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Abstract

In recent years, there are great interests as well as challenges
in applying reinforcement learning (RL) to recommendation
systems (RS). In this paper, we summarize three key prac-
tical challenges of large-scale RL-based recommender sys-
tems: massive state and action spaces, high-variance environ-
ment, and the unspecific reward setting in recommendation.
All these problems remain largely unexplored in the existing
literature and make the application of RL challenging.
We develop a model-based reinforcement learning frame-
work, called GoalRec. Inspired by the ideas of world model
(model-based), value function estimation (model-free), and
goal-based RL, a novel disentangled universal value func-
tion designed for item recommendation is proposed. It can
generalize to various goals that the recommender may have,
and disentangle the stochastic environmental dynamics and
high-variance reward signals accordingly. As a part of the
value function, free from the sparse and high-variance reward
signals, a high-capacity reward-independent world model is
trained to simulate complex environmental dynamics under a
certain goal. Based on the predicted environmental dynam-
ics, the disentangled universal value function is related to
the user’s future trajectory instead of a monolithic state and
a scalar reward. We demonstrate the superiority of GoalRec
over previous approaches in terms of the above three practical
challenges in a series of simulations and a real application.

Introduction
With the recent tremendous development of reinforcement
learning (RL), there has been increasing interest in adopting
RL for recommendations (Shani, Heckerman, and Brafman
2005; Hu et al. 2018; Chen et al. 2019b). The RL-based rec-
ommender systems treat the recommendation process as a
sequential interaction between the user (environment) and
the recommendation agent (RL agent). And a part of user
feedback (e.g., user purchase) is regarded as reward signals.
The RL-based recommender systems can achieve two key
advantages: (i) the recommendation agent can explore and
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exploit extremely sparse user-item feedback through limited
user-agent interactions; (ii) the best strategy is to maximize
users’ overall long-term satisfaction without sacrificing the
recommendations’ short-term utility.

While RL has shown considerable success in
games (Mnih et al. 2013; Colas et al. 2018) and robotics (Lil-
licrap et al. 2015; Andrychowicz et al. 2017), large-scale
deployment of RL in real-world applications has proven
challenging (Dulac-Arnold, Mankowitz, and Hester 2019).
Compared to other machine learning methods, deep rein-
forcement learning has a reputation for being data-hungry
and is subject to instability in its learning process (Hender-
son et al. 2018). In this paper, we first summarize three key
challenges when applying RL to RS:

• Massive state and action spaces. In an industrial set-
ting, the dimension of user features (state space) is ex-
tremely large, and the item is usually represented by high-
dimensional item features (action space). However, most
model-free RL methods as well as RL-based RS meth-
ods (Shi et al. 2019; Hu et al. 2018) in the literature learn
from reward signals directly and often only use small neu-
ral networks with few parameters. As discussed in Ha and
Schmidhuber (2018), the famous “credit assignment prob-
lem” and low-quality reward signals are the two main bot-
tlenecks that make it hard for RL algorithms to learn mil-
lions of weights of a large model.

• High-variance environment. Different from static gym
environments, real-world recommendation environments
are commonly high-variance and uncertain. On the one
hand, the feedback reward of users is usually sparse (e.g.,
0.2% conversion rate) and unbalanced (e.g., a wide range
of deal price). On the other hand, the random page jumps
of users make the calculation of expected rewards dif-
ficult. These difficulties lead to a high-variance and bi-
ased estimation of the expected reward, which probably
misleads the reinforcement learning towards poor perfor-
mance.

• Unspecific reward setting in recommendation. Unlike
reward-given environments, there is no specific reward
setting given in real applications. Actually, it is unclear
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how to do event-based reward shaping (assigning reward
to user view, click, exit, etc.) to maximize business met-
rics (stay time, click-through rate, etc.) as well as allevi-
ate the problem of credit assignment. It is common that
several agents with different reward settings are deployed
online simultaneously. The RL agent should be able to
generalize over different reward settings and able to learn
from the experiences generated by other policies, even the
experiences generated by myopic supervised based rec-
ommenders.
In this paper, we propose a novel reinforcement learning

framework called GoalRec, which takes special care of the
above mentioned three practice difficulties with a disentan-
gled universal value function:
• Handling massive state and action spaces. Complex

real applications call for specially-designed RL models
which are data-efficiency and high-capacity. Motivated by
the observation that the rich and temporally dense mul-
tidimensional supervision is available in recommender
systems, we resort to a recently developed model-based
RL technique, World Model (Ha and Schmidhuber 2018;
Feinberg et al. 2018). World model is self-supervised,
high-capacity, irrelevant to environmental rewards, and
only predicts the environmental dynamics. Different from
previous pixel-based world models or one-step world
model methods which only considers the next state, our
RS-specific world model is designed to reconstruct the
“measurement” of user’s long-term future trajectories un-
der a certain goal g. Outside of the world model domain,
our goal-based policy-independent world model can be
seen as a generalization of long-term policy-dependent
predictor (Tang et al. 2019; Ke et al. 2019).

• Handling high-variance environment. Previous value-
based RL algorithms (Schulman et al. 2017; Mnih et al.
2016) directly estimate the value function but ignoring the
coupling of environmental dynamics and reward signals.
In contrast to the coupling manner, several works (Kulka-
rni et al. 2016; Tang et al. 2019) are developed to decou-
ple state transitions and reward functions for stabilizing
the value estimation process by combining model-based
learning and model-free value function estimation. In this
paper, we borrow the idea of decoupling of these works
and further extend it to goal-based RL. Specifically, we in-
corporate the powerful RS-specific world model (model-
based) into universal value function estimation (model-
free and goal-based).

• Handling unspecific reward setting. The problem that
different reward settings with the same environmental dy-
namics is well studied in the goal-based RL domain. In
this paper, we borrow the idea of goal-based RL by deal-
ing with a more general setting of vectorial rewards and
parameterized goals. The policy implied in users’ trajec-
tories are represented by goal vectors, and the environ-
mental reward can be defined as the “distance” between
current state and agent’s desired goal. Specifically, we ex-
tend the disentangled value function to both states and
goals by using universal value function (UVF). By uni-
versal, it means that the value function can learn from the

experiences generated by other goals, and generalize to
any goal g that the recommender may have. To the best
of our knowledge, it is the first attempt to think multi-step
RS problems in the lens of goal-based RL.
We note that GoalRec is a specially-designed unified so-

lution rather than a trivial combination of existing developed
techniques. The decoupling of stochastic environmental dy-
namics and low-quality reward signals makes the training
of high-capacity RL models possible. As the cornerstone of
the whole algorithm, the world model, which is trained us-
ing temporally dense supervisory signals, can effectively al-
leviate the optimization issues caused by the problems men-
tioned above. Instead of employing time-consuming model
predictive control (Hafner et al. 2018; Ke et al. 2019), we
then incorporate world model into value function estimation.
Recall that the vanilla value function is policy-dependent
and concerned with the expected cumulative reward over tra-
jectories, that is why the goal-based RL and trajectory-based
world model are technically necessary.

Background
Reinforcement Learning
The essential underlying model of reinforcement learning
is Markov Decision Process (MDP). An MDP is defined as
〈S,A,P,R, γ〉. S is the state space. A is the action space.
P : S × A × S 7→ [0, 1] is the state transition function.
R : S × A 7→ R is the reward function. γ ∈ [0, 1] is the
discount rate. The objective of an agent in an MDP is to find
an optimal policy πθ : S × A 7→ [0, 1] which maximizes
the expected cumulative rewards from any state s ∈ S , i.e.,
V ∗(s) = maxπθ

Eπθ

{∑∞
k=0 γ

krt+k | st = s
}

. Here Eπθ
is

the expectation under policy πθ, t is the current timestep and
rt+k is the immediate reward at a future timestep t+ k.

Universal Value Function Approximation
Consider for example the case where the agent’s goal is de-
scribed by a single desired state: it is clear that there is just as
much similarity between the value of nearby goals as there is
between the value of nearby states. A sufficiently expressive
function approximator can in principle identify and exploit
structure across both s and g. By universal, it means that the
value function can generalize to any goal g in a set G of
possible goals.

Specifically, for any goal g ∈ G, we define a pseudo-
reward functionRg (s, a, s

′) and a pseudo-discount function
γg(s). For any policy π : S 7→ A and each g, and un-
der some technical regularity conditions, we define a general
state-action value function that represents the expected cu-
mulative pseudo-discounted future pseudo-return where the
actions are generated according to π:

Qg,π(s, a) := Es′ [Rg (s, a, s
′) + γg (s

′) · Vg,π (s′)] (1)

Decoupled Value Function
The idea of combining model-based learning and model-
free value function estimation, here we termed as decou-
pled value function, are widely explored in Successor Fea-
ture (Kulkarni et al. 2016) and value decomposed DDPG
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with future prediction (VDFP) (Tang et al. 2019). In this pa-
per, we employ a similar decoupled value function formal-
ization of VDFP. Here, we quote the definition and corre-
sponding lemma of VDFP to provide a brief introduction
of decoupled value function. Given a trajectory τt:t+k =
(st, at, . . . , st+k, at+k), we consider a representation func-
tion f that mt:t+k = f (τt:t+k):

Definition 1 Given the representation function f , the pre-
dictive dynamics function P denotes the expected represen-
tation of the future trajectory for performing action a ∈ A
in state s ∈ S , then following a policy π:

Pπ(s, a) = E [f (τ0:T ) | s0 = s, a0 = a;π]

= E [m0:T | s0 = s, a0 = a;π] .
(2)

Lemma 1 Given a policy π, the following lower bound of
theQ-function holds for all s ∈ S and a ∈ A, when function
U is convex:

Qπ(s, a) ≥ U
(
fπ(s, a)

)
,

where U(m) = r0 + γr1 + · · ·+ γtrt
(3)

The proof can be obtained with Jensen’s Inequality by ex-
changing the expectation and function, and the equality
guarantees when U is a linear function (the input Mπ(s, a)
can be non-linear).

Related Work
In the RL-based RS domain, past efforts mainly focused on
item-list recommendation (Zhao et al. 2017, 2018; Huzhang
et al. 2020; Ie et al. 2019), simulation environment construc-
tion (Chen et al. 2019b; Shi et al. 2019; Bai, Guan, and Wang
2019), variance reduction (Hu et al. 2018; Chen et al. 2019a)
and long-term reward modeling (Zou et al. 2019; Zheng
et al. 2018). Few works deal with the critical practice chal-
lenges mentioned above. To our best knowledge, the only
existing research on world model-based RS is the Pseudo
Dyna-Q conducted by Zou et al. (2020), in which the static
simulation environment is replaced by a constantly updated
world model and the overall learning process is the same as
the vanilla Dyna-Q (Sutton 1991). Not only are the problems
concerned different between our work and Pseudo Dyna-
Q, but also the use of world model: (i) our world model
is trained using the whole trajectories of users while theirs
only use users’ immediate responses; (ii) our world model
is a part of the value function while theirs acts as a pseudo
sample provider.

Proposed Approach
In this section, we first provide an abstract description
of the proposed disentangled universal value function.
Then, we discuss the specific design of value function
for recommender systems and the corresponding world
model approximator–a scalable Dueling Deep Q-Network
(DDQN)-like model. An illustration of the GoalRec is
shown in the right part of Figure 1. The overall algorithm
is summarized in Algorithm 1 in Appendix A.

Disentangled Formalization
Most existing world models studied in the RL community
focus on pixel-based game environments and are not suit-
able for recommender systems. Instead of employing gen-
erative models to reconstruct the whole state space, we use
the “measurement” of user trajectories, i.e., a measurement
function f defined on user trajectories τ that measurement
m = f (s0, a0, ..., sT , aT ). Follow the decoupled value
function formalization, we have the following definitions:

Definition 2 The measurement m of trajectory τ is a set of
sufficient statistic indicators that are predictive of user re-
sponse (long-term and short-term) or self-predictive (i.e.,
summarizes user history in a way that renders the implied
environmental dynamics).

Definition 3 Given a certain policy π and a measurement
function f , the function M(st, at) indicates the expected
measurement of the partial user trajectory τt:T which starts
from the step t to the terminal state:

Mπ(s, a) = Eπ[m|s = st, a = at]

= Eπ
[
f(τt:T )|s = st, a = at

]
.

(4)

The measurement predictor (i.e., world model) M pre-
dicts the evolution of future state and user behavior only
(i.e., the environmental dynamics). It can easily incorporate
the state-of-the-art offline recommendation models such as
Wide&Deep and DIEN, even the online learning algorithms
like FTRL (McMahan et al. 2013). Free from the “credit
assignment problem” and the low-quality reward signals, a
high-capacity world model M with millions of weights can
be trained effectively to capture the complex environmental
dynamics. We note that this improvement is crucial for real
complex applications such as recommender systems.

Then we further extend the value function to both states
and goals by using a universal value function. And the
Lemma 1 still holds for a fixed goal g. Specifically, we re-
place the vanilla Q-function with a goal-based universal Q-
function Q (Mg(s, a), g), where Mg(s, a) is the expected
measurement of user’s future trajectories with the goal g.
And a linear return function U that maps the expected mea-
surement m = f(τt:T ) to the aggregated discounted reward
under a certain goal is defined.

Lemma 2 Given a fixed goal g and the corresponding re-
ward setting R, the following equality holds for all s ∈ S
and a ∈ A, when function U is a linear function:

Qg(s, a) = U
(
Mg(s, a), g

)
,

where U(m, g) = r0 + γr1 + · · ·+ γtrt
(5)

Different from the previous definition in which the world
model Mπ is specific to the policy π, in the disentangled
universal value function, the world model Mg is related to
the goal g and can generalize to different goals. Given the
composite function of U and M which is a strict lower-
bound approximation of the Q-function, the best action a′
in state s can be selected as follows:

a′ = max
a

U
(
Mg(s, a), g

)
(6)
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Figure 1: (a) The traditional reinforcement learning framework. (b) The proposed disentangled framework. In the traditional
framework, the RL agent receives the feedback of environment (user) and corresponding shaping rewards, and then train in
a fully real-time interactive manner. For the GoalRec, the RS agent requests the future measurement predictor (world model)
with a query consists of state s, action (item) a and a specific goal g, and the user is recommended for one or more items to
maximize the long-term utility Q(s, a, g).

This disentangled formalization can be understood from
the views of world model M and return function U sepa-
rately. For the world model M , it predicts the expected fu-
ture dynamics under the goal g. Then, the linear return func-
tion estimates the expected rewards of future measurements.

RS-specific Value Function Design
We have described the general framework of GoalRec. In
this subsection, we first introduce the definitions of state and
action, measurement, and goal in recommender systems, re-
spectively. Then, we present a RS-specific instantiation of
the goal-based Q-function.

State and action. We construct four categories of features
to represent state and action: (a) Item features that describe
whether certain property appears in this item, such as item’s
id, shop’s id, brand, item’s name, category, item embedding,
and historical CTR in the last 1 hour, 6 hours, 24 hours and 1
week respectively. (b) User features consist of user portrait
and features of the item that the user clicked in 1 hour, 6
hours, 24 hours, and 1 week respectively. (c) User-item fea-
tures describe the interaction between user and one certain
item, i.e., the frequency for the item (also category, brand
and shop) to appear in the history of the user’s clicks. (d)
Context features describe the context when a request hap-
pens, including time, weekday, and the freshness of the item
(the gap between the request time and item publish time).
State s is represented by context features and user features.
Action a is represented by item features and user-item inter-
action features.

Measurement. The definition of measurement is flexible
and can be user-defined based on specific scenarios. Take
the typical recommender system shown in Figure 2 as an
example: the measurement can be designed as a vector com-
posed by (a) rewarded user immediate responses (user pur-
chase, etc.) and unrewarded user immediate responses (view,
exit, etc.), (b) session-level business metrics (stay time, etc.),
and (c) user’s future trajectory representation (e.g., the aver-

aged embedding of click items). The vectorial rewards (i.e.,
session-level business metrics and rewarded user responses)
generalize the reward setting of previous RL-based meth-
ods: the immediate user satisfaction (e.g., user purchase) or
long-term user satisfaction (e.g., stay time) can be viewed
as a measurement. Moreover, the prediction of vectorial re-
wards, which are high-variance and sparse, can benefit from
the prediction of other self-predictive measurements through
the shared hidden layers.

Goal. In the traditional goal-based RL framework, the
agent’s goal is described by a single desired state, and the en-
vironmental reward can be defined as the “distance” between
the current state and the desired goal. In our model, the goal
is the desired user’s future trajectories that maximize vecto-
rial rewards. The goal plays two roles. First, through a dis-
tance function, the goal can be used to calculate the cumula-
tive reward. Second, the goal can be regarded as a represen-
tation for the policies and thus determines future trajectories.

Q-function. Given the definitions of measurement and
goal, the universal state-action value function Q(s, a, g) can
be defined as follows:

Q(s, a, g) = U
(
Mg(s, a), g

)
= U

(
m, g

)
= g>m (7)

where the unit-length vector g parameterizes the goal and
has the same dimensionality as m.

World Model
As discussed in the previous subsection, the problem of uni-
versal Q-function estimation for a specific goal boils down
to predicting the measurement m by the world model M :

Q(s, a, g) = g>m = g>M (s, a, g;θ) (8)

Here a ∈ A is an action, θ are the learned parameters of
M , and m is the predicted future measurement. Note that
the resulting prediction is a function of the current state s,
the considered action a, and the goal g.
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Figure 2: The definition of measurement for a typical item
recommender system.

The network architecture we use is shown in Figure 3.
The network has three input modules: a user representation
(state) module S(s), an item representation (action) module
E(a) and a goal module G(g). The state s is represented
by context features and user features, and the state module
S can be any state-of-the-art recommendation models such
as Wide&Deep and DIEN. The action and goal modules are
fully-connected networks.

Built on the ideas of Dueling DQN (Wang et al. 2015),
a similar structure is employed to enhance the ability to
learn the differences between the outcomes of different ac-
tions. We split the prediction module into two parts: a state
value part V (s, g) and an advantage part A(s, g, a). The
state value part predicts the average of future measurements
over all potential actions. The action advantage part concen-
trates on the differences between actions. However, differ-
ent from the vanilla dueling DQN, the world model does not
take all actions into consideration, which means the aver-
age of the predictions over all actions is not available. To
this end, we introduce an auxiliary loss to learn the state
value part V (s, g), and thus the average of the predictions of
the action advantage part is nearly zero for each future mea-
surement. The output of these two parts has dimensionality
dim(m), where m is the vector of future measurements. Fi-
nally, the output of the network is a prediction of future mea-
surements for action a, composed by summing the output of
the state value part and the action-conditional output of the
action advantage part.

Hindsight Experience Replay
We employ a re-labeling technique, called hindsight expe-
rience replay (HER) (Andrychowicz et al. 2017), to induce
the corresponding parameterized goals (i.e., reward settings)
given any trajectories. HER is widely used in goal-based RL,
especially on the situation when the exploration of different
goals is impossible (e.g., offline datasets) or costful (e.g.,
real applications). Its key insight is that the agent can trans-
form failed trajectories with no reward into successful ones
by assuming that a state it saw in the trajectory was the ac-
tual goal. In other words, since the goal does not affect the
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Figure 3: The network structure of world model. It can be
regarded as a variant of the classic two-tower recommen-
dation model, which is scalable and able to utilize high-
dimensional item features.

dynamics of the environment, we can re-label the trajectory
afterwards to achieve different goals and thus improve sam-
ple utilization. For every episode the agent experiences, we
store it in the replay buffer twice: once with the original goal
pursued in the episode and once with the goal correspond-
ing to the final measurement achieved in the episode, as if
the agent intended on reaching this goal from the very be-
ginning. We refer to Andrychowicz et al. (2017) for the full
details of hindsight experience replay.

Training
Consider a set of samples collected by the agent, yielding
a set D of training trajectories. We then generate a training
mini-batch B = {〈si, ai, gi,mi〉}Ni=1 from the set D (the
steps 5 to 14 of Algorithm 1 shown in Appendix A). Here
〈si, ai, gi〉 is the input and mi is the output. Instead of man-
ually tuning hyper-parameters to balance the importance of
each measurement, we employ homoscedastic uncertainty
trick (Kendall and Gal 2017) to tune the loss weights adap-
tively during training. Following the work of (Kendall, Gal,
and Cipolla 2018), the regression loss is defined as:

L(θ) =
N∑
i=1

∑
j

(
1

σ2
j

∥∥∥Mj (si, ai, gi;θ)−mj
i

∥∥∥2 + log σ2
j

)
(9)

where the j indicates the j-th measurement and the σ2
j is the

variance of estimated Gaussian distribution of the j-th mea-
surement. When σ2

j increases, the corresponding weight de-
creases. Additionally, log σ2

j serves as a regularizer to avoid
overfitting. More complex loss functions such as classifi-
cation loss or reconstruction loss can be used for predict-
ing categorical or high-dimensional measurements, but are
not necessary for our experiments. The agent follows an ε-
greedy policy: it acts greedily according to the current goal
with probability 1− ε, and selects a random goal with prob-
ability ε. The value of ε is initially set to 1 and is decreased
during training according to a fixed schedule. The parame-
ters of the predictor used by the agent are updated after every
N new experiences.
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Offline Experiments
Following the setting of Shi et al. (2019) and Chen
et al. (2019b), we demonstrate how the proposed method
would perform on a real-world recommender system by con-
structing a simulated user model on public recommendation
datasets. We empirically evaluate GoalRec to address the
following questions:

Q1. Is it appropriate to apply the GoalRec on multi-step
recommendation problems? How does it compare with the
existing supervised learning or reinforcement learning meth-
ods?

Q2. Is the GoalRec capable of tackling the high-
dimensional state and action spaces problem in recom-
mender systems? How about the high-variance environ-
ment?

Q3. Is the GoalRec capable of learning a promising policy
from the offline dataset generated by other policies (e.g., a
myopic recommendation model)?

Experiment Settings
Baselines. We compare methods ranging from Supervised
Learning, Model-free RL to Model-based RL, including:

• Wide&Deep (Cheng et al. 2016): a widely used state-of-
the-art deep learning model combining a logistic regres-
sion and a deep neural network to predict the click label.

• DIEN (Zhou et al. 2019): another widely used state-of-
the-art deep learning model which employs the attention
mechanism and takes user sequence features as input.

• Rainbow (Hessel et al. 2018): a popular off-policy value
approximation paradigm, which combines several signifi-
cant improvements of the DQN algorithm.

• TD3 (Fujimoto, Van Hoof, and Meger 2018): an off-
policy actor-critic method. The action space of TD3 is
continuous. For inference, the continuous action finds its
nearest neighbors in the actual item space.

• Deep Dyna-Q (Peng et al. 2018): a representative model-
based approach combining one-step deep Q-learning and
k-step Q-planning.

• GoalRec: the vanilla GoalRec which is training from
scratch and uses a goal that maximizes the cumulative
reward (number of clicks) for a fair comparison. The
measurement used for different datasets are listed in
Appendix B. Roughly, it is a vector composed of user
click/purchase/exit action, the amount/ratio of different
actions, and averaged embedding of items. The state mod-
ule is implemented with open-sourced DIEN algorithm4.

• GoalRec-off: a variant that is trained on offline training
datasets instead of simulation environments.

For all compared algorithms, the recommendation item
list is generated by selecting the items with top-k estimated
potential reward or click probability of each item. For a fair
comparison, RL-based methods employ similar state net-
work structures and input state features, and the item fea-
tures are not considered.

4https://github.com/mouna99/dien

Dataset. We use three real-world datasets: MovieLens-
25m, Taobao and RecSys15 YooChoose. The dataset de-
scriptions and detailed statistics are given in Appendix B.

Simulation Setting. Following the work of Zou et al.
(2020), we regard “positive rating” or “transactions” as pos-
itive feedback (clicks), and conduct the simulation with data
collected from the public recommendation dataset to fit a
RNN-based user model (Jannach and Ludewig 2017). Apart
from the feedback, the user model also predicts the users’
exit probability, i.e., when to end the trajectory after los-
ing patience. For each dataset, we randomly select 100,000
users as the simulation environment. The users are divided
as 70% for training and 30% for testing. For each user,
the number of interaction trajectories used for training is
limited to 30 to simulate the data sparsity of real appli-
cations. We also set up two variants of the simulation en-
vironment to evaluate algorithms in the high-dimensional
state/action environment and the high-variance environment,
respectively. For the high-dimensional environment, the ac-
tion dimension is increased to 10,000 with the state dimen-
sion expanded to 30,000 through the discretization and inter-
section of features. For high-variance environment, we de-
layed reward signals 3 steps and add a stochastic trend noise
yt = yt−1+yt−2+ εt, where εt is white noise with variance
σ2 = 0.2, on the output click probability of the estimated
user model.

Evaluation Metrics. The performances are evaluated by
two metrics: (a) Cumulative reward: we calculate the cu-
mulative reward by averaging the number of clicks over all
users. (b) CTR: the ratio of the number of clicks and the
average browsing depth of users.

Parameter Setting. Grid search is applied to find the op-
timal settings for all methods, and we report the result of
each method with its optimal hyper-parameter settings. The
details of grid search reported in Appendix C. The explo-
ration factor ε decays from 1 to 0 during the training. We
used TensorFlow to implement the pipelines and trained net-
works with an Nvidia GTX 1080 ti GPU card.

Experiment Results
To address Q1, we first compare our methods with non-RL
and RL-based methods, and the performance is shown in Ta-
ble 1. The results show that all non-RL methods, compared
with DRL methods, are stable but at a lower performance
level in terms of reward. This is because they mainly focus
on the item-level performance (a higher CTR) and are un-
able to improve the overall performance on trajectory level.
Though only equipped with the vanilla DQN, the model-
based approach (Deep Dyna-Q) achieves a higher reward
than Rainbow on the Taobao dataset. Compared with Rain-
bow, Deep Dyna-Q, and TD3, GoalRec further improves
the cumulative reward (an averaged increase of 3.7%, 6.1%,
10.7%, respectively), especially on Taobao dataset.

To address Q2, we compare the performance of differ-
ent models between the vanilla environment and the high-
dimensional environment. As shown in Table 1 and Table
2, TD3 works badly in the high-dimensional environment
because of the increase of action space. The performance
of Rainbow and Deep Dyna-Q also degrade because of the
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(1) MovieLens (2) Taobao (3) YooChoose
model Reward CTR Reward CTR Reward CTR
W&D 25.2(±0.31) 0.601(±0.006) 2.72(±0.03) 0.024(±0.001) 3.52(±0.04) 0.040(±0.001)
DIEN 26.4(±0.27) 0.592(±0.007) 2.87(±0.04) 0.024(±0.001) 3.85(±0.05) 0.041(±0.001)
Dyna-Q 29.3(±0.80) 0.526(±0.016) 3.05(±0.10) 0.019(±0.002) 3.93(±0.13) 0.032(±0.003)
Rainbow 30.1(±0.67) 0.548(±0.012) 3.02(±0.05) 0.020(±0.002) 4.14(±0.09) 0.037(±0.002)
TD3 28.3(±1.05) 0.513(±0.019) 2.80(±0.10) 0.020(±0.002) 3.91(±0.14) 0.034(±0.003)
GoalRec 31.6 (±0.50) 0.544(±0.009) 3.14(±0.06) 0.021(±0.001) 4.23(±0.07) 0.037(±0.002)
GoalRec-off 29.1 (±0.37) 0.549(±0.005) 3.20(±0.04) 0.020(±0.001) 4.09(±0.05) 0.038(±0.001)

Table 1: Performance comparison on the vanilla simulation environment.

(1) MovieLens (2) Taobao (3) YooChoose
model Reward CTR Reward CTR Reward CTR
Dyna-Q 27.1(±0.74) 0.391(±0.013) 2.73(±0.08) 0.013(±0.002) 3.48(±0.10) 0.024(±0.002)
Rainbow 28.2(±0.72) 0.441(±0.015) 2.61(±0.06) 0.015(±0.002) 3.60(±0.08) 0.029(±0.003)
TD3 16.2(±0.59) 0.312(±0.024) 1.51(±0.05) 0.013(±0.002) 1.86(±0.07) 0.021(±0.003)
GoalRec 33.8(±0.58) 0.567(±0.01) 3.24(±0.05) 0.022(±0.001) 4.35(±0.07) 0.037(±0.002)

Table 2: Performance comparison on the high-dimensional simulation environment.

(1) MovieLens (2) Taobao (3) YooChoose
model Reward CTR Reward CTR Reward CTR
Dyna-Q 28.4(±0.81) 0.513(±0.015) 2.82(±0.08) 0.014(±0.002) 3.85(±0.09) 0.023(±0.002)
Rainbow 29.5(±0.73) 0.530(±0.018) 2.74(±0.06) 0.019(±0.001) 3.92(±0.05) 0.032(±0.002)
TD3 27.4(±0.95) 0.491(±0.026) 2.24(±0.08) 0.016(±0.002) 3.14(±0.07) 0.028(±0.003)
GoalRec 32.1(±0.57) 0.536(±0.013) 3.02(±0.05) 0.020(±0.001) 4.05(±0.05) 0.034(±0.003)

Table 3: Performance comparison on the high-variance simulation environment.

“credit assignment” issue caused by the high-dimensional
state space. Conversely, GoalRec achieves a better perfor-
mance in the high-dimensional environment because of the
high-capacity world model and the goal-based dense reward
signals. For the high-variance environment, the results re-
ported in Table 1 and Table 3 show a similar conclusion.
Deep Dyna-Q, Rainbow, and TD3 achieve a worse perfor-
mance compared with the vanilla environment (an averaged
decrease of 4.2%, 5.5%, 14.3%, respectively). The decou-
pled value function and the adoption of world model help
in alleviating the optimization issue caused by the high-
variance environment.

To address Q3, we compare the performance of GoalRec-
off and GoalRec. As shown in Table 1, GoalRec-off achieves
a promising performance with no interactions with the simu-
lator. The ability of learning from offline datasets directly is
important since pretraining on simulation environments may
be problematic (though it is widely used in existing litera-
tures): (i) the offline dataset is usually generated by a myopic
policy and only covers limited state-action space; (ii) the su-
pervised simulator which responded to unseen state-action
confidently may mislead the RL algorithms.

Overall, the first two experiments verified the effective-
ness of GoalRec when assuming the learned user simulator
as ground truth. The third experiment shows that GoalRec
offers another solution to learn from offline user trajecto-
ries and it works well. GoalRec is able to learn a generaliza-
tion over different goals (myopic policies, etc.) from offline

datasets and be adapted to a new goal (which maximizes the
number of clicks) during inference. To overcome the short-
comings of offline evaluation, we also report online experi-
ments with real-world commercial users in Appendix C.

Conclusion and Discussion
This paper presents GoalRec, which is motivated by trying
to address challenges due to large state/action spaces, high-
variance environment, and unspecific reward setting. The
approach decouples the model that predicts the environment
dynamics and sub-information, encoded in measurements,
from the way that different measurements are then encoded
into rewards for various goals that the recommender may
have. As a potential instantiation of the disentangled goal-
based Q-function, GoalRec factors the value function into
the dot-product between the representation of user future
trajectories and a vector of parameterized goal. It may more
reasonable to think from the perspective of trajectories rather
than states: recommendation environments lack significant
long-range dependence between the state. By contrast, in
video game environments, the key state is extremely impor-
tant for future states, such as obtaining a key or entering a
new scene. The influence of the recommender agent is sub-
tle, and the user’s preference changes gradually and slowly.

Several directions are left open in our work, including bal-
ancing explore-exploit in the goal-based RL framework and
exploring the applicability of our solution in item-list rec-
ommendation.
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