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Abstract

Modeling how human moves in the space is useful for policy-
making in transportation, public safety, and public health. The
human movements can be viewed as a dynamic process that
human transits between states (e.g., locations) over time. In
the human world where intelligent agents like humans or ve-
hicles with human drivers play an important role, the states of
agents mostly describe human activities, and the state transi-
tion is influenced by both the human decisions and physical
constraints from the real-world system (e.g., agents need to
spend time to move over a certain distance). Therefore, the
modeling of state transition should include the modeling of
the agent’s decision process and the physical system dynam-
ics. In this paper, we propose MoveSD to model state transi-
tion in human movement from a novel perspective, by learn-
ing the decision model and integrating the system dynamics.
MoveSD learns the human movement with Generative Ad-
versarial Imitation Learning and integrates the stochastic con-
straints from system dynamics in the learning process. To the
best of our knowledge, we are the first to learn to model the
state transition of moving agents with system dynamics. In
extensive experiments on real-world datasets, we demonstrate
that the proposed method can generate trajectories similar to
real-world ones, and outperform the state-of-the-art methods
in predicting the next location and generating long-term fu-
ture trajectories.

Introduction
Modeling how human moves in space is useful for policy-
making in various applications, ranging from transporta-
tion (Wu, Bayen, and Mehta 2018; Lian et al. 2014), pub-
lic safety (Wang et al. 2017) to public health (Wang, Wang,
and Wu 2018). For example, modeling the movements of
vehicles with human drivers can help build a good simulator
and serve as a foundation and a testbed for reinforcement
learning (RL) on traffic signal control (Wei et al. 2018) and
autonomous driving (Wu, Bayen, and Mehta 2018). In fact,
lacking a good simulator is considered as one of the key
challenges that hinder the application of RL in real-world
systems (Dulac-Arnold, Mankowitz, and Hester 2019).
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Figure 1: Three perspectives on modeling state transitions.
(a) Traditional methods directly predict the next state st+1

for an agent based on its past states with a model P . (b)
Direct learning of agent policy π that maps from state s to
action a. (c) Learning agent policy π with the system dy-
namics G. The agents observe its state st from the system
state St, which is modeled by system dynamics model G.

The modeling of human movements in space can be
viewed as modeling the state transition of intelligent agents
(e.g., human travelers, or vehicles with human drivers). The
state of an agent can include its historical locations and its
destination. Recently there are growing research studies that
have developed computational methods to model the state
transitions. One line of research directly predict the next
states based on the current state and historical states (Song
et al. 2016; Liu et al. 2016; Feng et al. 2017; Baumann
et al. 2018; Feng et al. 2018; Gupta et al. 2018; Sadeghian,
Kosaraju et al. 2019; Ma et al. 2019; Finn, Goodfellow, and
Levine 2016; Oh et al. 2015). As is shown in Figure 1 (a),
these methods focus on directly minimizing the error be-
tween estimated state ŝt+1 and true observed state st+1, with
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an end-to-end prediction model P for the agent. In the real
world where agents can take actions and interact with each
other, the state of an agent is influenced not only by its previ-
ous states, but more importantly, by its action and the actions
of other agents. It would require a large number of observed
states that cover the whole state distribution to learn an ac-
curate state transition model. When the agent encounters un-
observed states, the learned model is likely to predict st+1

with a large error. An example is, when a vehicle drives on
the road it has never observed before, these methods would
fail to predict the movements. If we know the vehicle’s driv-
ing policy (e.g., the vehicle follows the shortest path to its
destination), the vehicle’s movement can still be inferred.

Another line of research considers the underlying mecha-
nism behind the state transition of agent movements from a
decision-making perspective (Ziebart, Maas et al. 2018; Zou
et al. 2018; Bhattacharyya et al. 2018; Song et al. 2018). As
shown in Figure 1 (b), they aim to learn a decision policy
π, which can generate the movements by taking a sequence
of actions a from policy model π. For example, imitation
learning (IL) can be used to learn the routing policy of a ve-
hicle, which aims to learn to take actions (e.g., keep moving
on the current road, turn left, turn right, go straight, and take
U-turn) based on the current state of the vehicle (e.g., the
road ID, the number of vehicles and average speed on the
road) (Ziebart, Maas et al. 2018). The learned policy is more
applicable to the unobserved state because the dimension of
action space is usually smaller than state space that increases
exponentially with the number of state features. However, IL
methods assume that the next state is purely decided by the
action of the agent, while in the real world, the state transi-
tion of an agent is a combined effect of both agent decision
and system dynamics. For example, if a driver presses the
brake pedal, system dynamics determine this vehicle’s lo-
cation after this action, which is mostly affected by factors
such as the tires of vehicles, road surface, and weather. As
another example, a person arrives at location A and wants to
check in, butA has a limitation in the population it can serve.
So the person would have to spend time waiting. Therefore,
if we ignore the fact that the policy and final state of an agent
must comply with the constraints from system dynamics, it
will make the learned state transition model less realistic.

With the limitations of traditional prediction methods and
imitation learning methods, in this paper, we formulate the
problem of state transition modeling as modeling a decision-
making process and incorporating system dynamics. Fig-
ure 1 (c) illustrates our formulation of the problem: in a sys-
tem with N agents, we consider the state of an agent as a
joint outcome of its decision and system dynamics. At each
timestep t, the agent observes state st from the system state
St, takes action at following policy π at every time step.
Then the system model G considers current system state St
and the actions {at1, · · · , atN} of all agents and outputs the
next system state St+1, upon which the agents observe their
next states {st+1

1 , · · · , st+1
N }. This formulation looks into

the mechanism behind state transitions and provides possi-
bilities to include system dynamics in the modeling of state
transitions.

In this paper, we propose MoveSD , which utilizes a sim-

ilar framework as Generative Adversarial Imitation Learn-
ing (GAIL ) (Ho and Ermon 2016) to model agents’ deci-
sion process, with a generator learning movement policy π
and a discriminator D learning to differentiate the gener-
ated movements from observed true movements. Moreover,
MoveSD explicitly models system dynamics G and its influ-
ence on the state transition through learning π and D with
the constraints from G and through providing an additional
intrinsic reward to π. Extensive experiments on real-world
data demonstrate that our method can accurately predict the
next state of an agent and accurately generate longer-term
future states. In summary, our main contributions are:
• We present the first attempt to learn to model the state
transition of moving agents with system dynamics. Specifi-
cally, we formulate the state transition of human movements
from the decision-making perspective and learn the move-
ment policy under the framework of GAIL .
• We show the necessity to consider the stochastic dynam-
ics of the system when modeling state transitions and pro-
vide insights on different possible approaches to integrate
the system dynamics.
•We perform extensive experiments on real-world data, and
the experimental results show that our method can gener-
ate similar human movement trajectories to the true trajec-
tories, and has superior performances in applications like lo-
cation prediction and trajectory generation compared with
the state-of-the-art methods.

Preliminaries
In this section, we formulate our problem of modeling the
state transition of human movements and then illustrate our
definition using an example of a traveler moving in the grid
world.

Definition 1 (State and action). A state st of an agent de-
scribes the surrounding environment of the agent at time t,
and the action at is the agent takes at time t using its policy
π, i.e., at ∼ π(a|st).

Definition 2 (State trajectory and movement trajectory). A
state trajectory of an agent is a sequence of states gener-
ated by the agent, usually represented by a series of chrono-
logically ordered pairs, i.e., ξ = (st0 , · · · , stT ). A move-
ment trajectory of an agent is a chronologically ordered se-
quence of state-action pairs, i.e., τ = (τ t0 , · · · , τ tT ) where
τ ti = (sti , ati) .

Problem 1. Given a set of state trajectories S =
{ξ1, ξ2, · · · , ξN} of a real-world system with N agents,
the overall objective is to learn the transition function
f(st+1|st) from st to st+1 so that the error between esti-
mated state ŝt+1 and true state st+1 is minimized.

As in Figure 1 (a), traditional supervised learning so-
lutions to this problem learn a direct mapping function
fϑ from st to st+1 through minimizing some loss func-
tion L over the set of state trajectories as training data:
argminϑ E(st,st+1)∼TE [L(st+1, fϑ(st)].

In this paper, instead of learning a direct mapping from
st to st+1, we tackle the problem from a decision-making
perspective. As shown in Figure 1 (c), in our problem, an
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Figure 2: Illustration of the proposed framework. It has four main components: the system dynamics Gδ , the dynamic judger
J , the agent policy πθ, and the discriminator Dψ . π and G together influences the transition of states. The discriminator learns
to differentiate between demonstrated trajectories and generated trajectories and provide reward rD for learning policy π that
behaves similarly to the true policy. The dynamics judger provides additional intrinsic reward rJ from the system to the policy,
indicating whether the policy behaves compliantly with system constraints g. Better viewed in color.

agent observes state st from the system state St, takes action
a following policy π at every time step. System model G
takes current system states St and the actions {at1, · · · , atN}
as input, and decides the next system state St+1, upon which
the agents observe their states {st+1

1 , · · · , st+1
N }.

To better understand our definition, we use an example of
learning to model traveler movements in a grid world, where
the travelers move between grids, and there are several facil-
ities scattered in the grids that the travelers might be inter-
ested.
• State. In this example, the state s of an agent includes the
traveler’s information, e.g., coordinates of the current grid
the traveler locates. State observations could also include
the environment properties, e.g., the population in the cur-
rent grid as well as events.
•Action. The traveler’s action is its moving direction, which
can mostly be inferred from its two consecutive locations.
For example, if a traveler is at grid A at time t and its next
location is A’s southwest neighboring grid, its action at is
“move southwest”.
• Agent. Each traveler is an agent. A traveler takes action a
based on the current state st according to his policy π, e.g.,
a traveler decides to move to the next location, keep wan-
dering in the current location, or check-in at the facilities in
current location based on his current state. The policy could
vary for different agents, e.g., different travelers have differ-
ent movement policies.
• System dynamics. System dynamics G aggregates the cur-
rent actions of all agents {st1, · · · , stN} in the system, and
influencing their next states {st+1

1 , · · · , st+1
N }. For example,

if a location has an event and has a queue in serving travel-
ers, system dynamics G determine the constraint gi like how
long an upcoming traveler i would wait to get served and in-
fluence the traveler’s next state. Note that G takes the system
state S as input, whereas the state s of an agent is only a part
of the system state S the agent observes. G is different from
agent policy π, where G reflects the physical transitions and

constraints of the real world, while π is the mapping from
the agent’s observation to action.
• Objective. This example’s objective is to minimize the
difference between the observed traveler movement trajec-
tories and the traveler trajectories generated by the learned
transition model fθ,δ = {πθ,Gδ}, where π and G are param-
eterized by θ and δ.

Method
In this section, we first overview the general framework of
MoveSD ; then, we describe each component of the architec-
tures; finally, we introduce the training process and discuss
possible paradigms in learning the models.

Overview
As is shown in Figure 2, MoveSD has four components,
namely the system dynamics Gδ , the dynamic judger J , the
agent policy πθ, and the discriminatorDψ to model the state
transition. We formulate the problem of learning the tran-
sition model fθ,δ = {πθ,Gδ} to perform real-world-like
movements by rewarding it for “deceiving” the discrimina-
torDψ trained to discriminate between policy-generated and
observed true trajectories.

The system dynamics Gδ takes as input the system state
S and generates the physical constraints g for each agent,
which we parameterize as a multilayer perceptron (MLP).
The policy πθ takes as input the observed trajectories and
the physical constraints gt from Gδ and generate an action
distribution πθ(a|s) and sample an action ât from the distri-
bution, which we parameterize as a Recurrent Neural Net-
work (RNN): ât ∼ π(a|st−L, · · · , st; gt), where L is the
observed trajectory length.

The next state st+1 of the agent can be calculated based
on st, ât and with system states St. Then the movement tra-
jectories T G = {τ1, · · · , τN} of N agents in the system can
be generated. The generated trajectories T G, are then fed to
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1) the discriminator Dψ to output a score of the probabil-
ity of the trajectory being true and 2) the dynamics judger
J , a rule-based calculator, to measure the extent of state s
meeting system physical constraints g.

The policy πθ and discriminator Dψ are jointly optimized
through the framework of GAIL (Ho and Ermon 2016) in
the form of an adversarial minimax game as Generative Ad-
versarial Network (GAN) (Goodfellow et al. 2014):

max
ψ

min
θ
L(ψ, θ) = E(s,a;g)∼τ∈TE logDψ(s, a; g)+

E(s,a;g)∼τ∈TG log(1−Dψ(s, a; g))− βH(πθ)
(1)

where TE and TG are the observed true trajectories and the
trajectories generated by πθ and Gδ in the system, H(πθ)
is an entropy regularization term. Different from the vanilla
GAIL whose discriminator is trained with (s, a), in this pa-
per, the discriminator is also conditioned on the system con-
straints as Dψ(s, a; g).

Stochastic System Dynamics

System dynamics G can influence the movements of the
agents in the form of system constraints g, including the tem-
poral and the spatial constraints. The temporal constraint,
i.e., the time for an agent to spend in a location, is particu-
larly crucial in deciding the action of the agent. For exam-
ple, due to the physical distance between two locations and
the agent’s travel speed, it is unlikely for an agent to move
arbitrarily from one location to another instantly. Another
example is that the duration a traveler stays at a demanding
location is influenced by the waiting time to get served. The
spatial constraint, like obstacles that block the agent’s ac-
tions, is usually more stable than temporal constraints and
can be learned with features like location ID. Therefore, in
this work, we consider temporal constraint as the main in-
fluence of system dynamics underlying the agent decision-
making process.

However, the stochasticity of system dynamics poses
challenges to learn the system constraints since some fac-
tors in the system might be intrinsically unobserved and the
system dynamics are naturally stochastic. For example, the
duration of vehicles traveling on a specified road is dynam-
ically changing with weather conditions or traffic signals,
where we do not always observe the weather and traffic sig-
nal situation in the agent’s trajectory data.

To learn the stochastic constraints, instead of directly pre-
dicting a scalar value of the temporal constraint like tradi-
tional supervised learning methods do (Finn, Goodfellow,
and Levine 2016; Oh et al. 2015; Song et al. 2010, 2016;
Feng et al. 2018; Liu et al. 2016), we set out to learn the
latent distribution of the temporal constraint.Since the tem-
poral constraint g, i.e., the duration an agent stays in the lo-
cation, is a real-valued scalar with lower and upper bounds
(correspondingly 0 and maximum simulation steps in our
cases), we can shift and rescale the values to be in the range
[0, 1] and model g as a sample from a Beta distribution
Beta(Ξ), where Ξ = (α, β) is the 2-dimensional shaping
parameter for Beta distribution (α, β > 0). Specifically, G is

parameterized with an MLP:

hg0 =σ(ogW
g
0 + bg0), hg1 = σ(hg0W

g
1 + bg1), · · ·

Ξ =σ(hgG−1W
g
G + bgG), g ∼ Beta(Ξ)

(2)

whereG is the number of layers,W g
i ∈ Rni−1×ni , bgi ∈ Rni

are the learnable weights for the i-th layer. σ is ReLU func-
tion (same denotation for the following part of this paper), as
suggested by (Radford, Metz, and Chintala 2015). For i = 0,
we have W g

0 ∈ Rc×n0 , bg0 ∈ Rn0 , where c is the feature di-
mension for og and n0 is the output dimension for the first
layer; for i = G, we have W g

G ∈ RnG−1×2, bgG ∈ R1×2.

Policy Network

The policy network consists of three major components:
1) observation embedding; 2) recurrent encoding; 3) action
prediction.

Observation Embedding We embed k-dimensional state
features into an m-dimensional latent space via an embed-
ding layer that copes with location ID loct, a layer of MLP
for the rest of the state features ot and a concatenation layer
on the outputs from previous two layers:

xt = Concat(OneHot(loct)We, σ(otWo + bo)) (3)

where We ∈ Rl×m1 , Wo ∈ Rk×m2 , bo ∈ Rm2 are weight
matrixes and bias vectors to learn. Here, there are total l lo-
cation IDs, and m2 = m−m1. The concatenated state rep-
resents the current state of the agent.

Recurrent encoding To reason about the status of the
agent as well as the dynamic interactions between multi-
ple agents, unlike conventional feed-forward neural poli-
cies (Ho and Ermon 2016; Li, Song, and Ermon 2017),
we propose to learn the policy π with an encoder-decoder
model (Cho et al. 2014) to account for the sequential nature.
To capture the individual status from its past observations,
we input the observations of past Lin timesteps to the en-
coder RNN, one observation per step, which progresses as:
hiR = RNNenc(x

i, hi−1), ∀t−Lin ≤ i ≤ t. The last hidden
state, htR is the fixed-length descriptor of past trajectories for
the agent.

Action prediction The action prediction module takes the
output of encoder RNN htR, and the system dynamic con-
straints gt as input. The final action is sampled from the cat-
egorical distribution pA learned by an MLP:

hA0 = Concat(htR, g
t),

hA1 = σ(hA0 W
A
1 + bA1 ), hA2 = σ(hA1 W

A
2 + bA2 ), · · ·

pA = Softmax(hAH−1W
A
H + bAH), at ∼ Cat(pA)

(4)

where WA
i ∈ Rdi−1×di , bAi ∈ Rdi are the learnable weights

for the i-th layer in action prediction module. For i = H , we
have WA

H ∈ RnH−1×|A|, bAH ∈ R|A|, where |A| is the total
number of candidate actions.

4448



Discriminator and Dynamics Judger
The discriminator network takes a similar network structure
as a policy network, with the action prediction module in
π replaced by a binary classifier with an MLP. When train-
ing Dψ , Equation (1) can be set as a sigmoid cross entropy
where positive samples are from observed true trajectories
TE , and negative samples are from generated trajectories
TG. Then optimizing ψ can be easily done with gradient as-
cent on the following loss function:

LD = E(s,a;g)∈TE logDψ(s, a; g)

+ E(s,a;g)∈TG log(1−Dψ(s, a; g))
(5)

The transition between states in a real-world system is an
integration of physical rules, control policies, and random-
ness, which means its true parameterization is assumed to be
unknown. Therefore, given TG generated by πθ in the sys-
tem, Equation (1) is non-differentiable w.r.t θ and the gra-
dient cannot be directly back-propagated from Dψ to πθ.
Therefore, we learn πθ through Trust Region Policy Opti-
mization (TRPO) (Schulman et al. 2015) in reinforcement
learning, with a surrogate reward function formulated from
Equation (1) as:

rD(st, at; gt) = − log(1−Dψ(st, at; gt)) (6)

Here, the surrogate reward rD(st, at, gt) is derived from the
discriminator Dψ and can be perceived to be useful in driv-
ing πθ into regions of the state-action space at time t similar
to those in observations.

Dynamics judger J To avoid generating trajectories that
do not meet the real-world constraints, it is necessary to pro-
vide guidance from system dynamics during the learning of
policy πθ. To explicitly incorporate the system constraints,
we draw inspiration from (Ding et al. 2019) and propose a
novel intrinsic reward term into the learning of our policy as
follows:

rJ(st, at, gt, st+1) =


0, gt > Γ(st+1) or at is not “stay”

|gt − Γ(st+1)|
gt

, otherwise

(7)
where Γ(s) is a pre-defined function that extracts the dura-
tion of the agent spent in the current location from state s,
gt is the temporal constraint from system dynamics at time
t. Intuitively, when Γ(st+1) ≤ gt, rJ should be positive if
the agent takes at of staying in the current location, indicat-
ing the agents should stay in the location to meet the con-
straint gt. With such a design, the agent’s action will be re-
warded when it meets the system constraints, and the gener-
ated movement is more likely to be a real-world movement.

The final surrogate reward for training πθ is defined as
follows:

r = (1− η) · rJ(st, at, gt, st+1) + η · rD(st, at, gt) (8)

where η is a hyper-parameter that balances the objective of
satisfying the physical constraints and mimicking the true
trajectories, both of which are pushing the policy learning
towards modeling real-world transitions.

Training Process
The training procedure of MoveSD is an iterative process of
learning policy πθ, discriminator Dψ and system dynamics
Gδ . We firstly initialize the parameters of Gδ , πθ andDψ and
pre-train Gδ . At each iteration of the algorithm, the policy
parameters are used by every agent to generate trajectories
TG. Rewards are then assigned to each state-action-goal pair
in these generated trajectories. Then the generated trajecto-
ries are used to perform an update on the policy parameters
θi via TRPO (Schulman et al. 2015) in reinforcement learn-
ing. Generated trajectories TG and observed true trajectories
TE are subsequently used as the training data to optimize
parameters ψ. Specifically, in learning Gδ , we use the ob-
served trajectories of all agents and build training data for
system dynamics Gδ by extracting features og for a location
and calculating the duration that each agent spent in the lo-
cation as labels g. In this paper, we use the location ID, time,
the number of agents in the location as features, and predict
constraints g as the duration an agent stays in the location.

Experiment
Experimental Environments and Datasets
We evaluate our method in two real-world travel datasets:
the travel behavior data in a theme park and the travel be-
havior of vehicles in a road network. The state and action
definitions in each environment are shown in Table 1.
• ThemePark . This is an open-accessed dataset1 that con-
tains the tracking information for all visitors to a theme park,
DinoFun World, as is shown in Figure 3 (a). DinoFun World
covers a geographic space of approximately 500x500 m2

with ride attractions, and hosting thousands of visitors each
day. All visitors must use a mobile application which records
the location of visitors by a grid ID, where the whole park is
divided into 5m × 5m grid cells. Each data record contains
a record time, a traveler ID, a grid ID, and an action. The
action is recorded every second when travelers move from
grid square to grid square or check-in at attractions.
• RouteCity . This is a vehicle trajectory dataset captured
from surveillance cameras installed around 25 intersections
in Xixi Sub-district at Hangzhou, China, as is shown in Fig-
ure 3 (b). The trajectory of a recorded vehicle includes the
timestamp, vehicle ID, road segment ID, and the action of
the vehicle. The action can be staying on the current road
segment, and transiting to the next road segment by turning
left/right, taking U-turn, or going straight.

Baselines
We compare with both classical and state-of-the-art meth-
ods in human mobility prediction and imitation learning al-
gorithms. We use the same features in deep learning-based
methods and our proposed method for a fair comparison.
• Random Walk (Brockmann, Hufnagel, and Geisel 2006).
This is a classic method that models the movement of agents
as a stochastic process, where the agent takes action among
all possible actions with equal probability.
• Markov Model (Gambs, Killijian, and del Prado Cortez

1http://vacommunity.org/VAST+Challenge+2015
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Env Type Description
T

he
m

eP
ar

k Time Time spent in current grid, start time

Location Current grid ID, population in current grid,
if current grid checkinable

Action Move to eight adjacent grids,
stay or check-in in current grid

R
ou

te
C

ity

Time Time spent in current road, start time

Location Current road ID, destinated road,
current population in the grid, previous road

Activity Last action

Action Turn left, turn right, take u-turn,
go straight, stay on current road

Table 1: State and action definition for travelers/vehicles in
ThemePark and RouteCity. In ThemePark , travelers move
between grids; the actions indicate which neighboring grid
it travels or stay/check-in in the current grid. In RouteCity,
vehicles move between road segments, and the actions indi-
cate to stay in the current road or to go to different directions
towards its neighboring roads.

Figure 3: Experiment environments in this paper. (a) Map
of Dino Fun World in ThemePark . (b) Xixi Sub-district of
Hangzhou, China in RouteCity.

2012). The Markov-based method regards all the visited lo-
cations as states and builds a transition matrix to capture the
first or higher-order transition probabilities between them.
Following existing methods (Feng et al. 2018; Gao et al.
2019), we use the first-order Markov model.
• RNN Model is widely used to predict the next location by
modeling temporal and spatial history movements (Liu et al.
2016; Gao et al. 2019; Feng et al. 2018). In this paper, we
use LSTM in (Liu et al. 2016) as the base network of our
proposed model and as a baseline.
• GAN Model (Sadeghian, Kosaraju et al. 2019) uses the
framework of generative adversarial networks to generate
the next location based on past states without explicitly
modeling the agent’s actions (Gupta et al. 2018; Sadeghian,
Kosaraju et al. 2019; Ma et al. 2019; Feng et al. 2020).
• GAIL considers the actions of the agents explicitly by
learning the decision policy with generative adversarial net-
works (Ho and Ermon 2016; Song et al. 2018; Zheng, Liu
et al. 2020; Wei et al. 2020). Different from our proposed
model, GAIL uses feed-forward networks without the sys-
tem dynamics.

Tasks and Metrics
To measure the discrepancy between the learned state tran-
sition model and real-world transitions, we evaluate the per-
formance of different methods in the following two tasks:

Next location prediction. Given the same input states
for an agent, a good state transition model should perform
well in predicting the next location. Following existing stud-
ies (Song et al. 2010, 2016; Feng et al. 2018), we use the
standard evaluation performance metrics, Acc@k, which
ranks the candidate next locations by the probabilities gen-
erated from the model, and check whether the ground-truth
location appears in the top k candidate locations.

Trajectory generation. Given the same initial states for
an agent, a good state transition model should not only per-
form well in predicting the next location but also be precise
in generating the future trajectories as observed ones. There-
fore, we also evaluate the performance on generating trajec-
tory to measure the discrepancy between the learned transi-
tion model and real transitions, with the following metrics
widely used in existing literature (Zou et al. 2018; Lisotto,
Coscia, and Ballan 2019; Liang et al. 2019):
• Average Displacement Error (ADE): The average
of the root mean squared error (RMSE) between the
ground truth coordinates Y ti and the predicted coordinates
Ŷ ti over timestamp T for every trajectory i: ADE =

1
N ·T

∑N
i=1

∑T
t=1

√
(Ŷ ti − Y ti )2

• Final Displacement Error (FDE): The average of the
RMSE at the final predicted points Ŷi and the final true

points Yi of all trajectories: FDE = 1
N

∑N
i=1

√
(Ŷi − Yi)2

Experimental Settings
We specify some of the important parameters here and all
the parameter settings can be found in our codes. In all the
following experiments, if not specified, the observed time
length Lin is set to be 10. The output length of Lout is 1
for the next location prediction task, and 1000 for trajectory
generation task. We fix the length Lin and Lout for sim-
plicity, but our methods can be easily extended to different
lengths since the neural networks are recurrent in taking the
trajectories as input and in predicting future trajectories. We
sample the trajectories at every second for ThemePark , and
at every 10 seconds for RouteCity. η is set as 0.8.

Overall Performance
In this section, we investigate the performance of our pro-
posed method MoveSD on learning the travel movements
in two real-world datasets from two perspectives: predict-
ing the next location and generating future trajectories. Fig-
ure 3 shows the performance of the proposed MoveSD , clas-
sic models as well as state-of-the-art learning methods in
the real-world environments. We have the following obser-
vations:
• MoveSD achieves consistent performance improvements
over state-of-the-art prediction and generation methods
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(a) Location prediction in ThemePark and RouteCity (b) Trajectory generation in ThemePark and RouteCity

ThemePark RouteCity ThemePark RouteCity

Figure 4: Performance of different methods, including state-of-the-art baselines and the variants of our proposed model. (a)
The accuracy (Acc@N) of predicting the next location. The higher, the better. (b) The average displacement error (ADE)
and final displacement error (FDE) of generating future trajectories. The lower, the better. MoveSD performs the best against
state-of-the-art baselines and its variants. Best viewed in color.

(RNN Model and GAN Model respectively) across differ-
ent environments. The performance improvements are at-
tributed to the benefits from the modeling of the decision
process with GAIL and the integration with system dynam-
ics. We also noticed that GAIL achieves better performance
than GAN Model in most cases. This is because GAIL ex-
plicitly model the movement policy of agents, which con-
veys the importance of modeling the decision-making pro-
cess in human movement.
• The performance gap between the proposed MoveSD and
baseline methods becomes larger in trajectory generation
than in the next location prediction. This is because the
framework of GAIL , which iteratively updates policy πθ
and discriminator Dψ enables us to model the decision pro-
cess that determines the whole trajectory effectively. The
discriminator in our model can differentiate whether the tra-
jectory is generated or real, which can drive the bad-behaved
actions in one iteration to well-behaved ones during the pol-
icy learning process of the next iteration.

Ablation Study
In this section, we perform an ablation study to measure the
importance of learning the decision-making policy and the
system dynamics.
• MoveSD wo/ GAIL . This model takes both the state and
constraints from system dynamics as its input and output the
next location directly, which does not learn the movement
policy in the decision-making process of the agent. It can
also be seen as RNN Model methods with the information
of system dynamics.
• MoveSD wo/ dynamic . This method uses GAIL but does
not consider the system dynamics. That is, the input of the
policy and discriminator do not contain g from system dy-
namic model G.
• MoveSD . This is our final method, which uses the adver-
sarial learning process as GAIL , and considers the system
dynamic.

Figure 4 shows the performance of variants of our
method.We have the following observations:
• MoveSD outperforms both MoveSD wo/ dynamic and
MoveSD wo/ GAIL , indicating the effectiveness of using
GAIL and the system dynamics. Compared with MoveSD
wo/ GAIL , MoveSD performs better because it learns the

decision-making process as the underlying mechanism be-
hind the movements. Compared with MoveSD wo/ dy-
namic , MoveSD takes the system constraint g into consider-
ation, learning movement policies to avoid those infeasible
actions that do not comply with the system dynamics.
•We also notice that MoveSD wo/ GAIL outperforms pure
RNN Model in most cases. This is because MoveSD wo/
GAIL has extra information on the constraints from system
dynamics within the model, which validates the effective-
ness of considering system dynamics. In the rest of our ex-
periments, we only compare MoveSD with other methods.

Conclusion
In this paper, we present a novel perspective in modeling
the state transition of human movement in space as a de-
cision process and learns the decision making policy with
system dynamics. Specifically, we argue it is important to
integrate the constraints from the system dynamic to help
the learned state transition more realistic. Extensive exper-
iments on real-world data demonstrate that our method can
not only accurately predict the next state of agents, but also
accurately generate longer-term future movements.

While MoveSD substantially provides insights to model
human movements from decision making perspective with
system constraints, we believe that this problem merits fur-
ther study. One limitation of our current method is that, we
model the human movements over discrete action space,
whereas the movement of human over free space is contin-
uous. An exciting direction for future work would be to de-
velop stronger learning models for continuous action space.
Second, the raw data for observation only include the status
of travelers or vehicles and the location information. More
exterior data like weather conditions might help to boost
model performance. Lastly, we can further model different
modalities in policies for different kinds of agents like pri-
vate cars and taxis.
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