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Abstract
Session-based recommendation (SBR) focuses on next-item
prediction at a certain time point. As user profiles are gen-
erally not available in this scenario, capturing the user in-
tent lying in the item transitions plays a pivotal role. Re-
cent graph neural networks (GNNs) based SBR methods re-
gard the item transitions as pairwise relations, which ne-
glect the complex high-order information among items. Hy-
pergraph provides a natural way to capture beyond-pairwise
relations, while its potential for SBR has remained unex-
plored. In this paper, we fill this gap by modeling session-
based data as a hypergraph and then propose a hypergraph
convolutional network to improve SBR. Moreover, to en-
hance hypergraph modeling, we devise another graph convo-
lutional network which is based on the line graph of the hy-
pergraph and then integrate self-supervised learning into the
training of the networks by maximizing mutual information
between the session representations learned via the two net-
works, serving as an auxiliary task to improve the recommen-
dation task. Since the two types of networks both are based
on hypergraph, which can be seen as two channels for hy-
pergraph modeling, we name our model DHCN (Dual Chan-
nel Hypergraph Convolutional Networks). Extensive experi-
ments on three benchmark datasets demonstrate the superi-
ority of our model over the SOTA methods, and the results
validate the effectiveness of hypergraph modeling and self-
supervised task. The implementation of our model is avail-
able via https://github.com/xiaxin1998/DHCN.

Introduction
Session-based recommendation (SBR) is an emerging rec-
ommendation paradigm, where long-term user profiles are
usually not available (Wang, Cao, and Wang 2019; Guo
et al. 2019). Generally, a session is a transaction with mul-
tiple purchased items in one shopping event, and SBR fo-
cuses on next-item prediction by using the real-time user
behaviors. Most of the research efforts in this area regard
the sessions as ordered sequences, among which recurrent
neural networks (RNNs) based (Hidasi et al. 2015; Jannach
and Ludewig 2017; Hidasi and Karatzoglou 2018) and graph
neural networks (GNNs) (Wu et al. 2020) based approaches
have shown great performance.
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In RNNs-based approaches, modeling session-based data
as unidirectional sequences is deemed as the key to success,
since the data is usually generated in a short period of time
and is likely to be temporally dependent. However, this as-
sumption may also trap these RNNs-based models because
it ignores the coherence of items. Actually, unlike linguis-
tic sequences which are generated in a strictly-ordered way,
among user behaviors, there may be no such strict chrono-
logical order. For example, on Spotify1, a user can choose
to shuffle an album or play it in order, which generates two
different listening records. However, both of these two play
modes serialize the same set of songs. In other words, re-
versing the order of two items in this case would not lead
to a distortion of user preference. Instead, strictly and solely
modeling the relative orders of items and ignoring the co-
herence of items would probably make the recommendation
models prone to overfitting.

Recently, the effectiveness of graph neural networks
(GNNs) (Wu et al. 2020; Yu et al. 2020; Yin et al. 2019)
has been reported in many areas including SBR. Unlike the
RNNs-based recommendation method, the GNNs-based ap-
proaches (Wu et al. 2019b; Xu et al. 2019; Qiu et al. 2020b)
model session-based data as directed subgraphs and item
transitions as pairwise relations, which slightly relaxes the
assumption of temporal dependence between consecutive
items. However, existing models only show trivial improve-
ments compared with RNNs-based methods. The potential
reason is that they neglect the complex item correlations in
session-based data. In real scenarios, an item transition is of-
ten triggered by the joint effect of previous item clicks, and
many-to-many and high-order relations exist among items.
Obviously, simple graphs are incapable of depicting such
set-like relations.

To overcome these issues, we propose a novel SBR ap-
proach upon hypergraph to model the high-order relations
among items within sessions. Conceptually, a hypergraph
(Bretto 2013) is composed of a vertex set and a hyperedge
set, where a hyperedge can connect any numbers of vertices,
which can be used to encode high-order data correlations.
We also assume that items in a session are temporally corre-
lated but not strictly sequentially dependent. The character-

1https://www.spotify.com/
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istics of hyperedge perfectly fit our assumption as hyperedge
is set-like, which emphasizes coherence of the involved el-
ements rather than relative orders. Therefore, it provides us
with a flexibility and capability to capture complex interac-
tions in sessions. Technically, we first model each session
as a hyperedge in which all the items are connected with
each other, and different hyperedges, which are connected
via shared items, constitute the hypergraph that contains the
item-level high-order correlations. Figure 1 illustrates the
hypergraph construction and the pipeline of the proposed
method.

By stacking multiple layers in the hypergraph channel, we
can borrow the strengths of hypergraph convolution to gen-
erate high-quality recommendation results. However, since
each hyperedge only contains a limited number of items, the
inherent data sparsity issue might limit the benefits brought
by hypergraph modeling. To address this problem, we in-
troduce line graph channel and innovatively integrate self-
supervised learning (Hjelm et al. 2018) into our model to
enhance hypergraph modeling. A line graph is built based
on the hypergraph by modeling each hyperedge as a node
and focuses on the connectivity of hyperedges, which de-
picts the session-level relations. After that, a Dual channel
Hypergraph Convolutional Network (DHCN) is developed
in this paper with its two channels over the two graphs. Intu-
itively, the two channels in our network can be seen as two
different views that describe the intra- and inter- informa-
tion of sessions, while each of them knows little informa-
tion of the other. By maximizing the mutual information be-
tween the session representations learned via the two chan-
nels through self-supervised learning, the two channels can
acquire new information from each other to improve their
own performance in item/session feature extraction. We then
unify the recommendation task and the self-supervised task
under a primary&auxiliary learning framework. By jointly
optimizing the two tasks, the performance of the recommen-
dation task achieves decent gains.

Overall, the main contributions of this work are summa-
rized as follows:
• We propose a novel dual channel hypergraph convolu-

tional network for SBR, which can capture the beyond-
pairwise relations among items through hypergraph mod-
eling.

• We innovatively integrate a self-supervised task into the
training of our network to enhance hypergraph modeling
and improve the recommendation task.

• Extensive experiments show that our proposed model has
overwhelming superiority over the state-of-the-art base-
lines and achieves statistically significant improvements
on benchmark datasets.

Related Work
Session-based Recommendation
The initial exploration of SBR mainly focuses on sequence
modeling, where Markov decision process is the preferred
technique at this phase. (Shani, Heckerman, and Brafman
2005; Rendle, Freudenthaler, and Schmidt-Thieme 2010;

Zimdars, Chickering, and Meek 2013) are the representative
works of this line of research. The boom of deep learning
provides alternatives to exploit sequential data. Deep learn-
ing models such as recurrent neural networks (Hochreiter
and Schmidhuber 1997; Cho et al. 2014) and convolutional
neural networks (Tuan and Phuong 2017) have subsequently
been applied to SBR and achieved great success. (Hidasi
et al. 2015; Tan, Xu, and Liu 2016; Li et al. 2017; Liu et al.
2018) are the classical RNNs-based models which borrow
the strengths of RNNs to model session-based data.

Graph Neural Networks (GNNs) (Wu et al. 2020; Zhou
et al. 2018) recently have drawn increasing attention and
their applications in SBR also have shown promising re-
sults (Wang et al. 2020b,c; Yuan et al. 2019; Chen and Wong
2020). Unlike RNNs-based approaches working on sequen-
tial data, GNNs-based methods learn item transitions over
session-induced graphs. SR-GNN (Wu et al. 2019b) is the
pioneering work which uses a gated graph neural network to
model sessions as graph-structured data. GC-SAN (Xu et al.
2019) employs self-attention mechanism to capture item de-
pendencies via graph information aggregation. FGNN (Qiu
et al. 2019) constructs a session graph to learn item tran-
sition pattern and rethinks the sequence order of items in
SBR. GCE-GNN (Wang et al. 2020c) conduct graph con-
volution on both the single session graph and the global
session graph to learn session-level and global-level embed-
dings. Although these studies demonstrate that GNN-based
models outperform other approaches including RNNs-based
ones, they all fail to capture the complex and higher-order
item correlations.

Hypergraph Learning
Hypergraph provides a natural way to capture complex high-
order relations. With the boom of deep learning, hypergraph
neural network also have received much attention. HGNN
(Feng et al. 2019) and HyperGCN (Yadati et al. 2019) are
the first to apply graph convolution to hypergraph. (Jiang
et al. 2019) proposed a dynamic hypergraph neural network
and (Bandyopadhyay, Das, and Murty 2020) developed the
line hypergraph convolutional networks.

There are also a few studies combining hypergraph learn-
ing with recommender systems (Bu et al. 2010; Li and Li
2013). The most relevant work to ours is HyperRec (Wang
et al. 2020a), which uses hypergraph to model the short-term
user preference for next-item recommendation. However, it
does not exploit inter-hyperedge information and is not de-
signed for session-based scenarios. Besides, the high com-
plexity of this model makes it impossible to be deployed in
real scenarios. Currently, there is no research bridging hy-
pergraph neural networks and SBR, and we are the first to
fill this gap.

Self-supervised Learning
Self-supervised learning (Hjelm et al. 2018) is an emerg-
ing machine learning paradigm which aims to learn the data
representation from the raw data. It was firstly used in vi-
sual representation learning (Bachman, Hjelm, and Buch-
walter 2019). The latest advances in this area extend self-
supervised learning to graph representation learning (Velick-
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Figure 1: The construction of hypergraph and the pipeline of the proposed DHCN model.

ovic et al. 2019). The dominant paradigm based on con-
trastive learning (Hassani and Khasahmadi 2020; Qiu et al.
2020a) suggests that contrasting congruent and incongruent
views of graphs with mutual information maximization can
help encode rich graph/node representations.

As self-supervised learning is still in its infancy, there are
only several studies combining it with recommender sys-
tems (Zhou et al. 2020; Ma et al. 2020; Xin et al. 2020). The
most relevant work to ours is S3-Rec (Zhou et al. 2020) for
sequential recommendation, which uses feature mask to cre-
ate self-supervision signals. But it is not applicable to SBR
since the session data is very sparse and masking features
cannot generate strong self-supervision signals. Currently,
the potentials of self-supervised learning for hypergraph rep-
resentation learning and SBR have not been investigated. We
are the first to integrate self-supervised learning into the sce-
narios of SBR and hypergraph modeling.

The Proposed Method
In this section, we first introduce the notions and definitions
used throughout this paper, and then we show how session-
based data is modeled as a hypergraph. After that, we present
our hypergraph convolutional network for SBR. Finally, we
devise the line graph channel and integrate self-supervised
learning into the dual channel network to enhance hyper-
graph modeling.

Notations and Definitions

Let I = {i1, i2, i3, ..., iN} denote the set of items, where
N is the number of items. Each session is represented as a
set s = [is,1, is,2, is,3, ..., is,m] and is,k ∈ I(1 ≤ k ≤ m)
represents an interacted item of an anonymous user within
the session s. We embed each item i ∈ I into the same space
and let x

(l)
i ∈ Rd(l) denote the vector representation of item

i of dimension dl in the l-th layer of a deep neural network.
The representation of the whole item set is denoted as X(l) ∈
RN×d(l) . Each session s is represented by a vector s. The
task of SBR is to predict the next item, namely is,m+1, for
any given session s.

Definition 1. Hypergraph. Let G = (V,E) denote a hy-
pergraph, where V is a set containing N unique vertices
and E is a set containing M hyperedges. Each hyperedge
ε ∈ E contains two or more vertices and is assigned a pos-
itive weight Wεε, and all the weights formulate a diagonal
matrix W ∈ RM×M . The hypergraph can be represented by
an incidence matrix H ∈ RN×M whereHiε = 1 if the hyper-
edge ε ∈ E contains a vertex vi ∈ V , otherwise 0. For each
vertex and hyperedge, their degree Dii and Bεε are respec-
tively defined as Dii =

∑M
ε=1WεεHiε;Bεε =

∑N
i=1Hiε. D

and B are diagonal matrices.
Definition 2. Line graph of hypergraph. Given the hy-
pergraph G = (V,E), the line graph of the hypergraph
L(G) is a graph where each node of L(G) is a hyperedge
in G and two nodes of L(G) are connected if their cor-
responding hyperedges in G share at least one common
node (Whitney 1992). Formally, L(G) = (VL, EL) where
VL = {ve : ve ∈ E}, and EL = {(vep , veq ) : ep,
eq ∈ E, |ep ∩ eq| ≥ 1}. We assign each edge (vep , veq )
a weight Wp,q , where Wp,q = |ep ∩ eq|/|ep ∪ eq|.

Hypergraph Construction
To capture the beyond pairwise relations in session-based
recommendation, we adopt a hypergraph G = (V,E) to
represent each session as a hyperedge. Formally, we denote
each hyperedge as [is,1, is,2, is,3, ..., is,m] ∈ E and each
item is,m ∈ V . The changes of data structure before and
after hypergraph construction are shown in the left part of
Figure 1. As illustrated, the original session data is orga-
nized as linear sequences where two items is,m−1, is,m are
connected only if a user interacted with item is,m−1 before
item is,m. After transforming the session data into a hyper-
graph, any two items clicked in a session are connected. It
should be noted that we transform the session sequences into
an undirected graph, which is in line with our intuition that
items in a session are temporally related instead of sequen-
tially dependent. By doing so, we manage to concretize the
many-to-many high-order relations. Besides, we further in-
duce the line graph of the hypergraph according to Defini-
tion 2. Each session is modeled as a node and different ses-
sions are connected via shared items. Compared with the hy-
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pergraph which depicts the item-level high-order relations,
the line graph describes the session-level relations that are
also termed cross-session information.

Hypergraph Convolutional Network
After the hypergraph construction, we develop a hypergraph
convolutional network to capture both the item-level high-
order relations.

Hypergraph Channel and Convolution The primary
challenge of defining a convolution operation over the hy-
pergraph is how the embeddings of items are propagated.
Referring to the spectral hypergraph convolution proposed
in (Feng et al. 2019), we define our hypergraph convolution
as:

x
(l+1)
i =

N∑
j=1

M∑
ε=1

HiεHjεWεεx
(l)
j . (1)

Following the suggestions in (Wu et al. 2019a), we do not
use nonlinear activation function and the convolution filter
parameter matrix. For Wεε, we assign each hyperedge the
same weight 1. The matrix form of Eq. (1) with row normal-
ization is:

X
(l+1)
h = D−1HWB−1HTX

(l)
h . (2)

The hypergraph convolution can be viewed as a two-
stage refinement performing ‘node-hyperedge-node’ feature
transformation upon hypergraph structure. The multiplica-
tion operation H>X

(l)
h defines the information aggregation

from nodes to hyperedges and then premultiplying H is
viewed to aggregate information from hyperedges to nodes.

After passing X(0) through L hypergraph convolu-
tional layer, we average the items embeddings obtained
at each layer to get the final item embeddings Xh =

1
L+1

∑L
l=0 X

(l)
h . Although this work mainly emphasizes the

importance of the coherence of a session, the temporal infor-
mation is also inevitable for better recommendation results.
Position Embeddings is an effective technique which was in-
troduced in Transformer (Vaswani et al. 2017) and has been
applied in many situations for the memory of position infor-
mation of items. In our method, we integrate the reversed
position embeddings with the learned item representations
by a learnable position matrix Pr = [p1,p2,p3, ...,pm],
wherem is the length of the current session. The embedding
of t-th item in session s = [is,1, is,2, is,3, ..., is,m] is:

x∗t = tanh (W1 [xt‖pm−i+1] + b) , (3)

where W1 ∈ Rd×2d, and b ∈ Rd are learnable parameters.
Session embeddings can be represented by aggregating

representation of items in that session. We follow the strat-
egy used in SR-GNN (Wu et al. 2019b) to refine the embed-
ding of session s = [is,1, is,2, is,3, ..., is,m]:

αt = f>σ (W2x
∗
s + W3x

∗
t + c) , θh =

m∑
t=1

αtx
∗
t (4)

where x∗s is the embedding of session s and here it is rep-
resented by averaging the embeddings of items it contains,

which is x∗s = 1
m

∑m
t=1 xm, and x∗t is the embedding of the

t-th item in session s. User’s general interest embedding θh
across this session is represented by aggregating item em-
beddings through a soft-attention mechanism where items
have different levels of priorities. f ∈ Rd, W2 ∈ Rd×d and
W3 ∈ Rd×d are attention parameters used to learn the item
weight αt. Note that, following our motivation in Section
I, we abandon the sequence modeling techniques like GRU
units and self-attention used in other SBR models. The po-
sition embedding is the only temporal factor we use, and
hence our model is very efficient and lightweight.

Model Optimization and Recommendation Generation
Given a session s, we compute scores ẑ for all the candi-
date items i ∈ I by doing inner product between the item
embedding Xh learned from hypergraph channel and sg:

ẑi = θTh xi. (5)

After that, a softmax function is applied to compute the
probabilities of each item being the next one in the session:

ŷ = softmax(ẑ). (6)

We formulate the learning objective as a cross entropy
loss function, which has been extensively used in recom-
mender systems and defined as:

Lr = −
N∑
i=1

yi log (ŷi) + (1− yi) log (1− ŷi) , (7)

where y is the one-hot encoding vector of the ground truth.
For simplicity, we leave out the L2 regularization terms. By
minimizing Lr with Adam, we can get high-quality session-
based recommendations.

Enhancing SBR with Self-Supervised Learning
The hypergraph modeling empowers our model to achieve
significant performance. However, we consider that the
sparsity of session data might impede hypergraph model-
ing, which would result in a suboptimal recommendation
performance. Inspired by the successful practices of self-
supervised learning on simple graphs, we innovatively inte-
grate self-supervised learning into the network to enhance
hypergraph modeling. We first design another graph con-
volutional network based on the line graph of the session-
induced hypergraph to generate self-supervision signals.
Then by maximizing the mutual information between the
session representations learned via the two channels through
contrastive learning, the recommendation model can acquire
more information and the recommendation performance can
be improved. Since the two types of networks both are based
on hypergraph, which can be seen as two channels for hy-
pergraph modeling, we name our model as DHCN (Dual
Channel Hypergraph Convolutional Networks).

Line Graph Channel and Convolution The line graph
channel encodes the line graph of the hypergraph. Fig. 1
shows how we transform the hypergraph into a line graph
of it. The line graph can be seen as a simple graph which
contains the cross-session information and depicts the con-
nectivity of hyperedges. As there are no item involved in
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the line graph channel, we first initialize the channel-specific
session embeddings Θ

(0)
l by looking up the items belonged

to each session and then averaging the corresponding items
embeddings in X(0). An incidence matrix for L(G) is de-
fined as A ∈ RM×M where M is the number of nodes in
the line graph and Ap,q = Wp,q according to Definition 2.
Let Â = A + I where I is an identity matrix. D̂ ∈ RM×M
is a diagonal degree matrix where D̂p,p =

∑m
q=1 Âp,q . The

line graph convolution is then defined as:

Θ
(l+1)
l = D̂−1ÂΘ(l). (8)

In each convolution, the sessions gather information from
their neighbors. By doing so, the learned Θ can capture the
cross-session information. Likewise, we pass Θ

(0)
l through

L graph convolutional layer, and then average the session
embeddings obtained at each layer to get the final session
embeddings Θl = 1

L+1

∑L
l=0 Θ

(l)
l .

Creating self-supervision signals. So far, we learn two
groups of channel-specific session embeddings via the two
channels. Since each channel encodes a (hyper)graph that
only depicts either of the item-level (intra-session) or the
session-level (inter-session) structural information of the
session-induced hypergraph, the two groups of embeddings
know little about each other but can mutually complement.
For each mini-batch including n sessions in the training,
there is a bijective mapping between the two groups of
session embeddings. Straightforwardly, the two groups
can be the ground-truth of each other for self-supervised
learning, and this one-to-one mapping is seen as the label
augmentation. If two session embeddings both denote
the same session in two views, we label this pair as the
ground-truth, otherwise we label it as the negative.

Contrastive learning. Following (Velickovic et al. 2019;
Bachman, Hjelm, and Buchwalter 2019), we regard the two
channels in DHCN as two views characterizing different as-
pects of sessions. We then contrast the two groups of ses-
sion embeddings learned via the two views. We adopt In-
foNCE (Oord, Li, and Vinyals 2018) with a standard binary
cross-entropy loss between the samples from the ground-
truth (positive) and the corrupted samples (negative) as our
learning objective and defined it as:

Ls = − log σ(fD(θhi , θ
l
i))− log σ(1− fD(θ̃hi , θ

l
i)), (9)

where θ̃hi (or θ̃li) is the negative sample obtained by corrupt-
ing Θh (Θl) with row-wise and column-wise shuffling, and
fD(·) : Rd × Rd 7−→ R is the discriminator function that
takes two vectors as the input and then scores the agreement
between them. We simply implement the discriminator as
the dot product between two vectors. This learning objective
is explained as maximizing the mutual information between
the session embeddings learned in different views (Velick-
ovic et al. 2019). By doing so, they can acquire informa-
tion from each other to improve their own performance in
item/session feature extraction through the convolution op-
erations. Particularly, those sessions that only include a few

items can leverage the cross-session information to refine
their embeddings.

Finally, we unify the recommendation task and this self-
supervised task into a primary&auxiliary learning frame-
work, where the former is the primary task and the latter
is the auxiliary task. Formally, the joint learning objective is
defined as:

L = Lr + βLs, (10)
where β controls the magnitude of the self-supervised task.

Experiments
Experimental Settings
Datasets. We evaluate our model on two real-world
benchmark datasets: Tmall2, Nowplaying3 and Diginetica4.
Tmall dataset comes from IJCAI-15 competition, which
contains anonymized user’s shopping logs on Tmall online
shopping platform. Nowplaying dataset describes the
music listening behavior of users. For both datasets, we
follow (Wu et al. 2019b; Li et al. 2017) to remove all
sessions containing only one item and also remove items
appearing less than five times. To evaluate our model,
we split both datasets into training/test sets, following
the settings in (Wu et al. 2019b; Li et al. 2017; Wang
et al. 2020c). Then, we augment and label the dataset
by using a sequence splitting method, which generates
multiple labeled sequences with the corresponding labels
([is,1], is,2), ([is,1, is,2], is,3), ..., ([is,1, is,2, ..., is,m−1], is,m)
for every session s = [is,1, is,2, is,3, ..., is,m]. Note that
the label of each sequence is the last click item in it. The
statistics of the datasets are presented in Table 1.

Dataset Tmall Nowplaying Diginetica
training sessions 351,268 825,304 719,470

test sessions 25,898 89,824 60,858
# of items 40,728 60,417 43,097

average lengths 6.69 7.42 5.12

Table 1: Dataset Statistics

Baseline Methods. We compare DHCN with the follow-
ing representative methods:
• Item-KNN(Sarwar et al. 2001) recommends items similar

to the previously clicked item in the session, where the
cosine similarity between the vector of sessions is used.

• FPMC (Rendle, Freudenthaler, and Schmidt-Thieme
2010) is a sequential method based on Markov Chain.

• GRU4REC (Hidasi et al. 2015) utilizes a session-parallel
mini-batch training process and adopts ranking-based loss
functions to model user sequences.

• NARM (Li et al. 2017): is a RNN-based model that mod-
els the sequential behavior to generate the recommenda-
tions.
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
3http://dbis-nowplaying.uibk.ac.at/#nowplaying
4http://cikm2016.cs.iupui.edu/cikm-cup/
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Method Tmall Nowplaying Diginetica

P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20 P@10 M@10 P@20 M@20
Item-KNN 6.65 3.11 9.15 3.31 10.96 4.55 15.94 4.91 25.07 10.77 35.75 11.57

FPMC 13.10 7.12 16.06 7.32 5.28 2.68 7.36 2.82 15.43 6.20 26.53 6.95
GRU4REC 9.47 5.78 10.93 5.89 6.74 4.40 7.92 4.48 17.93 7.33 29.45 8.33

NARM 19.17 10.42 23.30 10.70 13.6 6.62 18.59 6.93 35.44 15.13 49.70 16.17
STAMP 22.63 13.12 26.47 13.36 13.22 6.57 17.66 6.88 33.98 14.26 45.64 14.32
SR-GNN 23.41 13.45 27.57 13.72 14.17 7.15 18.87 7.47 36.86 15.52 50.73 17.59

FGNN 20.67 10.07 25.24 10.39 13.89 6.8 18.78 7.15 37.72 15.95 50.58 16.84
DHCN 25.14* 13.91* 30.43* 14.26* 17.22 7.78 23.03 8.18 39.87 17.53 53.18 18.44

S2-DHCN 26.22 14.60 31.42 15.05 17.35 7.87 23.50 8.18 40.21 17.59 53.66 18.51
Improv. (%) 10.71 7.87 12.25 8.84 18.32 9.15 19.70 8.68 6.19 9.32 5.46 4.97
* The reported results on Tmall are not the best here. Refer to the ablation study in Section 5 for the best results.

Table 2: Performances of all comparison methods on three datasets.

• STAMP (Liu et al. 2018): employs the self-attention
mechanism to enhance session-based recommendation.

• SR-GNN (Wu et al. 2019b): applies a gated graph convo-
lutional layer to learn item transitions.

• FGNN (Qiu et al. 2019): formulates the next item rec-
ommendation within the session as a graph classification
problem.

Evaluation Metrics. Following (Wu et al. 2019b; Liu
et al. 2018), we use P@K (Precision) and MRR@K (Mean
Reciprocal Rank) to evaluate the recommendation results.

Hyper-parameters Settings. For the general setting, the
embedding size is 100, the batch size for mini-batch is 100,
and the L2 regularization is 10−5. For DHCN, an initial
learning rate 0.001 is used. The number of layers is differ-
ent in different datasets. For Nowplaying and Diginetica, a
three-layer setting is the best, while for Tmall, one-layer set-
ting achieves the best performance. For the baseline models,
we refer to their best parameter setups reported in the origi-
nal papers and directly report their results if available, since
we use the same datasets and evaluation settings.

Experimental Results
Overall Performance. The experimental results of over-
all performance are reported in Table 2, and we highlight
the best results of each column in boldface. Two variants
of DHCN are evaluated, and S2-DHCN denotes the self-
supervised version. The improvements are calculated by us-
ing the difference between the performance of S2-DHCN
and the best baseline to divide the performance of the latter.
Analyzing the results in Table 2, we can draw the following
conclusions.
• The recently proposed models that consider the sequen-

tial dependency in the sessions (i.e., GRU4REC, NARM,
STAMP, SR-GNN and DHCN) significantly outperform
the traditional models that do not (i.e., FPMC). This
demonstrates the importance of sequential effects for
session-based recommendation. Furthermore, the fact that
GRU4REC, NARM, STAMP, SR-GNN and DHCN all
employ the deep learning technique confirms its key role
in session-based recommendation models.

• For the baseline models based on deep recurrent neu-
ral structure (e.g., RNN, LSTM and GRU), NARM ob-
tains higher accuracy in all settings. This is because that
GRU4REC only takes the sequential behavior into ac-
count and may have difficulty in dealing with the shift of
user preference. By contrast, NARM and STAMP uses re-
current units to encode user behaviors and exerts an atten-
tion mechanism over the items in a session, improving the
recommendation results by a large margin. The superior
performance of NARM and STAMP proves that assign-
ing various importance value on different items within the
session help formulate user intent more accurately. Be-
sides, STAMP outperforms NARM by incorporating the
short-term priority over the last item in a session, further
demonstrating that directly using RNN to learn user rep-
resentations may lead to recommendation bias but this can
be avoided by replacing it with the attention mechanism.

• The GNNs-based models: SR-GNN and FGNN outper-
form RNNs-based models. The improvements can be
owed to the great capacity of graph neural networks.
However, the improvements are also trivial compared
with the improvements brought by DHCN.

• Our proposed DHCN shows overwhelming superiority
over all the baselines on all datasets. Compared with SR-
GNN and FGNN, our model has two advantages: (1) It
uses hypergraph to capture the beyond pairwise relations.
By modeling each hyperedge as a clique whose items are
fully connected, the connections between distant items
can be exploited. (2) Also, our DHCN is lightweight than
the SR-GNN and FGNN because we use very limited pa-
rameters in hypergraph convolution of the two channels,
showing the efficicency of DHCN.

• Although not as considerable as those brought by hy-
pergraph modeling, the improvements brought by self-
supervised learning are still decent. In particular, on the
two datasets which have shorter average length of ses-
sions, self-supervised learning plays a more important
role, which is line with our assumption that the sparsity
of session data might hinder the benefits of hypergraph
modeling, and maximizing mutual information between
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Figure 2: Contribution of each component.

the two views in DHCN could address it.

Ablation Study. The overwhelming superiority of DHCN
shown in the last section can be seen as the result of the
joint effect of hypergraph modeling, and temporal factor ex-
ploitation. To investigate the contributions of each module
in DHCN, we develop two variants of DHCN: DHCN-P and
DHCN-NA. DHCN-P represents the version without the re-
versed position embeddings, and DHCN-NA represents the
version without the soft attention mechanism. We compare
them with the full DHCN on Tmall and Diginetica.

As can be observed in Figure 2, the contributions of each
component are different on the two datasets. For Tmall, to
our surprise, when removing the reversed position embed-
dings or soft attention, the simplified version achieves a per-
formance increase on both metrics and the performance is
even better than that of the the full version. Considering that
the Tmall dataset is collected in a real e-commerce situa-
tion, this finding, to some degree, validates our assumption
that coherence may be more important than strict order mod-
eling. By contrast, in Diginetica, the reversed position em-
beddings and soft attention are beneficial. When removing
reversed position embedding or soft attention, there is a per-
formance drop on both metrics. Soft attention contributes
more on Diginetica, demonstraing the importance of differ-
ent priorities of items when generating recommendation.

Impact of Model Depth. To study the impacts of hyper-
graph convolutional network’s depth in session-based rec-
ommendation, we range the numbers of layers of the net-
work within {1, 2, 3, 4, 5}. According to the results pre-
sented in Figure 3, DHCN is not very sensitive to the number
of layers on Diginetica and a three-layer setting is the best.
However, on Tmall, a one-layer network achieves the best
performance. Besides, with the number of layer increases,
the performance on MRR@20 drops. The possible cause
could be the increasingly over-smoothed representations of
items.

Impact of Self-Supervised Learning. We introduce a
hyper-parameter β to S2-DHCN to control the magnitude
of self-supervised learning. To investigate the influence of
the self-supervised task based on two-view contrastive learn-
ing, we report the performance of S2-DHCN with a set of
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Figure 4: The impact of the magnitude of self-supervised
learning.

representative β values {0.001, 0.01, 0.02, 0.03, 0.05}. Ac-
cording to the results presented in Figure 4, recommendation
task achieves decent gains when jointly optimized with the
self-supervised task. For both datasets, learning with smaller
β values can boost both Prec@20 and MRR@20, and with
the increase of β, the performance declines. We think it is
led due to the gradient conflicts between the two tasks. Be-
sides, with lager beta, performance declines obviously on
MRR@20, which means that in some cases, it is important
to make a trade-off between the hit ratio and item ranks when
choosing the value of β.

Conclusion
Existing GNNs-based SBR models regard the item transi-
tions as pairwise relations, which cannot capture the ubiqui-
tous high-order correlations among items. In this paper, we
propose a dual channel hypergraph convolutional network
for SBR to address this problem, Moreover, to further en-
hance the network, we innovatively integrate self-supervised
into the training of the network. Extensive empirical studies
demonstrate the overwhelming superiority of our model, and
the ablation study validates the effectiveness and rationale of
the hypergraph convolution and self-supervised learning.
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