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Abstract

This paper studies the problem of learning interactive rec-
ommender systems from logged feedbacks without any ex-
ploration in online environments. We address the problem
by proposing a general offline reinforcement learning frame-
work for recommendation, which enables maximizing cumu-
lative user rewards without online exploration. Specifically,
we first introduce a probabilistic generative model for interac-
tive recommendation, and then propose an effective inference
algorithm for discrete and stochastic policy learning based on
logged feedbacks. In order to perform offline learning more
effectively, we propose five approaches to minimize the dis-
tribution mismatch between the logging policy and recom-
mendation policy: support constraints, supervised regulariza-
tion, policy constraints, dual constraints and reward extrapo-
lation. We conduct extensive experiments on two public real-
world datasets, demonstrating that the proposed methods can
achieve superior performance over existing supervised learn-
ing and reinforcement learning methods for recommendation.

1 Introduction
Reinforcement learning (RL) is a powerful paradigm for in-
teractive or sequential recommender systems (RS), since it
can maximize users’ long-term satisfaction with the system
and constantly adapt to users’ shifting interest (state). How-
ever, training optimal RL algorithms requires large amounts
of interactions with environments (Kakade 2003), which is
impractical in the recommendation context. Performing on-
line interaction (on-policy) learning would hurt users’ expe-
riences and the revenue of the platform. Since logged feed-
backs of users are often abundant and cheap, an alternative
is to make use of them and to learn a near-optimal recom-
mendation policy offline before we deploy it online.

Although there are some offline (off-policy) RL algo-
rithms have been proposed in the continuous robot control
domain (Fujimoto, Meger, and Precup 2019; Kumar et al.
2019), the problem that how to build an effective offline RL
framework for recommendation involving large numbers of
discrete actions and logged feedbacks remains an open one.
Learning an effective recommendation policy from logged
feedbacks faces the following challenges simultaneously:
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(a) Discrete stochastic policy. In the testing, instead of rec-
ommending only one item, the RS requires generating a top-
k item list according a discrete policy. Training a determin-
istic policy violates the simple machine learning principle:
test and train conditions must match (see §4 for details). (b)
Extrapolation error. Extrapolation error is an error in off-
policy value learning which is introduced by the mismatch
between the dataset and true state-action visitation of the
current policy (Fujimoto, Meger, and Precup 2019; Siegel
et al. 2019). This problem is even more serious for the rec-
ommendation involving large numbers of discrete actions.
(c) Unknown logging policy. The feedbacks typically come
from a unknown mixture of previous policies. The method
that requires estimating logging policy are limited by their
ability to accurately estimate the unknown logging policy.

Recent effort (Chen et al. 2019a) for off-policy recom-
mendation tries to alleviate the problem (a) by utilizing the
inverse propensity score (IPS) with model-free policy gra-
dient algorithm. However the IPS suffers from high vari-
ance (Swaminathan and Joachims 2015a) and will still be
biased if the logging policy does not span the support of the
optimal policy (Sachdeva, Su, and Joachims 2020; Liu et al.
2019). Moreover, it cannot address other problems men-
tioned above, i.e., (b) and (c). Prior works (Zheng et al. 2018;
Zhao et al. 2018b) try to build RL-based recommendation al-
gorithms by directly utilizing the vanilla Q-learning (Sutton
and Barto 2018), an off-policy RL algorithm. However the
Q-learning is a deterministic policy method and also suffers
from the extrapolation error due to no interaction with online
environments (Fujimoto, Meger, and Precup 2019).

To address the aforementioned defects, in this paper, we
propose a general and effective offline learning framework
for interactive RS. We first formalize the interactive recom-
mendation as a probabilisitic inference problem, and then
propose a discrete stochastic actor-critic algorithm to maxi-
mize cumulative rewards based on the probabilistic formu-
lation. In order to reduce the extrapolation error, we pro-
pose five regularization techniques: support constraints, su-
pervised regularization, policy constraints, dual constraints
and reward extrapolation for offline learning, which can con-
strain the mismatch between the recommendation policy and
the unknown logging policy. Our approaches can be viewed
as a combination of supervised learning and off-policy re-
inforcement learning for recommendation with discrete ac-
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tions. We show that such combination is critical for im-
proving the performance of recommendation in the offline
setting. We highlight that we are the first to systemically
study the offline learning problem in the interactive recom-
mendation context. Our contributions can be summarized
as: (1) We propose a discrete stochastic RL algorithm to
maximize cumulative rewards for interactive recommenda-
tion. (2) We propose a general offline learning framework
for interactive recommendation with logged feedbacks, in-
cluding support constraints, supervised regularization, pol-
icy constraints, dual constraints and reward extrapolation.
(3) We conduct extensive offline experiments on two real-
world public datasets, empirically demonstrating the pro-
posed methods can achieve superior performance over ex-
isting learning methods for recommendation.

2 Related Work
2.1 Offline Learning for Recommendation
A line of work closely related to ours is batch bandit learn-
ing (Swaminathan and Joachims 2015b,a; Joachims, Swami-
nathan, and de Rijke 2018; Sachdeva, Su, and Joachims
2020; Saito et al. 2020), which mainly utilizes IPS to cor-
rect the selection bias from the logging policy and can be
viewed as a special case of RL with one-step decision mak-
ing. However, interactive recommendations typically have
an effect on user behavior. Thus, we focus on the full RL
setting in this paper, where the user state depends on past ac-
tions. Recently, Chen et al. (2019a) apply off-policy correc-
tion to address selection biases in logged feedbacks. The key
problem of this method is that the IPS suffers huge variance
which grows exponentially with the horizon (Chen et al.
2019a). An alternative to offline learning in RS is the use
of model-based RL algorithms. Model-based methods (Zou
et al. 2019, 2020; Chen et al. 2019b; Bai, Guan, and Wang
2019) require training a model using the log data to simulate
the user environment and assist the policy learning. How-
ever, these methods heavily depend on the accuracy of the
trained model and are computationally more complex than
model-free methods. More recently, several methods (Wang
et al. 2018; Xin et al. 2020; Gong et al. 2019) combine re-
inforcement learning and/or auxiliary task learning to im-
prove recommendation performance. A simple combination
of several distinct losses helps learning from logged feed-
backs; however, it is more appealing to have a single prin-
cipled loss and a general framework that is applicable to of-
fline learning from logged feedbacks. In this work, we focus
on providing a general offline learning framework to maxi-
mize cumulative rewards for interactive recommendation.

2.2 Interactive Recommendation
To address interactive or sequential recommendation prob-
lem, early methods (Rendle, Freudenthaler, and Schmidt-
Thieme 2010; Xiao et al. 2019b) utilize Markov Chain to
model sequential patterns of users. Since these methods
fail to model complicated relations between interactions, a
number of Recurrent Neural Network (RNN)-based meth-
ods (Hidasi et al. 2016; Xiao, Liang, and Meng 2019a) have
been proposed. Apart from RNN, there are also studies that

leverage other neural architectures such as convolutional
neural networks (CNN) (Tang and Wang 2018; Yuan et al.
2019) and Transformer (Kang and McAuley 2018) to cap-
ture sequential patterns. Some attempts formulate the inter-
active recommendation as Markov Decision Process (MDP)
and solve it via deep Q-learning (Zhao et al. 2018b; Zheng
et al. 2018; Zhao et al. 2020; Zhou et al. 2020) and deep
deterministic policy gradient (DDPG) (Zhao et al. 2018a).
These methods typically focus on designing novel neural
architectures to capture a particular temporal dynamic of
user preferences or extract interactive information from user
state. As neural architecture design is not the main focus of
our work, please refer to these prior works for more details.

3 Preliminaries
Interactive Recommendation Problem. We study the in-
teractive (sequential) recommendation problem defined as
follows: assume we have a set of users u ∈ U , a set of items
i ∈ I and for each user we have access to a sequence of user
historical events E = (i1, i2, · · · ) ordered by time. Each ik
records the item interacted at time k. Given the historical
interactions, our goal is to recommend to each user a sub-
set of items in order to maximize users’ long-term satisfac-
tion. Markov Decision Process. We translate this sequen-
tial recommendation into a MDP (S,A,P, R, ρ0, γ) where
S: a continuous state space describing the user states, i.e.,
st = (i1, i2, · · · , it); A : a discrete action space, containing
items available for recommendation; P : S ×A×S → R is
the state transition probability;R : S×A → R is the reward
function, where r(st, at) is the immediate reward obtained
by performing action at (the item index) at user state st. ρ
is the initial state distribution; γ is the discount factor for fu-
ture rewards. RL-based RS learns a target policy πθ(· | st)
which translates the user state s ∈ S into a distribution over
all actions a ∈ A to maximize expected cumulative rewards:

max
θ

Eτ∼πθ
[R(τ)], where R(τ) =

T∑
t=1

γtr (st, at) . (1)

Here the expectation is taken over the trajectories τ =
(s1, aa, · · · sT ) obtained by acting according to the policy:
s0 ∼ ρ0(s0), at ∼ πθ (at | st) and st+1 ∼ p (st+1 | st, at).
Offline Learning in Recommendation. The goal is still to
optimize the objective in Eq. 1. However, the recommen-
dation policy no longer has the ability to interact with the
user in online environments. Instead, the learning algorithm
is provided with a logged dataset of trajectories, and each
trajectory τ = {s1, a1, · · · , sT } is drawn from a unknown
logging (behavior) policy πb(at|st). The dataset can also be
represented as the buffer style D =

{(
sit, a

i
t, s

i
t+1

)}N
i=1

. For
brevity, we omit superscript i in what follows.

4 Analysis on Existing Baselines
Supervised Learning. The arguably most direct way to
learn interactive RS from logged feedbacks is to directly ap-
ply sequential supervised learning, which typically relies on
the following supervised next-item prediction loss:

LS(θ) = −E(st,at,st+1)∼D[log πθ (at | st)], (2)
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where πθ (at | st) = exp(fθ(st)[at])∑
a′ exp(fθ(st)[a′])

and fθ(·) ∈ R|A|

denotes a neural network such as RNN (Song et al. 2019;
Xiao, Liang, and Meng 2019b), CNN (Yuan et al. 2019) or
Transformer (Kang and McAuley 2018), which is param-
eterized by θ and has an output dimension of the action
space |A|. fθ(st)[at] indicates the ath

t index of fθ(st), i.e.,
the logit corresponding the ath

t item. The supervised learning
methods are training stable and easy to implement. However,
they can not maximize cumulative user rewards.

Q-learning. In order to maximize cumulative user re-
wards, prior works (Zheng et al. 2018; Zhao et al. 2018b)
try to build RL-based recommendation algorithms by utiliz-
ing the deep Q-learning and minimizing the following loss:

LQ(θ) = E(st,at,st+1)∼D (Qθ (st, at)− y)
2
, (3)

where the target value y = r(st, at) + γQθ̄ (st+1, π (st+1))
and π (st+1) = arg maxaQθ̄ (st+1, a). The θ̄ indicates pa-
rameters of the target network (Sutton and Barto 2018).
While the Q-learning have been widely used in the robot
learning literature as an off-policy algorithm (Kumar et al.
2019), it is not suitable for offline learning in recommen-
dation task. First, the Q-learning algorithm is affected by
extrapolation error (Fujimoto, Meger, and Precup 2019) due
to no interaction with environment. Second, in the testing,
the robot learning typically chooses one action according the
optimal policy: arg maxaQ (s, a). Instead, in recommenda-
tion, we generate top-k item lists by sampling from the soft-
max function Q(s,a)∑

a′ Q(s,a′) . This violates the simple machine
learning principle: testing and training must match (Vinyals
et al. 2016). We also find Q-learning generally does not per-
form well on logged feedbacks for RS in our experiments.

5 Proposed Offline Learning Framework
5.1 Probabilistic Formulation
We start by formally defining the problem of learning in-
teractive RS in the language of probability. The sequential
supervised learning can be expressed as a learning problem
of the probabilistic generative model over observed τ :

p(τ) = ρ(s1)
T∏
t=1

πθ(at|st)p(st+1|st, at), (4)

where ρ(s1) and p(st+1 | st,at) are the true initial state dis-
tribution and dynamics. The supervised learning discussed
in §4 can be seen as maximizing the log-likelihood of this
generative model respect to θ. However, like discussed be-
fore, this method can not maximize cumulative rewards.
Thus, following previous work (Haarnoja et al. 2018a;
Levine 2018), we introduce a binary variable O which are
related to rewards by p(Ot = 1|st, at) = exp( r(st,at)α ),
where α is a temperature parameter, to denote whether the
action taken at state st is optimal. Note that we assume re-
wards are nonpositive without loss of generality. Positive re-
wards can be scaled to be no greater than 0. In the rest of this
paper, we use Ot to represent Ot = 1 for brevity. With this
definition, we consider the following generative model with

the trajectory τ = {s1, a1, · · · , sT } and variables O1:T :

p(τ,O1:T ) ∝ ρ(s1)
T∏
t=1

p(st+1 | st, at)p(Ot | st, at). (5)

Note that the action prior is assumed as uniform:
p(at) = 1

|A| and is omitted. The main difference be-
tween this formulation and supervised learning (Eq.(4))
is that this formulation considers the optimal trajec-
tory τ as latent variable and we focus on the infer-
ence problem: inferring the posterior distribution P (τ |
O1:T ) given optimality of the start until end of the
episode. Based on variational inference (Wainwright and
Jordan 2008), we can derive the negative Evidence Lower
BOund (ELBO) (Blei, Kucukelbir, and McAuliffe 2017;
Xiao et al. 2019a) by introducing variational distribution
qθ(τ) = ρ (s1)

∏T
t=1 p (st+1 | st, at)πθ (at | st) (deriva-

tions are omitted due to space limitation):

L(θ) = Eτ∼qθ(τ)

[
T∑
t=1

log qθ(at | st)−
r (st, at)

α

]
. (6)

Minimizing the negative ELBO respect to the πθ (at | st)
is equal to minimize the Kullback-Leibler (KL) divergence:
KL(q(τ)||p(τ |O1:T )). This objective function can be solved
by soft Q-learning (Haarnoja et al. 2017) or soft actor-critic
algorithms (Haarnoja et al. 2018b). Although the soft actor-
critic is the state-of-the-art off-policy algorithm, it can not be
directly applied to RS with discrete actions and it still suf-
fers from extrapolation error as discussed in the followings.
This probabilistic formulation provides a convenient starting
point for our offline learning methods for recommendation.

5.2 Inference via Messages Passing
Recall that our goal is to infer the posterior p(τ | O1:T ).
Instead of directly minimizing Eq. (6), we consider inferring
the posterior through the message passing algorithm (Heskes
and Zoeter 2002). We define the backward messages as:

βt (st, at) := p (Ot:T | st, at) (7)
βt (st) := p (Ot:T | st) . (8)

The recursion for backward messages and optimal policy
πθ(at | st) can be obtained by minimizing Eq. (6) and using
the Markov property of MDP (derivations are omitted due to
space limitation):

βt (st, at) = p (Ot | st, at) Ep(st+1|·) [βt+1 (st+1)] (9)

βt (st) = Eat∼p(at) [βt (st, at)] (10)

πθ(at | st) = p(at | st,Ot:T ) =
βt (st, at)

βt (st)
· 1

|A|
, (11)

where p (st+1 | ·) = p(st+1 | st, at) and p (s1 | ·) = ρ(s1).
We further use the log form of the backward messages to
define the Q value function: Q (st, at) = α log βt (st, at).
In order to conduct inference process, we need to approxi-
mate the backward message Q (st, at). A direct method is
to represent it with parameterized function Qφ (st, at) with
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parameter φ and optimize the parameter by minimizing the
squared error (derivation is omitted due to space limitation):

LQ(φ) = E(st,at,st+1)∼q
[1
2

(
Qφ

(
st, at

)
− r (st, at) (12)

−
(
Qφ̄ (st+1, at+1)− α log (πθ (at+1 | st+1))

) )2]
.

The φ̄ denotes the parameters of target networks as same
as vanilla Q-learning (Hasselt, Guez, and Silver 2016).
q = π(st)πθ(at | st)p(st+1 | st, at) denotes the varia-
tional state-action-state marginal distribution encountered
when executing a policy πθ(at | st). Given the estimated
value functions, we can estimate optimal policy according
to Eq. (11). Since our policy is discrete, one can directly uti-
lizes the value functions to obtain the non-parametric policy
without optimizing θ: let π(at | st) =

exp(Qφ(st,at))∑
a′ exp(Qφ(st,a′)

1
α )

.

However, Qφ (st, at) is typically a very large network
in recommendation, e.g. deep ranking model (Covington,
Adams, and Sargin 2016), for alleviating model misspec-
ification, thus it is not computationally efficient if we use
this non-parametric policy. Instead, we consider optimiz-
ing a small parametric policy πθ(at | st) by minimizing
the KL divergence KL

(
πθ (at | st) || exp(Qφ(st,at))∑

a′ exp(Qφ(st,a′)
1
α )

,

which can be rewritten as the following loss:

Lπ(θ) = Eat∼πθ

[
log πθ (at | st)−

Qφ (st, at)

α

]
, (13)

where πθ is the short for πθ(at | st). This idea is also sim-
ilar to knowledge distillation (Hinton, Vinyals, and Dean
2015): we have a large critic (value) network being some-
what ”distilled” into a smaller actor (policy) network. Since
πθ (at | st) = exp(fθ(st)[at])∑

a′ exp(fθ(st)[a′])
is the categorical distribu-

tion in our case, a typical solution for this loss is marginal-
izing out policy over all actions (Christodoulou 2019), how-
ever, this simple solution is expensive for a large numbers of
items in recommendation. Thus, we address this by utilizing
the Gumbel-Softmax (Jang, Gu, and Poole 2016; Meng et al.
2019), which provides a continuous differentiable approxi-
mation by drawing samples y from a categorical distribution
with class probabilities fθ(st):

yi =
exp ((log (fθ(st)[ai]) + gi) /γg)∑|A|
i=1 exp ((log (fθ(st)[ai]) + gi) /γg)

, (14)

where {gi}|A|i=1 are i.i.d. samples drawn from the Gumbel (0,
1) distribution, γg is the softmax temperature and yi is the i-
th value of sample y. Compared to the Q-learning, our opti-
mal policy πθ(at | st) has the discrete softmax form not the
argmax, which can avoid the mismatch between training and
testing. We can iteratively train value function (policy eval-
uation) Eq. (12) and estimate discrete optimal policy (policy
improvement) Eq. (13) via stochastic gradient descent.

5.3 Stochastic Discrete Actor Critic
So far, we have proposed a discrete RL algorithm for in-
teractive recommendation. However, we notice that we can
not directly apply this algorithm to our offline learning case,

since the policy evaluation loss (Eq. (12)) can be diffi-
cult to optimize due to the dependency between π(st) and
πθ(at | st) , as well as the need to collect samples from
πθ(at | st) (on-policy learning). Thus we consider optimiz-
ing an surrogate approximation L̂Q(φ) of LQ(φ) using the
state and action distributions of the unknown logging policy,
i.e., πb(st) and πb(at | st). In other words, we can use the
logged feedbacks to conduct the policy evaluation step:

L̂Q(φ) = E(st,at,st+1)∼D
[1
2

(
Qφ

(
st, at

)
− r(st, at) (15)

−
(
Qφ̄ (st+1, at+1)− α log (πθ (at+1 | st+1))

) )2]
.

L̂Q(φ) matches LQ(φ) to first order approxima-
tion (Kakade and Langford 2002), and provides a reasonable
estimate of LQ(φ) if πb(at | st) and πθ(at | st) are similar.
However, we find it performs dramatically worse than
supervised learning methods on logged implicit feedbacks
in our recommendation task due to the extrapolation
error (Fujimoto, Meger, and Precup 2019). As discussed
in the prior work (Fujimoto, Meger, and Precup 2019),
extrapolation error can be attributed to a mismatch in the
distribution of logged feedbacks induced by the policy
πθ(at | st) and the distribution πb(at | st) of data contained
in the batch in the policy iteration process. It is therefore
crucial to control divergence of the optimizing policy
πθ(at | st) and the unknown logging policy πb(at | st).
To this effect, we explore five approaches for our discrete
stochastic actor-critic algorithm in the followings.

5.4 Support Constraints
Previous work (Fujimoto, Meger, and Precup 2019) extends
Q-learning and tries to disallow any action that has zero sup-
port under the logging policy, which can be formally defined
as the δ-behavior constrained policy:

1
[
at = arg max

a

{
Q̂ (st, a) : πb (a | st) ≥ δ

}]
, (16)

where 0 ≤ δ ≤ 1. This constrains the deterministic argmax
greedy policy in vanilla Q-learning to actions that the log-
ging policy chooses with probability at least δ. However, this
constraint is not suitable for our proposed stochastic soft-
max policy. Thus, we combine the policy improvement loss
Lπ(θ) (Eq. (13)) and the support constraint as a joint loss:
Lsc
π (θ) = Lπ(θ) + βRsc(θ), where β is the coefficient and

the proposed support constraint termRsc(θ) is:

Rsc(θ) = −
∑

a∈A,πb(a|st)≤δ

πθ(a | st). (17)

This method is very simple and conceptually straightforward
but requires estimating the unknown logging policy when
δ > 0. In addition, it is just one-step constraint of policy at
time step t, meaning that it can not avoid actions that may
lead to higher deviation at future time steps.

5.5 Supervised Regularization
In order to avoid estimating the logging policy, we propose
a auxiliary supervised regularization to reduce the extrapo-
lation error by minimizing the forward KL divergence, i.e.,
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KL
(
πb(at | st)||πθ(at | st)

)
between the unknown logging

policy πb(at | st) and recommendation policy πθ(at | st):

Rsr(θ) = −E(at,st)∼πb(at,st) [log πθ (at | st)] . (18)

This method does no require a pre-estimated logging pol-
icy since we can directly use the logged data drawn from
πb(at | st). Similar to support constraints, we need com-
bine the policy improvement loss and the supervised loss:
Lsr
π(θ) = Lπ(θ) + βRsr(θ). However, the two terms are

on an arbitrary relative scale, which can make it difficult to
choose β. To adaptively update β, we replace the soft super-
vised regularization with a hard constraint with parameter ε.
The optimization loss for the policy improvement becomes:

Lsr
π(θ) = min

θ
Eat∼πθ

[
log πθ (at | st)−

Qφ (st, at)

α

]
,

s. t. Est∼πb(st) [KL [πb(at | st)‖πθ(at | st)]] ≤ ε. (19)

To optimize this, we introduce a Lagrange multiplier β via
dual gradient descent and Gumbel-Softmax (derivations are
omitted due to space limitation):

Lsr
π(θ, β) = min

θ
max
β≥0

Eat∼πθ

[
α log πθ

(
at | st

)
− (20)

Qφ

(
st, at

)]
− β (Est∼πb [KL[πb(at | st)‖πθ(at | st)]]− ε) .

As discussed in §5.3 and demonstrated in our experiments,
enforcing a specific constraint between learning policy and
logging policy is critical for good performance.

5.6 Policy Constraints
Since the KL divergence is asymmetric, we can also con-
sider constraining the policy via the reverse KL divergence
KL
(
πθ(at | st)‖πb(at | st)

)
during our policy improve-

ment process. To see this, we add the reverse KL con-
straint to Eq. (13) and remove the negative entropy term
πθ(at | st) log πθ(at | st) in Eq. (13) since there is already
a entropy term in the reverse KL divergence. Then, the ob-
jective for the policy improvement with policy constraint is:

Lpc
π (θ) = min

θ
Eat∼πθ

[−Qφ (st, at)] , (21)

s. t. Est∼πb(st) [KL [πθ(at | st)‖πb(at | st)]] ≤ ε.

Similar to Supervised Regularization, optimizing this con-
strained problem via introducing Lagrange multiplier β re-
sults the final policy improvement objective:

Lpc
π (θ) = min

θ
E(at,st)∼πb(at,st) [wt log πθ(at | st)] , (22)

where wt = − exp
(
Qφ(st,at)

β

)
. This objective simplifies

the policy improvement problem to a weighted maximum
likelihood problem, and does not require an estimated log-
ging policy and Gumbel-Softmax approximation.

5.7 Dual Constraints
Although the methods proposed in previous subsections can
effectively control the divergence of optimizing policy and
data logging policy, both of them only consider one-step reg-
ularization, and thus can not avoid actions that may lead to

higher deviation at future time steps. To address this prob-
lem, instead of explicitly adding constraint for policy im-
provement at time t, we consider the logging policy as a
prior and incorporating it directly into our original proba-
bilistic model (Eq. 5). Specifically, we first estimate the log-
ging policy π̂b(at | st) via supervised learning using the
logged feedbacks as the proxy of unknown logging πb(at |
st), and then incorporate it as the action prior into Eq. (5),
which yields the following joint distribution:

p = ρ(s1)
T∏
t=1

p(st+1 | st,at)p(Ot | st,at)π̂b(at|st), (23)

where p denotes the joint distribution p(τ,O1:T ). Given
this joint distribution, similar to §5.2, we can infer the
posterior p(τ | O1:T ) by introducing the variational dis-
tribution qθ(τ) = ρ (s1)

∏T
t=1 p (st+1 | st, at)πθ (at | st).

We also consider inferring the posterior through the mes-
sage passing algorithm as same as we do in §5.2. How-
ever, since the action prior is no longer uniform, we
have two choices of definitions of the backward mes-
sages. The first is defined as same as Eq. (7) and Eq.
(8), i.e, βt (st, at) := p (Ot:T | st, at) and βt (st) :=
p (Ot:T | st) . Based on this definition and through minimiz-
ing KL (qθ (τ) ‖p (τ | O1:T )), we can obtain following ob-
jectives for policy evaluation and policy improvement:

Ldc
Q(φ) = E(st,at,st+1)∼D

[1
2

(
Qφ

(
st, at

)
− r(st, at) (24)

−
(
Qφ̄ (st+1, at+1) + α log π̂b(at+1 | st+1) (25)

− α log (πθ (at+1 | st+1))
))2]

, (26)

Ldc
π (θ) = Eat∼πθ

[
log

πθ (at | st)
π̂b(at | st)

− Qφ (st, at)

α

]
. (27)

Compared to the supervised regularization in §5.5 and
policy constraint in §5.6, this method not only adds prior
constraint on the policy improvement step, but also adds it
to the target Q value, which can avoid actions that are far
from logging policy at future time steps.

5.8 Reward Extrapolation
Following the dual constraints in §5.7, if we consider the
second definition of the backward messages: βt (st, at) :=
p (Ot:T | st, at) π̂b(at | st) and βt (st) := p (Ot:T | st), we
can obtain following objectives for policy iteration:

Lre
Q(φ) = E(st,at,st+1)∼D

[1
2

(
Qφ

(
st, at

)
− r̂(st, at) (28)

−
(
Qφ̄ (st+1, at+1)− α log (πθ (at+1 | st+1))

))2]
, (29)

Lre
π (θ) = Eat∼πθ

[
log πθ (at | st)−

Qφ (st, at)

α

]
, (30)

where r̂(st, at) = r(st, at) + α log π̂b(at | st). We can ob-
serve that this method extrapolates the task specific rewards
with the output of the estimated logging policy π̂b(at | st).
This modified objective forces the model to learn that the
most valuable actions, but still have high probability in the
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RecSys Kaggle
H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10

SL .2876 .1982 .3793 .2279 .2233 .1735 .2673 .1878
DQN .2134 .1215 .3125 .1673 .1471 .0953 .1965 .1176
PG .2151 .1279 .3218 .1792 .1585 .1041 .2083 .1212

SL+DQN .2991 .2012 .3951 .2348 .2487 .1939 .2967 .2094
SL+PG .3012 .2106 .4013 .2382 .2504 .1972 .3036 .2118
SDAC .2341 .1332 .3316 .1872 .1669 .1162 .2173 .1358

SC .2987 .1991 .3905 .2356 .2352 .1885 .2854 .1962
SR .3197 .2234 .4184 .2515 .2586 .2087 .3153 .2259
PC .3081 .1986 .3903 .2319 .2354 .1913 .2941 .1958
DC .3272∗ .2306∗ .4217∗ .2593∗ .2659∗ .2181∗ .3204∗ .2351∗
RE .3128 .2195 .4071 .2416 .2528 .2043 .3085 .2192

Table 1: Performance comparison of difference learning al-
gorithms utilizing RNN as the backbone. The best and the
second best performance are marked with boldfaces and un-
derlined, respectively. ∗ indicates the method outperforms
others at a significance level of p ≤ 0.01 by paired t-tests.

original logged feedbacks. Note that while inference objec-
tives for dual constraints and reward extrapolation are same,
the particular choice of how the backward messages are de-
fined can make a significant difference in practice due to the
difference between actor and critic in network architectures.

6 Experiments
In this section, we empirically analyze and compare the ef-
fectiveness of the proposed approaches. We conduct experi-
ments on two public real-world datasets and investigate the
following research questions: (RQ1) How do the proposed
methods perform compared with existing methods for inter-
active recommendation? (RQ2) Are the proposed learning
methods robust to different types of neural architectures and
sparse logged feedbacks? (RQ3) Can the adaptive update
step improve performance of the supervised regularization?
(RQ4) How sensitive is the performance of the proposed
learning methods with respect to the trade-off parameters?

6.1 Experimental Setup
We use following two public real-world datasets:
RecSys 1: This dataset is a public dataset released by RecSys
Challenge 2015 and contains sequences of user purchases
and clicks. After preprocessing, it contains 200,000 session
sequence and 1,110,965 interactions over 26,702 items.
Kaggle 2: This dataset comes from a real-world e-commerce
website. After preprocessing, it contains 195,523 sequence
and 1,176,680 interactions over 70,852 items. Evaluation
Metrics. For offline evaluation, we employ top-k Hit Ra-
tio (HR@k) and Normalized Discounted Cumulative Gain
(NDCG@k) to evaluate the performance, which are widely
used in related works (Chen, Wang, and Yin 2021; Chen,
Xu, and Wang 2021; Chen, Gai, and Wang 2019; Xiao and
Shen 2019). We report results on HR (H)@{5, 10} and
NDCG (N)@{5, 10}. We adopt cross-validation to evalu-
ate the performance of the proposed methods. we randomly

1https://recsys.acm.org/recsys15/challenge/
2https://www.kaggle.com/retailrocket/ecommerce-dataset

RecSys Kaggle
H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10

SL .2728 .1896 .3593 .2177 .1966 .1566 .2302 .1675
DQN .1946 .1075 .3004 .1562 .1132 .0621 .1323 .0958
PG .2031 .1191 .3079 .1616 .1212 .0696 .1428 .1024

SL+DQN .2742 .1909 .3613 .2192 .2089 .1611 .2454 .1778
SL+PG .2776 .1977 .3678 .2215 .2107 .1747 .2504 .1804
SDAC .2138 .1207 .3109 .1643 .1342 .0927 .1566 .1212

SC .2665 .1913 .3702 .2202 .2007 .1576 .2369 .1772
SR .2841 .2076 .3741 .2311 .2241 .1798 .2538 .1895
PC .2782 .1918 .3692 .2214 .2132 .1752 .2498 .1831
DC .2951∗ .2136∗ .3853∗ .2413∗ .2341∗ .1853∗ .2745∗ .1920∗
RE .2866 .2101 .3847 .2371 .2289 .1801 .2673 .1866

Table 2: Performance comparison of difference learning al-
gorithms utilizing CNN as the backbone. The best and the
second best performance are marked with boldfaces and un-
derlined, respectively.

sample 80% sequences as the training set, 10% as valida-
tion and the rest as test set. We use all items as candidates
and rank them for evaluation. Each experiment is repeated 5
times, and the average performance is reported. Baselines.
Since this paper focuses on proposing learning algorithms.
We consider following learning algorithms as our baselines:
Supervised Learning (SL), Deep Q-Learning (DQN), Off-
Policy Gradient (PG) (Chen et al. 2019a), (SL+DQN) (Xin
et al. 2020), (SL+PG) (Gong et al. 2019). We compare these
baselines with our proposed stochastic discrete actor critic
(SDAC), support constraints (SC), supervised regularization
(SR), policy constraints (PC), dual constraints (DC) and re-
ward extrapolation (RE). All learning methods are based on
the same backbone i.e., recurrent neural networks (RNN) in-
troduced by work (Chen et al. 2019a), in order to avoid the
choice of backbone to be a confounding factor. Hyperparam-
eters are tuned on validation set.

6.2 Experimental Results
Overall Performance (RQ1). Table 1 shows the perfor-
mance of our proposed methods and the baselines. From this
table, we have the following observations: (a) The off-policy
RL algorithms (DQN and PG) perform dramatically worse
than SL, demonstrating that off-policy RL algorithms can
not effectively learn a optimal policy without online inter-
actions due to the extrapolation error. (b) Our SDAC out-
perform DQN, though both of them are off-policy RL al-
gorithms. One possible reason is that our SDAC learns a
stochastic discrete policy, which make it more suitable for
recommendation task with discrete items compared to DQN.
(c) The proposed methods with policy constraints or regu-
larization, e.g., SR, RE and DC significantly outperform the
proposed SDAC, which demonstrates that minimizing the
mismatch between recommendation policy and logging pol-
icy is important when training an off-policy RL algorithm
in the offline setting. (d) Our offline learning methods RE
and DC outperform the SL, indicting that exploiting both
supervision and task reward, and maximizing cumulative re-
wards does help improve the performance of recommenda-
tion. Different backbones and sparse feedbacks (RQ2).
In the RQ1, we implement all methods based on the RNN
backbone. To further evaluate the effectiveness of the pro-
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posed offline learning methods, we consider the case where
the learning methods is implemented using other neural net-
work architectures. We consider other two state-of-the-art
neural architectures in recommendation as backbones, i.e.,
temporal CNN (Caser) (Tang and Wang 2018) and Trans-
former (SASRec) (Kang and McAuley 2018). We only show
the results on CNN due to space limitations, and the results
of Transformer are similar to CNN and are thus omitted.
As shown in Table 2, our offline learning methods perform
better than all the compared methods in most cases, which
once again proves the effectiveness of our methods and also
shows that our offline learning methods is robust to differ-
ent backbones. To evaluate the effectiveness of proposed of-
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Figure 1: Comparison of supervised regularization on two
datasets with different β utilizing RNN as backbone.

fline learning methods on more sparse logged feedbacks, we
consider the purchase, a more sparse feedback compared to
click. RecSys dataset contains 43,946 purchases of users.
For Kaggle dataset, we consider the behavior of adding to
cart as the purchase feedback, resulting 57,269 purchase
feedbacks. Table 3 shows the purchase performance com-
parison of different learning algorithms. According to the
table: (1) Our offline learning methods such as DC, SR and
RE still dominate other baselines, which confirms that our
methods can also perform well on sparse logged feedbacks.
(2) Different from the Table 1, RE becomes a competitive
method and outperforms SR, which demonstrates that con-
trol the divergence of recommendation policy and logging
policy at future time steps is helpful on sparse feedbacks.
Adaptive Regularization (RQ3) To evaluate the effects of
the adaptive β updates in the SR method (see §5.5), we com-
pare policies trained with different fixed values of β and
policies where β is updated adaptively to enforce a desired
distribution constraint ε = 1. Figure 1 shows the perfor-
mance comparison with different β. We can find that poli-
cies trained using dual gradient descent to adaptively up-
date β consistently achieves the best performance overall.
Sensitivity Analysis (RQ4). We study how trade-off hyper-
parameters in proposed offline learning methods affect the
performance. For SC, we have trade-off hyper-parameter δ,
as shown in Eq. 17, SC becomes SDAC when δ = 0 or
δ = 1 . For PC, if the parameter β → ∞, then PC resem-
bles the supervised learning. For DC and RA, the choice of
α also creates a trade-off between supervised learning and
our reinforcement learning algorithm. Figure 2 illustrates the
NDCG@10 of SC, PC, DC and RE with different hyper-
parameters. The effect of β in SR has been studied in RQ3,

RecSys Kaggle
H@5 N@5 H@10 N@10 H@5 N@5 H@10 N@10

SL .3994 .2824 .5183 .3204 .4608 .3834 .5107 .3995
DQN .3478 .2417 .4820 .2843 .4087 .3218 .4524 .3401
PG .3514 .2576 .4883 .2941 .4172 .3324 .4612 .3517

SL+DQN .4228 .3016 .5333 .3376 .5069 .4130 .5589 .4289
SL+PG .4325 .3071 .5412 .3414 .5087 .4172 .5602 .4340
SDAC .3671 .2624 .4917 .3012 .4236 .3476 .4721 .3632

SC .4216 .2978 .5279 .3351 .4982 .4052 .5517 .4149
SR .4341 .3086 .5458 .3516 .5111 .4239 .5641 .4418
PC .4356 .3074 .5401 .3396 .5105 .4155 .5627 .4340
DC .4427∗ .3219∗ .5571∗ .3587∗ .5341∗ .4339∗ .5868∗ .4687∗
RE .4372 .3102 .5487 .3527 .5201 .4278 .5743 .4547

Table 3: Purchase performance comparison utilizing RNN
as the backbone. The best and the second best performance
are marked with boldfaces and underlined, respectively.
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Figure 2: Performance comparison of NDCG when varying
the trade-off parameters in four methods on two datasets.

and is omitted here. Figure 2 shows that we can balance the
supervised signal and task reward by varying these parame-
ters, leading to better performance under the offline setting.

7 Conclusions

In this paper, we presented the first comprehensive analy-
sis of learning interactive recommendation offline. We first
formalized the interactive recommendation as a probabilistic
inference problem, and then proposed a stochastic and dis-
crete RL algorithm to maximize user cumulative rewards.
To perform offline learning effectively, we proposed a gen-
eral offline learning framework to minimize the distribu-
tion mismatch between the logging policy and learning pol-
icy, including support constraints, supervised regulariza-
tion, policy constraints, dual constraints and reward extrap-
olation. We conducted extensive experiments on two real-
world datasets, demonstrating that the proposed methods
can achieve better performance over existing methods.
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