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Abstract
Traditional collaborative filtering (CF) based recommender
systems tend to perform poorly when the user-item interac-
tions/ratings are highly scarce. To address this, we propose a
learning framework that improves collaborative filtering with
a synthetic feedback loop (CF-SFL) to simulate the user feed-
back. The proposed framework consists of a “recommender”
and a “virtual user”. The “recommender” is formulated as a
CF model, recommending items according to observed user
preference. The “virtual user” estimates rewards from the
recommended items and generates a feedback in addition to
the observed user preference. The “recommender” connected
with the “virtual user” constructs a closed loop, that recom-
mends users with items and imitates the unobserved feedback
of the users to the recommended items. The synthetic feed-
back is used to augment the observed user preference and
improve recommendation results. Theoretically, such model
design can be interpreted as inverse reinforcement learning,
which can be learned effectively via rollout (simulation). Ex-
perimental results show that the proposed framework is able
to enrich the learning of user preference and boost the perfor-
mance of existing collaborative filtering methods on multiple
datasets.

Introduction
Recommender systems are important modules for abundant
online applications, helping users explore items of potential
interest. As one of the most effective approaches, collabo-
rative filtering (Sarwar et al. 2001; Koren and Bell 2015;
He et al. 2017) and its deep neural networks based vari-
ants (He et al. 2017; Wu et al. 2016; Liang et al. 2018; Li
and She 2017; Yang et al. 2017; Wang et al. 2018) have
been widely studied. These methods leverage patterns across
similar users and items, predicting user preferences and
have demonstrated encouraging results in recommendation
tasks (Bennett, Lanning et al. 2007; Hu, Koren, and Volin-
sky 2008; Schedl 2016). Among these works, beside “user-
item” pair data (e.g., ratings or interaction/purchase history),
side information, e.g., user reviews and scores on items, has
also been leveraged (Menon et al. 2011; Fang and Si 2011).
Such side information is a kind of user feedback to the rec-
ommended items, which is often useful for improving the
recommendation systems.
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Figure 1: Illustration of our proposed CF-SFL framework
for collaborative filtering.

Unfortunately, the user-item pairs and user feedback are
extremely sparse as compared to the search space of items.
Moreover, when the recommendation systems are trained
on static observations, the user feedback is unavailable un-
til it is deployed in real-world applications; in both train-
ing and validation phases, the target systems have no access
to any feedback because no one has observed the recom-
mended items. Therefore, the recommendation systems may
suffer from overfitting, and their performance may degrade
accordingly, especially in the initial phase of deployment.
Although real-world recommendation systems are usually
updated in an online manner with the help of increasing ob-
served user preference (Rendle and Schmidt-Thieme 2008;
Agarwal, Chen, and Elango 2010; He et al. 2016), intro-
ducing a feedback learning mechanism during their training
phases can potentially improve the system that is eventually
deployed. However, this aspect has largely been neglected
by the existing recommender system frameworks.

Motivated by these observations, we propose a novel
framework that achieves collaborative filtering with a syn-
thetic feedback loop (CF-SFL). As shown in Figure 1, the
proposed framework consists of a “recommender” and a
“virtual user.” The recommender is a collaborative filtering
(CF) model, which predicts items based on observed user
preference. The observed user preference vector reflects in-
trinsic preferences of the user, while the recommended items
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vector represents the model’s estimated preferences of the
user on the items. Taking a combination of the observed user
preference and the recommended items (the estimated user
preference) as inputs, which we refer to as input (cf., Fig-
ure 1), the virtual user, which is the key aspect of our model,
imitates a real-world setting and provides a synthesized user
feedback (in form of an embedding) to the CF module. In
particular, the virtual user contains a reward estimator and a
feedback generator. The reward estimator estimates rewards
based on the fused inputs (the combined representation of
the user observation and its recommended items), learned
with a generative adversarial regularizer. The feedback gen-
erator, conditioned on the estimated rewards as well as the
fused inputs, generates the feedback embedding to augment
the original user preference vector. Such a framework con-
structs a closed loop between the target CF model and the
virtual user, synthesizing user feedback as side information
to improve recommendation results.

The proposed CF-SFL framework can be interpreted as
an inverse reinforcement learning (IRL) set-up, in which
the recommender learns to recommend the user items (pol-
icy) with the estimated guidance (feedback) from the pro-
posed virtual user. The proposed feedback loop can be un-
derstood as an effective rollout procedure for recommenda-
tion, jointly updating the recommender (policy) and the vir-
tual user (consisting of the reward estimator and the feed-
back generator). Essentially, even if side information (i.e.,
real-world user feedback) is unavailable, our model is still
applicable to synthesize feedback during both training as
well as inference phases. The proposed framework is gen-
eral and the recommender module can use any of the various
existing CF methods, making our framework significantly
modular. A comprehensive set of experimental results show
that the performance of existing CF models can be remark-
ably improved within the proposed framework.

Proposed Framework
In this section, we first describe the problem set-up and pro-
vide a detailed description of each module that is part of the
proposed framework.

Problem Statement
Suppose we have N users with M items in total. We denote
the observed user-item matrix as X = [xi] ∈ {0, 1}N×M ,
where each vector xi = [xij ] ∈ RM , i = 1, ..., N , repre-
sents the observed user preferences for the i-th user. Here
xij = 1 indicates the the j-th item is bought or clicked by
the i-th user; otherwise the j-th item is either irrelevant to
the i-th user or we do not have knowledge about their re-
lationship. A recommendation system outputs the estimated
user preferences, denoted as ai = [aij ] ∈ RM , whose ele-
ment aij indicates the estimated preference of the i-th user
to the j-th item. The system can then recommend each user
the top few items (e.g., given a specified consumption bud-
get) based on the value of the estimated preferences aij’s.

In practice, for each user, the vector xi just contains par-
tial information about the user’s preferences on items and
an ideal recommendation system works dynamically with

a closed loop — users often generate feedback on the rec-
ommended items while the system considers these feedback
to revise recommended items in the future. Formally, this
feedback-driven recommendation process can be written for-
mally as

ati = π(xi,v
t
i), v

t+1
i = f(xi,a

t
i), for i = 1, ..., N, (1)

where π(·) represents the target recommender while f(·)
represents the coupled feedback mechanism of the system.
Here, vi ∈ Rd denotes the embedding of the aggregated
user feedback on the previously recommended items. At
time-step t, the recommender predicts preferred items ac-
cording to the observed user preference xi and previous
feedback vti , subsequently, the user generates an updated
feedback vt+1

i to the recommender. Note that Eq. (1) is
different from existing sequential recommendation mod-
els (Mishra, Kumar, and Bhasker 2015; Wang et al. 2016)
because these methods do not have the feedback loop, and
they just update the recommender module π according to
observed sequential observations, i.e., xti for different time-
steps t’s.1

Unfortunately, the feedback information is often unavail-
able during training and inference. Accordingly, most exist-
ing collaborative filtering-based recommendation methods
do not have a feedback loop in the system, and learn the
recommendation system purely from the statically observed
user-item matrixX (Liang et al. 2018; Li and She 2017). Al-
though, in some settings, side information like user reviews
is associated with the observation matrix, the methods using
such information often treat it as a source of static knowl-
edge rather than a dynamic feedback. They mainly focus on
fitting the ground-truth recommended items with the recom-
mender π(·) given fixed xi’s and fixed vi’s, while ignoring
the whole recommendation-feedback loop in Eq. (1). With-
out a feedback mechanism, f(·), π(·) may overfit the (possi-
bly scarce) user observations and the static side information,
especially in dynamic settings.

To overcome the aforementioned problems, we propose
a collaborative filtering framework with a synthetic feed-
back loop (CF-SFL). As shown in Figure 1, besides the
traditional recommendation module, the proposed frame-
work further introduces a virtual user, which imitates the
recommendation-feedback loop, even if the real user feed-
back is unavailable.

The Recommender
In our framework, the recommender implements the func-
tion π(·) in Eq. (1), which takes the observed user preference
xi and the user’s previous feedback embedding vti as inputs
and recommends items accordingly. In principle, the recom-
mender π(·) can be defined with high flexibility, which can
be based on any existing shallow/deep collaborative filtering
method that predicts items from user representations, such

1When the static observation xi in Eq. (1) is replaced with se-
quential observation xt

i , Eq. (1) is naturally extended to a sequen-
tial recommendation system with a feedback loop. In this work, we
focus on the case with static observations and train a recommender
system accordingly.
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as WMF (Hu, Koren, and Volinsky 2008), CDAE (Wu et al.
2016), VAE (Liang et al. 2018), etc.

Our goal is to mimic and integrate dynamic user feed-
back and therefore, in this work, we develop an inverse re-
inforcement learning (IRL) based framework, adapted for
CF. To the best of our knowledge, none of the existing CF
approaches incorporate such a dynamic feedback loop, and
our work is the first such attempt in this direction.

In particular, the recommendation-feedback loop gener-
ates a sequence of interactions between each user and the
recommender, i.e., (sti,a

t
i)
T
t=1 for i = 1, ..., N . Here, sti =

[xi;v
t
i ] is the representation of user i at time t, which is a

sample in the state space S describing user preferences; ati
is a vector of the estimated user preferences for user i, which
is a sample in the action space A of the recommender. Ac-
cordingly, we can model the recommendation-feedback loop
as a Markov Decision Process (MDP) M = 〈S,A, P,R〉,
where P : S × A × S 7→ R is the transition proba-
bility of user preferences and R : S × A 7→ R is the
reward function used to evaluate recommended items. We
further assume that the recommender π(·) works as a pol-
icy parametrized by θ, i.e., πθ(a|s), which corresponds to
the distribution of the estimated item preferences a, condi-
tioned on the user representation s. The target recommender
should be an optimal policy that maximizes the expected re-
ward: J(πθ) =

∑T
t=1 Eπθ [Rφ(st,at)], where Rφ(st,at)

means the reward for the state-action pair (st,at). For the
i-th user, given sti, the recommender selects potentially-
preferred items by finding the optimal item-preference vec-
tor as follows

ati = arg maxa∈A πθ(a|sti). (2)

and then recommending the top few items with largest val-
ues in the vector ati. Note that, different from traditional re-
inforcement learning tasks, in which both S andA are avail-
able while P and R are with limited accessibility, our rec-
ommender receives only partial information of the state —
it does not observe users’ feedback embedding vi. In other
words, to optimize the recommender, we need to build a re-
ward model and a feedback generator jointly, which moti-
vates us to introduce a virtual user into the framework.

The Virtual User
The virtual user module aims to implement the feedback
function f(·) in Eq. (1), which not only models the reward
of the items provided by the recommender but also gener-
ates feedback vti to complete the representations of the state
sti = [xi;v

t
i ]. Accordingly, the virtual user contains the fol-

lowing two modules:
Reward Estimator: it parametrizes the function of reward,

which takes the current estimation ati and user preference sti
as input and evaluate their compatibility. In this work, we
assume that the reward estimator is parametrized by param-
eters φ, and is defined as

Rφ(s
t
i,a

t
i) = sigmoid(g(h(xi,ati))). (3)

For the reward estimator, we use the static part of the state
sti, i.e., the observed user preference xi as input. In Eq. (3),

h(·, ·) denotes the fusion function which merges xi and ati
into a real value vector, and g(·) is the single value regres-
sion function that translates the fused input into a single re-
ward value. The sigmoid function squashes the predicted re-
ward value between 0 and 1.

Feedback Generator: it connects the reward estimator
with the recommender module via generating a feedback
embedding, i.e.,

vit+1 = Fψ(h(xi,a
t
i), Rφ(s

t
i,a

t
i)), (4)

where ψ represents the parameters of the generator. Specif-
ically, the parametric function Fψ(·, ·) considers the fused
input and the estimated reward and returns a feedback em-
bedding vit ∈ Rd to the recommender. In this work, we use a
multilayer perceptron to model the function Fψ . In Eq. (4),
Rφ(s

t
i,a

i
t) is as the scalar reward (as defined in Eq. (3))

denoting the compatibility between the recommended items
and user preferences, and h(xi,ait), which is a vector rather
than a scalar like reward, further enriches the information of
the reward to generate feedback embeddings. Consequently,
the recommender receives the informative feedback as a
complementary component of the static observation xi to
make an improved recommendation via Eq. (2).

The Learning Algorithm
Learning Task
Based on the proposed framework, we need to jointly learn
the policy corresponding to the recommender πθ , the reward
estimatorRφ, and the feedback generator Fψ . Assuming we
have a set of user observations D = {xi}, where xi ∈ RM
is the vector of observed user preferences for user i. We for-
mulate the learning task as the following min-max optimiza-
tion problem

minπθ,Fψ maxRφ L(πθ, Rφ, Fψ), (5)

where

L(πθ, Rφ, Fψ) =
∑

i
Lrec(ai,xi;πθ, Fψ)︸ ︷︷ ︸
Reconstruction loss

− Ea∼πθ [log(Rφ(s,a))]− Ea∼D[1− log(Rφ(s,a))]︸ ︷︷ ︸
Collaboration with adversarial regularizer

In particular, the first term Lrec in Eq. (6) can be any recon-
struction loss based on user preferencesD, e.g., the evidence
lower bound (ELBO) proposed in VAEs (Liang et al. 2018)
(and used in our work). This term ensures the recommender
to fit the observed user preference. The second term con-
siders the following types of interactions among the various
modules:
• The collaboration between the recommender policy πθ

and the feedback generator Fψ towards a better predictive
recommender.

• The adversarial game between the recommender policy
πθ and the reward estimator Rφ.

Accordingly, given the current reward model, we update the
recommender policy πθ and the feedback generator Fψ to
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Figure 2: Unrolling the recurrent CF-SFL framework into an iterative learning process with T time steps.

maximize the expected reward derived from the generated
user representation s and the estimated user preference a.
Likewise, given the recommended policy and the feedback
generator, we improve the reward estimator Rφ by sharpen-
ing its criterion — the updated reward estimator maximizes
the expected reward derived from the generated user repre-
sentation and the observed user preference, while minimiz-
ing the expected reward based on the generated user repre-
sentation and the estimated user preference.

Therefore, we solve Eq. (5) via alternating optimization,
updating of πθ and Fψ by minimizing

LC(πθ, Fψ) =
∑

i
Lrec(ai,xi;πθ, Fψ)

− Ea∼πθ [log(Rφ(s,a))].
(6)

We update Rφ is achieved by maximizing

LA(Rφ) =− Ea∼πθ [log(Rφ(s,a))]
− Ea∼D[1− log(Rφ(s,a))].

(7)

Both these update steps can be solved efficiently via stochas-
tic gradient descent.

Unrolling for Learning and Inference
Because the proposed framework contains a closed loop
among learnable modules, during training we unroll the loop
and let the recommender interact with the virtual user in
T steps. Specifically, at the initial stage, the recommender
takes the observed user preference vector xi and an all-zero
initial feedback embedding vector v0i , to make recommen-
dations. At each step t, the recommender outputs the esti-
mated user preferences ati given xi and vti to the virtual
user, and receives the feedback embedding vt+1

i . The loss
is defined according to the output of the last step, i.e., aT
and vT , and the modules are updated accordingly. After the
model is learned, in the testing phase we need to infer the
recommended item in the same manner, unrolling the feed-
back loop and deriving aT as the final estimated user pref-
erences. The details of unrolling process are illustrated in
Figure 2

CF-SFL as Inverse Reinforcement Learning
Our CF-SFL framework automatically discovers informa-
tive user feedback as side information and gradually im-
prove the training for the recommender. Theoretically, it is
closely related to Inverse Reinforcement Learning (IRL).
Specifically, we jointly learn the reward estimator Rφ and
the policy (recommender) πθ from the expert trajectories
D (i.e., the observed labeled data), which typically consists
of state-action pairs generated from some expert policy πE
with the corresponding environment dynamics ρE . The IRL
is to recover the optimal reward function R∗ as well as the
optimal recommender π∗. Formally, the IRL is defined as:

{R∗, π∗} , IRL(πE) = argmax
φ

∑
s,a

ρE(s,a)Rφ(s,a)

− [max
θ

H(π) +
∑

s,a
ρ(s,a)Rφ(s,a)],

(8)

which can be rewritten as

max
φ

min
θ

∑
s,a

(ρE(s,a)− ρ(s,a))Rφ(s,a)−H(π)︸ ︷︷ ︸
L(π,R)

Intuitively, the objective enforces the expert policy πE to
induce higher rewards (the max part), than all other poli-
cies. This objective is sub-optimal if the expert trajectories
are noisy, i.e., the expert is not perfect and its trajectories are
not optimal. This will make the learned policy always per-
form worse than the expert one. Besides, the illed-defined
IRL objective often induces multiple solutions due to the
flexible solution space, i.e., one can assign an arbitrary re-
ward to trajectories not from expert, as long as these tra-
jectories yield lower rewards than the expert trajectories. To
alleviate these issues, some constraints can be incorporated
into the objective functions, e.g., a convex reward functional,
ψ : RS×A → R, which usually works as a regularizer.

{R∗, π∗} = arg maxφ minθ L(πθ, Rφ)− ψ(Rφ). (9)

To imitate the expert policy and provide better general-
ization, we adopt the adversarial regularizer (Ho and Ermon
2016), which defines ψ with the following form:

ψ(Rφ) ,

{
EπE [q(Rφ(s,a))] if Rφ(s,a) ≥ 0
+∞ otherwise ,
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ML-20M Netflix MSD
# of users 136,677 463,435 571,355
# of items 20,108 17,769 41,140

# of interactions 10.0M 56.9M 33.6M
# of held-out-users 10.0K 40.0K 50.0K

% of sparsity 0.36% 0.69% 0.14%

Table 1: Dataset statistics

where q(x) = x − log(1 − e−x). This regularizer places
low penalty on reward functions R that assign an amount
of positive value to expert state-action pairs; however, if R
assigns low value (close to zero, which is the lower bound)
to the expert, then the regularizer will heavily penalize Rφ.
With the adversarial regularizer, we obtain a new imitation
learning algorithm for the recommender:

minθ ψ
∗(ρπ − ρπE )− λH(πθ) (10)

Intuitively, we want to find a saddle point (Rφ, πθ) of the
expression:

Eπθ [log(Rφ(s,a))] + EπE [1− log(Rφ(s,a))]− λH(πθ),

where Rφ(s,a) ∈ (0, 1). Note that Eq. (9) is derived from
the objective of traditional IRL. However, distinct from the
traditional approach, we propose a feedback generator to
provide feedback to the recommender. In terms of the reward
estimator, it tends to assign lower rewards to the predicted
results by the recommender πθ and higher rewards for the
expert policy πE , which aims to discriminate πθ from πE ,
similar to Eq. (7):

LR = Eπθ [log(Rφ(s,a))] + EπE [1− log(Rφ(s,a))]. (11)

Similar to standard IRL, we update the generator to maxi-
mize the expected reward with respect to logRφ(s,a), mov-
ing towards expert-like regions of user-item space. In prac-
tice, we incorporate feedback embedding to update the user
preferences, and the objective of the recommender is:

LF = Eπθ [− log(R([xi,v
t
i ],a))]− λH(πθ) (12)

where vti = Fψ(h(xi,a
t
i), Rφ(s

t
i,a

t
i)). It is obvious that

LF recovers the second term in Eq. (6).

Related Work
Collaborative Filtering (CF). Existing CF approaches pri-
mary operate in one of the following two settings: CF with
implicit feedback (Bayer et al. 2017; Hu, Koren, and Volin-
sky 2008) and CF with explicit feedback (Koren 2008; Liu
et al. 2010). In implicit CF, user-item interactions are binary
in nature (i.e., 1 if clicked and 0 otherwise) as opposed to ex-
plicit CF where they represent item ratings (e.g., 1-5 stars).
The implicit CF setting is more common/natural in many ap-
plications and has been widely studied, examples including
factorization of user-item interactions (He et al. 2016; Ko-
ren 2008; Liu et al. 2016; Rendle 2010; Rennie and Srebro
2005) and ranking based approach (Rendle et al. 2012). Our
CF-SFL framework is also designed for the implicit CF.

Recommender Reward Est. Feedback Gen.
InputRM InputR64 InputR65

M × 600, tanh 64× 128, ReLU 64× 128, ReLU
600× 200 (x2) 128× 128, ReLU
SampleR200 128× 128, ReLU

200× 600, tanh 128× 128, ReLU
600×M softmax 128× 1, sigmoid 128× 128

Table 2: Architecture of our CF-SFL framework.

Currently, neural network based models have achieved
state-of-the-art performance for various recommender sys-
tems (Cheng et al. 2016; He et al. 2018, 2017; Zhang et al.
2018b; Liang et al. 2018). Among these methods, NCF (He
et al. 2017) casts the matrix factorization algorithm into an
entire neural framework, combing the shallow inner-product
based learner with a series of stacked nonlinear transforma-
tions. This method outperforms various traditional baselines
and has motivated many follow-up works such as NFM (He
et al. 2017), Deep FM (Guo et al. 2017) and Wide and
Deep (Cheng et al. 2016). Recently, deep generative has
also achieved remarkable success. In particular, VAE based
approach to CF uses variational inference to scale up the
algorithm for large-scale dataset and has shown significant
success in recommender systems using multinomial (Liang
et al. 2018) or negative binomial (Zhao et al. 2020) likeli-
hoods. CF-SFL is a general framework which can be inte-
grated with such models seamlessly.

Reinforcement Learning in CF. For RL-based methods,
contextual multi-armed bandits have been utilized to model
the interactive nature of recommender systems. Thompson
Sampling (TS) (Chapelle and Li 2011; Kveton et al. 2015;
Zhang et al. 2018a) and Upper Confident Bound (UCB) (Li
et al. 2010) are used to balance the trade-off between ex-
ploration and exploitation. Matrix factorization is combined
with a bandit set-up in (Zhao, Zhang, and Wang 2013) to
include latent vectors of items and users for better explo-
ration. The MDP-Based CF model can be viewed as a partial
observable MDP (POMDP) with partial observation of user
preferences (Sunehag et al. 2015). Value function approxi-
mation and policy based optimization can be employed to
solve the MDP. Modeling web page recommendation as a
Q-Learning problem was proposed in (Zheng et al. 2018)
and (Taghipour and Kardan 2008) and to make recommen-
dations from web usage data. In this paper, we consider the
recommending procedure as sequential interactions between
virtual users and recommender; and leverage feedback from
virtual users to improve the recommendation.

Experiments
Datasets. We investigate the effectiveness of the proposed
CF-SFL framework on three benchmark datasets of recom-
mendation systems. (i) MovieLens-20M (ML-20M), taken
from a movie recommendation service containing tens of
millions user-movie ratings; (ii) Netflix-Prize (Netflix), an-
other user-movie ratings dataset collected by the Netflix
Prize (Bennett, Lanning et al. 2007); (iii) Million Song
Dataset (MSD), a user-song rating dataset, which is released
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Methods ML-20M Netflix MSD
R@20 R@50 NDCG@100 R@20 R@50 NDCG@100 R@20 R@50 NDCG@100

SLIM 0.370 0.495 0.401 0.347 0.428 0.379 - - -
WMF 0.360 0.498 0.386 0.316 0.404 0.351 0.211 0.312 0.257
CDAE 0.391 0.523 0.418 0.343 0.428 0.376 0.188 0.283 0.237
aWAE 0.391 0.532 0.424 0.354 0.441 0.381 - - -
VAE 0.395 0.537 0.426 0.351 0.444 0.386 0.266 0.364 0.316
VAE∗ 0.395 0.535 0.425 0.350 0.444 0.386 0.260 0.356 0.311
VAE† 0.396 0.536 0.426 0.352 0.445 0.387 0.263 0.360 0.314
CF-SFL 0.404 0.542 0.435 0.355 0.449 0.394 0.273 0.369 0.323

Table 3: Performance comparison between our CF-SFL framework and various baselines. VAE∗ is the results based on our own
runs and VAE† is the VAE model with our reward estimator.

Figure 3: Performance (NDCG@100) boost on the validation sets.

as part of the Million Song Dataset (Bertin-Mahieux et al.
2011). To directly compare with existing work, we em-
ployed the same pre-processing procedure as (Liang et al.
2018). A summary statistics of these datasets are provided
in Table 1.

Evaluation Metrics. We employ Recall@r2 together with
NDCG@r3 as the evaluation metric for recommendation,
which measures the similarity between the recommended
items and the ground truth. Recall@r considers top-r rec-
ommended items equally, while NDCG@r ranks the top-r
items and emphasizes the importance of the items that are
with high ranks.

Set-up. For our CF-SFL framework, the architectures of
its recommender, reward estimator and feedback generator
are shown in Table 2. To represent the user preference, we
normalize xi and vti (t > 0) independently and concate-
nate the two into a single vector. To learn the model, we
pre-train the recommender (150 epochs for ML-20M and 75
epochs for Netflix and MSD) and optimize the entire frame-
work (50 epochs for ML-20M and 25 epochs for the other
two). `2 regularization with a penalty term 0.01 is applied
to the recommender, and Adam optimizer (Kingma and Ba
2014) with batch in size of 500 is employed.

Baselines. To demonstrate the efficacy of our framework,
we consider multiple state-of-the-art approaches as base-
lines, which can be categorized into two types: (i) Linear

2https://en.wikipedia.org/wiki/Precision and recall
3https://en.wikipedia.org/wiki/Discounted cumulative gain

models: SLIM (Ning and Karypis 2011) and WMF (Hu, Ko-
ren, and Volinsky 2008); and (ii) Deep neural network based
models: CDAE (Wu et al. 2016), VAE (Liang et al. 2018),
and aWAE (Zhang, Zhong, and Liu 2020). It should be noted
that our CF-SFL is a generalized framework, which is com-
patible with all these approaches. In particular, as shown in
Table 2, we implement our recommender as the VAE-based
model (Liang et al. 2018) for a fair comparison. In the fol-
lowing experiments, we will show that besides such a set-
ting the recommender can be implemented by other existing
models as well.

All the evaluation metrics are averaged across all the test
sets.

(i) Quantitative Results: we test various methods and re-
port their results in Table 3. With the proposed CF-SFL
framework, we observe improvements over the baselines
on all the evaluation metrics. These experimental results
demonstrate the power of the proposed CF-SFL framework,
which provides informative feedback as side information.
Particularly, we observed that the performance of the base
model (VAE∗) is similar to that of its variation with the
reward estimator (VAE†). It implies that simply learning a
feedback from the reward estimator via back-propagation
is not much helpful. Compared with such a naı̈ve strategy,
the proposed CF-SFL provides more informative feedback
to the recommender, and is able to improve recommenda-
tion results more effectively.

(ii) Learning Comparison: In Figure 3, we show the train-
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Figure 4: The blue curve summarizes NDCG@100 and red curves report the computational cost for model inference in each
epoch. In each sub-figure, we vary the time steps from 0 to 12 (T = 0 is the base recommender).

ing trajectory of the baselines (VAE, VAE+reward estima-
tor) and the CF-SFL with multiple time steps. There are sev-
eral interesting findings: (a) The performance of the base
VAE doesn’t improve after the pre-training steps, e.g., 75
epochs for Netflix. In comparison, the proposed CF-SFL
framework can further improve the performance once the
whole model is triggered; (b) The CF-SFL yields fast con-
vergence once the whole framework is activated; (c) Con-
sistent with the results in Table 3, the trajectory of VAE†
in Figure 3 is similar to that of the base VAEs (VAE∗). In
contrast, the trajectories of our CF-SFL methods are more
smooth and are to converge to a much better local minimum.
This phenomenon further verifies that our CF-SFL learns in-
formative user feedback with better stability; (d) With an in-
crease in the number of time steps T in a particular range
(T ≤ 8 for ML-20M), CF-SFL achieves faster and bet-
ter performance; One possible explanation is the learning
with our unrolled structure — parameters are shared across
different time-steps, and a more accurate gradient is found
towards the local minimum; and (e) We find ML-20M and
MSD are more sensitive to the choice of T when compared
with Netflix. Therefore, the choice of T should be adjusted
for different datasets.

(iii) CF-SFL with Dynamic Time Steps: As shown in Fig-
ure 2, learning of CF-SFL involves a recurrent structure with
T times steps. We investigate the choice of T and report its
influence on the performance of our method. Specifically,
the NDCG@100 with different T values is shown in Fig-
ure 4. Within 6 time steps, CF-SFL consistently boots the
performance on all the three datasets. Even with a larger
time step, the results remain stable. Additionally, the infer-
ence time of CF-SFL is linear in T . To achieve a trade-off
between performance and efficiency, in our experiments we
set T to 8 for ML-20M and Netflix and 6 for MSD.

Relative Improvements due to Generative Feedback. As
mentioned earlier, our CF-SFL is a generalized framework
which is compatible with many existing collaborative filter-
ing approaches. We study the usefulness of our CF-SFL on
various recommendation systems and present the results in
Table 4. Specifically, two types of recommenders are being
considered: linear approaches like WARP (Weston, Bengio,
and Usunier 2011) and MF (Hu, Koren, and Volinsky 2008),
and deep learning methods, e.g., DAE (Liang et al. 2018)

Recommender w/o CF-SFL w CF-SFL Gain (10−3)
WARP 0.31228 0.33987 +27.59

MF 0.41587 0.41902 +3.15
DAE 0.42056 0.42307 +2.51
VAE 0.42546 0.43472 +9.26

VAE-(Gaussian) 0.42019 0.42751 +7.32
VAE-(β = 0) 0.42027 0.42539 +5.02
VAE-Linear 0.41563 0.41597 +0.34

Table 4: Comparisons for various recommenders.

and the variation of VAE in (Liang et al. 2018). We find
that our CF-SFL is capable of generalizing most such col-
laborative filtering approaches and boosts their performance
accordingly. The gains achieved by our CF-SFL may vary
depending on the choice of recommender.

Conclusion
We presented CF-SLF, a novel framework for making rec-
ommendation from sparse data by simulating user feedback.
It constructs a virtual user to provide informative side in-
formation as user feedback. We formulate the framework
as an IRL problem and learn the optimal policy by feed-
ing back the action and reward. Specifically, a recurrent ar-
chitecture was built to unrolled the framework for efficient
learning. Empirically we improve the performance of state-
of-the-art collaborative filtering methods with a non-trivial
margin. Our framework serves as a practical solution mak-
ing IRL feasible over large-scale collaborative filtering. It
will be interesting to investigate the framework in other ap-
plications, such as sequential recommender systems.

Acknowledgments
The Duke University component of this work was sup-
ported in part by DARPA, DOE, NIH, ONR and NSF,
and a portion of the work performed by the first two
authors was performed when they were affiliated with
Duke. Additionally, Hongteng Xu was supported in part
by Beijing Outstanding Young Scientist Program (NO.
BJJWZYJH012019100020098) and National Natural Sci-
ence Foundation of China (No. 61832017).

4442



References
Agarwal, D.; Chen, B.-C.; and Elango, P. 2010. Fast online
learning through offline initialization for time-sensitive rec-
ommendation. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 703–712.

Bayer, I.; He, X.; Kanagal, B.; and Rendle, S. 2017. A
generic coordinate descent framework for learning from im-
plicit feedback. In Proceedings of the 26th International
Conference on World Wide Web, 1341–1350.

Bennett, J.; Lanning, S.; et al. 2007. The netflix prize. In
Proceedings of KDD cup and workshop, volume 2007, 35.
Citeseer.

Bertin-Mahieux, T.; Ellis, D. P.; Whitman, B.; and Lamere,
P. 2011. The million song dataset .

Chapelle, O.; and Li, L. 2011. An empirical evaluation of
thompson sampling. Advances in neural information pro-
cessing systems 24: 2249–2257.

Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra,
T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir,
M.; et al. 2016. Wide & deep learning for recommender sys-
tems. In Proceedings of the 1st workshop on deep learning
for recommender systems, 7–10.

Fang, Y.; and Si, L. 2011. Matrix co-factorization for recom-
mendation with rich side information and implicit feedback.
In Proceedings of the 2nd International Workshop on Infor-
mation Heterogeneity and Fusion in Recommender Systems,
65–69.

Guo, H.; Tang, R.; Ye, Y.; Li, Z.; and He, X. 2017. DeepFM:
a factorization-machine based neural network for CTR pre-
diction. arXiv preprint arXiv:1703.04247 .

He, X.; Du, X.; Wang, X.; Tian, F.; Tang, J.; and Chua, T.-
S. 2018. Outer product-based neural collaborative filtering.
arXiv preprint arXiv:1808.03912 .

He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; and Chua, T.-S.
2017. Neural collaborative filtering. In Proceedings of the
26th international conference on world wide web, 173–182.

He, X.; Zhang, H.; Kan, M.-Y.; and Chua, T.-S. 2016. Fast
matrix factorization for online recommendation with im-
plicit feedback. In Proceedings of the 39th International
ACM SIGIR conference on Research and Development in In-
formation Retrieval, 549–558.

Ho, J.; and Ermon, S. 2016. Generative adversarial imitation
learning. arXiv preprint arXiv:1606.03476 .

Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative fil-
tering for implicit feedback datasets. In 2008 Eighth IEEE
International Conference on Data Mining, 263–272. Ieee.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980 .

Koren, Y. 2008. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of
the 14th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 426–434.

Koren, Y.; and Bell, R. 2015. Advances in collaborative fil-
tering. Recommender systems handbook 77–118.

Kveton, B.; Szepesvari, C.; Wen, Z.; and Ashkan, A. 2015.
Cascading bandits: Learning to rank in the cascade model.
In International Conference on Machine Learning, 767–
776. PMLR.

Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010. A
contextual-bandit approach to personalized news article rec-
ommendation. In Proceedings of the 19th international con-
ference on World wide web, 661–670.

Li, X.; and She, J. 2017. Collaborative variational autoen-
coder for recommender systems. In Proceedings of the 23rd
ACM SIGKDD international conference on knowledge dis-
covery and data mining, 305–314.

Liang, D.; Krishnan, R. G.; Hoffman, M. D.; and Jebara, T.
2018. Variational autoencoders for collaborative filtering. In
Proceedings of the 2018 world wide web conference, 689–
698.

Liu, N. N.; Xiang, E. W.; Zhao, M.; and Yang, Q. 2010.
Unifying explicit and implicit feedback for collaborative fil-
tering. In Proceedings of the 19th ACM international con-
ference on Information and knowledge management, 1445–
1448.

Liu, Y.; Zhao, P.; Liu, X.; Wu, M.; and Li, X.-L. 2016.
Learning optimal social dependency for recommendation.
arXiv preprint arXiv:1603.04522 .

Menon, A. K.; Chitrapura, K.-P.; Garg, S.; Agarwal, D.; and
Kota, N. 2011. Response prediction using collaborative fil-
tering with hierarchies and side-information. In Proceed-
ings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, 141–149.

Mishra, R.; Kumar, P.; and Bhasker, B. 2015. A web recom-
mendation system considering sequential information. De-
cision Support Systems 75: 1–10.

Ning, X.; and Karypis, G. 2011. Slim: Sparse linear methods
for top-n recommender systems. In 2011 IEEE 11th Inter-
national Conference on Data Mining, 497–506. IEEE.

Rendle, S. 2010. Factorization machines. In 2010 IEEE
International Conference on Data Mining, 995–1000. IEEE.

Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-
Thieme, L. 2012. BPR: Bayesian personalized ranking from
implicit feedback. arXiv preprint arXiv:1205.2618 .

Rendle, S.; and Schmidt-Thieme, L. 2008. Online-updating
regularized kernel matrix factorization models for large-
scale recommender systems. In Proceedings of the 2008
ACM conference on Recommender systems, 251–258.

Rennie, J. D.; and Srebro, N. 2005. Fast maximum mar-
gin matrix factorization for collaborative prediction. In Pro-
ceedings of the 22nd international conference on Machine
learning, 713–719.

Sarwar, B.; Karypis, G.; Konstan, J.; and Riedl, J. 2001.
Item-based collaborative filtering recommendation algo-
rithms. In Proceedings of the 10th international conference
on World Wide Web, 285–295.

4443



Schedl, M. 2016. The lfm-1b dataset for music retrieval and
recommendation. In Proceedings of the 2016 ACM on Inter-
national Conference on Multimedia Retrieval, 103–110.
Sunehag, P.; Evans, R.; Dulac-Arnold, G.; Zwols, Y.;
Visentin, D.; and Coppin, B. 2015. Deep reinforcement
learning with attention for slate markov decision processes
with high-dimensional states and actions. arXiv preprint
arXiv:1512.01124 .
Taghipour, N.; and Kardan, A. 2008. A hybrid web recom-
mender system based on q-learning. In Proceedings of the
2008 ACM symposium on Applied computing, 1164–1168.
Wang, Q.; Yin, H.; Hu, Z.; Lian, D.; Wang, H.; and Huang,
Z. 2018. Neural memory streaming recommender networks
with adversarial training. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, 2467–2475.
Wang, W.; Yin, H.; Sadiq, S.; Chen, L.; Xie, M.; and Zhou,
X. 2016. SPORE: A sequential personalized spatial item
recommender system. In 2016 IEEE 32nd International
Conference on Data Engineering (ICDE), 954–965. IEEE.
Weston, J.; Bengio, S.; and Usunier, N. 2011. Wsabie: Scal-
ing up to large vocabulary image annotation .
Wu, Y.; DuBois, C.; Zheng, A. X.; and Ester, M. 2016. Col-
laborative denoising auto-encoders for top-n recommender
systems. In Proceedings of the ninth ACM international con-
ference on web search and data mining, 153–162.
Yang, C.; Bai, L.; Zhang, C.; Yuan, Q.; and Han, J. 2017.
Bridging collaborative filtering and semi-supervised learn-
ing: a neural approach for poi recommendation. In Proceed-
ings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1245–1254.
Zhang, R.; Li, C.; Chen, C.; and Carin, L. 2018a. Learn-
ing structural weight uncertainty for sequential decision-
making. In International Conference on Artificial Intelli-
gence and Statistics, 1137–1146. PMLR.
Zhang, S.; Yao, L.; Sun, A.; Wang, S.; Long, G.; and Dong,
M. 2018b. Neurec: On nonlinear transformation for person-
alized ranking. arXiv preprint arXiv:1805.03002 .
Zhang, X.; Zhong, J.; and Liu, K. 2020. Wasserstein autoen-
coders for collaborative filtering. Neural Computing and Ap-
plications 1–10.
Zhao, H.; Rai, P.; Du, L.; Buntine, W.; Phung, D.; and Zhou,
M. 2020. Variational autoencoders for sparse and overdis-
persed discrete data. In International Conference on Artifi-
cial Intelligence and Statistics, 1684–1694. PMLR.
Zhao, X.; Zhang, W.; and Wang, J. 2013. Interactive col-
laborative filtering. In Proceedings of the 22nd ACM inter-
national conference on Information & Knowledge Manage-
ment, 1411–1420.
Zheng, G.; Zhang, F.; Zheng, Z.; Xiang, Y.; Yuan, N. J.; Xie,
X.; and Li, Z. 2018. DRN: A deep reinforcement learning
framework for news recommendation. In Proceedings of the
2018 World Wide Web Conference, 167–176.

4444


