yt = ŷt|st, a, θ)].
(15)

Unfortunately, exactly minimizing this objective naively is
computationally extensive. As a consequence, we approxi-
mate the objective by Bayes by Backprop (Blundell et al.
2015; Fortunato, Blundell, and Vinyals 2017) that is de-
signed to learn the probability distribution on the weights
of a neural network,

L(τ, θ) ≈ 1

NT

N∑
i=1

T∑
t=0

[log q(θi)− logP (θi)

− logPi(yt = ŷt|st, a, θ)],

(16)

where i denotes the i-th sample. We can estimate Pi(yt =
ŷt|st, a, θ), ε, ε′ and gradients of Eq. 16 by repeating Monte
Carlo sample drawn from the variational posterior q(θ).
Training Details The pseudo code of our approach is shown
in Algorithm 1. All Gaussian priors for entities and relations
are first initialized randomly following a uniform distribu-
tion or a prior distribution pre-trained by probability model,
such as KG2E (He et al. 2015). θW are the parameters of
the network architecture. θW are the parameters of neural
network architecture. θE+R denotes the embedding layer of
entities and relations.

Since θE+R are different types of geometric objects, the
means should not be allowed to grow too large. Therefore
we apply the following hard constraint when we estimate
θE+R,

∀l ∈ E +R, ||µl||2 6 1. (17)

For ensuring that the covariance matrices positive definite as
well as reasonably sized, we constraint the diagonal covari-
ance matrices within the hypercube [cmin, cmax]d,

∀l ∈ E +R, cmax > cmin > 0,

cminI ≺ Σl ≺ cmaxI.
(18)

We implemented BayesianLSTM via a public implemen-
tation 1, in which Bayes by Backprop (Blundell et al. 2015)

1https://github.com/piEsposito/blitz-bayesian-deep-learning

Algorithm 1 GaussianPath

1: Initialize parameters θ = θE+R ∪ θW :
∀l ∈ E +R, µl ← Uniform(−6√

d
, 6√

d
),

Σl ← Uniform(cmin, cmax),
∀w ∈ θW , w ← Xavier(Glorot and Bengio 2010).

2: Initialize training queries ∀(es, r, et) ∈ U
3: repeat
4: Sampling a query:(es, r, et)← Sample(U)
5: Initialize s0 ← (es, es, o)
6: for t← 1 to T do
7: Observe actions: ∀a ∈ Ast
8: for i← 1 to N do
9: Sample parameters θi from the variational pos-

terior q(θ)
10: Calculate Q-values Qθi(st, a) on Ast
11: Q∗θi(at+1, st+1)← maxa(Qθi(a, st))
12: Get reward r
13: yt ← Qθi(st, a)
14: ŷt ← r + γQ∗θi(st+1, at+1)
15: ∇Li ← Bayes by Backprop(L(yt, ŷt, θi))
16: at+1 ← Thompson sampling(Qθ∼q(θ)(st, a))
17: Execute the action and move to the next state:

at ← at+1, st ← st+1

18: Update parameters per B episodes:
θ ← θ − η

∑T
t=1

∑N
i=1∇Li,t

19: until Converge Q(s, a)

Output: the policy, π(s) = arg maxa(Qθ∼p(θ|D)(s, a))

algorithm is used to calculate gradients. We unroll reasoning
paths with the max length T . The ’STOP’ action as a place-
holder will be padded at the end of a reasoning path if the
reasoning procedure ends or reaches the max length limita-
tion. For further reducing variance, the Q-function is trained
on mini-batches with the batch size B. Our code is available
at https://github.com/BromothymolBlue/Gaupa.

5 Experiments Settings
Datasets We performed experiments on five bench-
mark datasets: FB15K237(Dettmers et al. 2018),
WN18RR(Dettmers et al. 2018), NELL995(Xiong, Hoang,
and Wang 2017), UMLS(Das et al. 2018) and Kinship(Das
et al. 2018). Details about these datasets are shown in Table
2.
Evaluation Protocols To evaluate the performance of KGR,
we apply standard knowledge graph completion tasks fol-
lowing previous work (Das et al. 2018) on our approaches.
We report Hit@1, 10 and mean reciprocal rank (MRR),
and mean average precision (MAP) score for link prediction
task.
Baselines In our experiments, we use following knowl-
edge graph reasoning approaches for comparing: DistMult3
(Yang et al. 2015), ConvE(Dettmers et al. 2018), Neu-
ralLP(Yang, Yang, and Cohen 2017), MINERVA2(Das et al.
2018), Multihop-KG(Lin, Socher, and Xiong 2018), M-walk

2https://github.com/shehzaadzd/MINERVA
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Methods FB15K237 WN18RR NELL995 UMLS Kinship
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

DistMult 0.417 0.324 0.600 0.462 0.431 0.524 0.641 0.552 0.783 0.868 0.821 0.967 0.614 0.487 0.904
ConvE 0.435 0.341 0.622 0.438 0.403 0.519 0.747 0.672 0.864 0.933 0.894 0.992 0.797 0.697 0.974

NeuraLP 0.227 0.166 0.348 0.463 0.376 0.657 - - - 0.778 0.643 0.962 0.619 0.475 0.912
MINERVA 0.293 0.217 0.456 0.448 0.413 0.513 0.725 0.663 0.831 0.825 0.728 0.968 0.720 0.605 0.924

Multihop-KG 0.407 0.327 0.564 0.450 0.418 0.517 0.727 0.656 0.844 0.940 0.902 0.992 0.865 0.789 0.982
M-walk 0.232 0.165 - 0.437 0.414 - 0.754 0.684 - - - - - - -

Ours 0.423 0.325 0.598 0.458 0.426 0.663 0.748 0.691 0.894 0.884 0.872 0.989 0.874 0.791 0.987
Ours(KG2E) 0.440 0.316 0.638 0.446 0.437 0.651 0.756 0.673 0.841 0.867 0.881 0.991 0.884 0.812 0.981

Table 3: Entity link prediction results on the lager KGs (FB15K237, WN18RR, NELL995) and the smaller KGs (UMLS and
Kinship)

Tasks TE PRA DPath MIN Ours

AthletePlaysForTeam 62.7 54.7 72.1 82.7 85.7
AthletePlaysInLeague 77.3 84.1 92.7 95.2 93.1
AthleteHomeStadium 71.8 85.9 84.6 92.8 93.6

AthletePlaysSport 87.6 47.4 91.7 98.6 96.7
TeamPlaySports 76.1 79.1 69.6 87.5 90.3

OrgHeadquaterCity 62.0 79.0 79.0 94.5 92.5
BornLocation 67.7 81.1 69.9 82.7 88.1

· · ·
Overall 72.3 71.8 78.41 88.4 91.3

contains 56.7 32.5 39.8 41.5 68.4
personNationality 44.2 42.1 52.8 62.1 61.9
musicianOrigin 38.2 18.5 23.7 23.8 46.7

adjoins 68.4 41.8 69.1 71.8 79.1
capitalOf 42.5 25.8 43.8 48.9 52.3

filmDirector 41.5 32.8 45.6 38.9 44.7
· · ·

Overall 45.3 31.5 39.8 42.3 55.2

Table 4: Relation link prediction results (MAP) with the
MAP scores on NELL995 (Up) and FB15K-237 (Down).

(Shen et al. 2018), PRA (Lao, Mitchell, and Cohen 2011)
and DeepPath (only for relation link prediction) (Xiong,
Hoang, and Wang 2017).
Hyper-parameters Settings We set the dimension d of
mean µ and Σ to 100. The layer number of BayesianLSTM
is 1. The size of Hidden layer is 200. Learning rate η is 0.01.
cmin/cmax is 0.01/0.4. Other hyper-parameters settings are
available in supplementary materials.

6 Results and Discussion
6.1 Link Prediction
Entity link prediction We conduct entity link prediction
evaluation, which focuses on the effectiveness of our ap-
proach against the state-of-art knowledge graph reasoning
approaches with respect to the predictive quality of finding
? for a query (es, r, ?) or (?, r, et). We mainly compare three
sorts of methods: 1) single-step reasoning approaches (Dist-
Mult and ConvE); 2) logic rule learning (NeuralLP); 3) RL-
based multi-hop reasoning (MINERVA, M-walk, Multihop-
KG) on the smaller datasets (UMLS, Kinship) and the larger
datasets (FB15K-237, WN18RR, NELL995). The baseline
results are obtained from corresponding open resource im-

plementations or reports. To further study the influence of
prior distribution, we use pre-trained distribution of en-
tity/relation KG2E (He et al. 2015) to initialize θE+R.

On the smaller datasets (UMLS, Kinship), each of these
KGs is with around 100 entities. As a result, short-term re-
lationship is the main component in the reasoning paths, in
which embedding-based approaches perform better. When
we set the max length T = 2, i.e. degenerates into single-
hop reasoning, our approach also shows a competitive per-
formance, demonstrating that our method is effective in cap-
turing short-term relationship in a local partial KG.

On larger datasets (FB15K237, WN18RR and
NELL995), our approach outperforms most of base-
lines, and achieves state-of-the-art results on NELL995.
NELL995 is an inborn noisy KG that is automatically
constructed from WEB resource (Mitchell et al. 2018),
which preserves partial unreliable triplets. We observe
that our approach can significantly suppress the agent
from extending the reasoning paths to unreliable triplets.
More specifically, for each step of action selection under
Thompson sampling strategy, the agent tends to select
the action with the maximal expectation over all possible
actions rather than the action with the maximal reward,
therefore benefits the improvements on NELL995.
Relation link prediction This task aims to evaluate the
quality of predicting the relation r for a query pair (es, et),
which is a binary classification problem. We conducted the
task on NELL995 and FB15K237. Unlike DeepPath (Xiong,
Hoang, and Wang 2017) and PRA (Lao, Mitchell, and Co-
hen 2011) gather path features and train a linear regression
for each separative relation, we train one model for all re-
lations. Specifically, we implement it by adding a reasoning
rule that prohibits the agent from visiting the target entity
directly through the query relation r. The agent reasons un-
der different samples θ from the posterior distribution, and
we can obtain a score as a score to indicate the plausibility
of r existing. if the score is higher than a threshold δ, then
the query will be classified as positive. Otherwise, it will be
classified as negative. The results are shown in Table 4. Our
approach achieves comparable performance in most of the
query relations

6.2 Convergence Analysis
To study impact of each proposed enhancement on the train-
ing procedure, we report the convergence curves of success
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Figure 3: Convergence rate of reasoning success ration on
NELL995. For fair comparison, we only include MINERVA.

ratio in Figure 3. For fair comparison, we fix the batch size
B = 512. Success ratio denotes the proportion of reach-
ing the correct entities in the candidate answer sets. From
Figure 3, we can observe the convergence rate: Gaussian-
Path(KG2E) > GaussianPath�MINERVA > Q-path (seen
in Section 6.3). The worst performance of Q-path is be-
cause inconsistency of off-policy leads to bias estimate for
Q-function. MINERVA also has the problem due to high
variance in estimating the policy gradients. After introduc-
ing entity/relation representation with uncertainty into Q-
path, the curves exhibits faster convergence, demonstrat-
ing that more variability benefits handling the trade-off be-
tween exploration-exploitation. More specifically, the pre-
trained prior distribution KG2E slightly accelerates the con-
vergence, indicating that GaussianPath succeeds in incorpo-
rating prior information into multi-hop reasoning.

6.3 Ablation Analysis

To understand the contributions of the different components,
we ablate two components: 1) W/O Bayesian approach,
named as Q-path, which degrades into DQN architecture
sharing other settings of GaussianPath; 2) W/O Thompson
Sampling, which employs the same execution policy as the
optimization policy. As shown in Table 5, we can observe
that: 1) Bayesian approach enables to improve RL-based
multi-hop reasoning significantly; 2) Thompson sampling
benefits the effective exploration thus further improve our
model.

Components MRR
FB15K237 WN18RR NELL995

GaussianPath 0.423 0.458 0.748

Q-path 0.247 0.336 0.645
W/O TS 0.338 0.435 0.693

Table 5: Ablation study via the entity link prediction task.
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Figure 4: Box plots of two steps of the reasoning path.

6.4 Case Visualization of Reasoning Path
We provide a graphical visualization to better illustrate
the mechanism of our approach through the reasoning

path, Argentina
Adjoins−→ Brazil

Administrative parent−→
Earth. We construct box plots for every hop reason-
ing, where displays distribution in samples of a statisti-
cal population of the selected actions. In the hop-1 plot,
we can observe that the expected Q-value of the ac-
tions, (Organization,World/Bank), (Adjoins,Brazil)
and (Adjoins, Chile), are obviously larger than the rest
actions. Note that the agent can visit the target entity
Earth through both (Organization,World Bank) and
(Adjoins, Chile). Therefore the three deserve higher ex-
pected Q-values. Moreover, these actions still present a wide
uncertainty, which means that the reasoning process is hard
to be stuck in the local optimum. By contrast, The strategies
used in existing methods (Das et al. 2018; Xiong, Hoang,
and Wang 2017) is indifferent to the uncertainty of the ac-
tions and the expected rewards of sub-greedy ones, which
employ uniform sampling or greedy (Shen et al. 2018) over
the output of point values for the next movement. In the hop-
2 plot, Similarly, we can observe that the target answer has a
higher expected Q-value with an uncertainty, indicating the
existence of a clear decision boundary between positive an-
swers and negative answers.

7 Conclusions
We propose GaussianPath, a Bayes based RL multi-hop rea-
soning framework which expresses uncertainty of reasoning
path. More specifically, we introduce Gaussian prior distri-
bution to be entity/relation embeddings. This allows us to
represent entity/relation not only as densities over a latent
space, but driving uncertainty into agent interaction. In or-
der to adapt the idea to multi-hop reasoning formulated as
RL framework, we employ Bayesian neural network archi-
tecture to approximate Q-function. We propose an off-policy
to balance the trade-off of exploration-exploitation dilemma.
To learn this Bayesian posterior distribution of weights, we
minimize the variational free energy on target Q-values. Ex-
perimental results show a comparable performance on KGC
tasks. GaussianPath can leverage prior knowledge in the
form of pre-trained Gaussian distribution, which slightly ac-
celerates convergence on training.
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S.; and Bouchard, G. 2017. Knowledge graph completion
via complex tensor factorization. The Journal of Machine
Learning Research 18(1): 4735–4772.
Wainwright, M. J.; and Jordan, M. I. 2008. Graphical Mod-
els, Exponential Families, and Variational Inference. Ma-
chine Learning 1(1-2): 1–305.
Wan, G.; Pan, S.; Gong, C.; Zhou, C.; and Haffari, G. 2020.
Reasoning Like Human: Hierarchical Reinforcement Learn-
ing for Knowledge Graph Reasoning. In IJCAI.
Wang, Q.; Mao, Z.; Wang, B.; and Guo, L. 2017. Knowl-
edge graph embedding: A survey of approaches and appli-
cations. IEEE Transactions on Knowledge and Data Engi-
neering 29(12): 2724–2743.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
AAAI, 2014.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning 8(3-4): 229–256.
Xiao, H.; Huang, M.; and Zhu, X. 2016a. From one point
to a manifold: knowledge graph embedding for precise link
prediction. In IJCAI, 1315–1321.
Xiao, H.; Huang, M.; and Zhu, X. 2016b. TransG: A Gen-
erative Model for Knowledge Graph Embedding. In ACL,
2316–2325.
Xiong, W.; Hoang, T.; and Wang, W. Y. 2017. DeepPath:
A Reinforcement Learning Method for Knowledge Graph
Reasoning. In EMNLP, 564–573.
Yang, B.; Yih, W.; He, X.; Gao, J.; and Deng, L. 2015. Em-
bedding Entities and Relations for Learning and Inference
in Knowledge Bases. In ICLR.
Yang, F.; Yang, Z.; and Cohen, W. W. 2017. Differentiable
learning of logical rules for knowledge base reasoning. In
NeurIPS, 2319–2328.
Yih, W.-t.; Toutanova, K.; Platt, J. C.; and Meek, C. 2011.
Learning discriminative projections for text similarity mea-
sures. In CoNLL, 247–256.

Zhang, Y.; Dai, H.; Kozareva, Z.; Smola, A. J.; and Song, L.
2018. Variational Reasoning for Question Answering With
Knowledge Graph. In AAAI.

4401


