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Abstract
Knowledge graph (KG for short) alignment aims at building
a complete KG by linking the shared entities across comple-
mentary KGs. Existing approaches assume that KGs are static,
despite the fact that almost every KG evolves over time. In
this paper, we introduce the task of dynamic knowledge graph
alignment, the main challenge of which is how to efficiently
update entity embeddings for the evolving graph topology.
Our key insight is to view the parameter matrix of GCN as
a feature transformation operator and decouple the transfor-
mation process from the aggregation process. Based on that,
we first propose a novel base algorithm (DINGAL-B) with
topology-invariant mask gate and highway gate, which con-
sistently outperforms 14 existing knowledge graph alignment
methods in the static setting. More importantly, it naturally
leads to two effective and efficient algorithms to align dynamic
knowledge graph, including (1) DINGAL-O which leverages
previous parameter matrices to update the embeddings of af-
fected entities; and (2) DINGAL-U which resorts to newly
obtained anchor links to fine-tune parameter matrices. Com-
pared with their static counterpart (DINGAL-B), DINGAL-U
and DINGAL-O are 10× and 100× faster respectively, with
little alignment accuracy loss.

Introduction
Knowledge graph (KG) is an integral component in a mul-
titude of applications, ranging from dialogue systems (Xu,
Bao, and Zhang 2020), question-answering (Yu et al. 2017) to
search engine optimization (Xiong, Power, and Callan 2017).
A variety of KGs have been constructed in recent years, such
as YAGO (Rebele et al. 2016) and DBpedia (Lehmann et al.
2015).

Data in KGs is organized in the standard (head,
relation, tail) triplet form. Different KGs usually
collect different aspects of the knowledge, and they are com-
plementary to each other (Wang et al. 2018). As illustrated in
Figure 1, one KG (green) records the information of Barack
Obama from the political aspect, whereas the other (blue) is
mainly about his personal relations. However, the two KGs
cannot be easily merged together due to the discrepancy of
entity mentions, e.g., Obama v.s. Barack Obama. The task of
linking the entities sharing the same identity across KGs is
referred to as the knowledge graph alignment.
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Figure 1: Knowledge graph alignment.

Earlier approaches for knowledge graph alignment date
back to symbolic based methods (Suchanek, Abiteboul, and
Senellart 2011), where manually built features or rules are
the keys to align entities (Mahdisoltani, Biega, and Suchanek
2014). As knowledge graph embedding becomes popular
(Bordes et al. 2013), many embedding based knowledge
graph alignment methods are proposed (Sun, Hu, and Li
2017; Chen et al. 2016, 2018). With the advent of Graph
Convolutional Network (GCN) (Kipf and Welling 2016)
and Graph Neural Network (GNN) (Hamilton, Ying, and
Leskovec 2017), more recent works (Wang et al. 2018; Cao
et al. 2019a; Wu et al. 2019a; Sun et al. 2019) often rely
on GCN or GNN to capture the heterogeneity of KGs. The
state-of-the-art performance of embedding based knowledge
graph alignment methods can be credited to their ability to
take advantage of various features in the KGs, such as node
attribute (Sun, Hu, and Li 2017), relation information (Wu
et al. 2019a) and rule inference (Cao et al. 2019a).

Most, if not all, existing knowledge graph alignment
approaches assume that the input knowledge graphs are
static, despite the fact that almost every knowledge
graph evolves over time. For example, (Donald Trump,
homeLocated, White House) along with many other
relevant triples were added into YAGO in 2017.

Simply retraining the alignment model from scratch is com-
putationally costly, and might even be infeasible for real-time
applications such as knowledge based question-answering
system (Savenkov and Agichtein 2016).

In this paper, we first formally introduce the problem of
dynamic knowledge graph alignment, and then we tackle this
problem based on GCN. In the dynamic setting, a major hur-
dle lies in the difficulty of updating the embeddings, which
is in turn rooted in the coupling between the graph topology,
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the embeddings (or the features) 1 and the parameter matrix.
To address this issue, the key insight is to view the parameter
matrix of GCN as a feature transformation operator, and thus
distance or weaken the coupling between the transforma-
tion process and the aggregation process. Armed with this
idea, we propose a novel algorithm (DINGAL-B) based on
gated GCN, including a mask gate and a highway gate. The
empirical evaluations demonstrate that DINGAL-B consis-
tently outperforms 14 existing knowledge graph alignment
methods in the static setting. More importantly, both mask
gate and highway gate in DINGAL-B are intentionally de-
signed to be decoupled from the underlying graph topology.
This brings a crucial benefit in the dynamic setting, and it
naturally leads to two effective and efficient algorithms to
align dynamic knowledge graph, including (1) DINGAL-O
(Old-parameter) which leverages previous parameter matri-
ces to update the embeddings of affected entities; and (2)
DINGAL-U (Updated-parameter) which resorts to newly
obtained anchor links to fine-tune parameter matrices.

The main contributions of the paper are summarized as
follows.
• Problem Definition. To the best of our knowledge, we are

the first to study the dynamic knowledge graph alignment
problem.

• New Algorithms. We propose a family of knowledge
graph alignment algorithms (DINGAL), including DIN-
GAL-B for static alignment, and DINGAL-O and DIN-
GAL-U for dynamic alignment.

• Empirical Evaluations. Extensive evaluations are con-
ducted on the benchmark DBP15K (Sun, Hu, and Li
2017) datasets. In the static setting, the proposed DIN-
GAL-B model consistently outperforms 14 state-of-the-art
methods. In the dynamic setting, the proposed DINGAL-
O and DINGAL-U are (1) 10× faster and better than the
existing static alignment methods; and (2) 10× to 100×
faster than their static counterpart (DINGAL-B) with little
alignment accuracy loss.

Preliminary
Knowledge Graph Alignment. A knowledge graph is
represented as G = (E,R, T ), where E, R, and T are
the sets of entities, relations and triples respectively. Let
G1 = (E1, R1, T1) and G2 = (E2, R2, T2) be two KGs
to be aligned. If an entity e1 in G1 corresponds to another
entity e2 in G2 (e.g., entities linked by the red dashed ar-
rows in Figure 1), we call (e1, e2) as an alignment pair. If
an alignment pair (e1, e2) is a known prior, we refer to it
as an anchor link. Given a limited number of anchor links
L = {(ei1 , ei2)|ei1 ∈ E1, ei2 ∈ E2}, the task of knowledge
graph alignment is to find all alignment pairs across two KGs.

Dynamic Knowledge Graph Alignment. Real-world
KGs are evolving over time, e.g., the arrival of the new enti-
ties and the vanishing of the out-dated relations. It is desirable
to not only find the alignment for the newly arrived entities,

1We use the term embedding and feature interchangeably in this
paper.

but also leverage the new information to refine the alignment
for the existing entities. For dynamic knowledge graph align-
ment task, there might exist some anchor links among two
newly arrived node sets Ẽ1 and Ẽ2 in two knowledge graphs.
The task of dynamic knowledge graph alignment is to find
all alignment pairs for newly arrived node sets and update
the alignment for the existing entities, without rerunning or
retraining the static knowledge graph alignment algorithm.

Graph Convolutional Network. The proposed family of
algorithms (DINGAL) is built upon GCN (Kipf and Welling
2016). Given an adjacency matrix A ∈ Rn×n, where n is the
number of nodes, the l-th layer of GCN is defined as:

X l+1 = σ(LX lW l) (1)

where L = D̃−
1
2 ÃD̃−

1
2 , Ã = A + I , and D̃ is the degree

matrix of Ã, X l and X l+1 denote the node embeddings after
the (l − 1)-th and l-th layer respectively, and σ denotes the
activation function.

Method
Overview
As shown in Figure 2, the proposed DINGAL family has
three models, including DINGAL-B which is a base model
for static knowledge graph alignment, DINGAL-O and DIN-
GAL-U for dynamic knowledge graph alignment. The key
difference between DINGAL-O and DINGAL-U is that DIN-
GAL-O extracts the embeddings of the affected nodes by
leveraging the pretrained parameters of DINGAL-B, while
DINGAL-U leverages the new anchor links to update the
parameters, which are in turn used to update the embed-
dings of all the entities. DINGAL is built upon the GCN
in Equation (1). As illustrated in Figure 3, the classic view-
point of GCN is an aggregation-then-transformation function.
Specifically, the nodes first aggregate the features of their
neighbors via the normalized Laplacian L, and then the ag-
gregated features are projected into a hidden space by a linear
transformation W l (W l

g in Figure 3).
With this viewpoint, it is very challenging to update the

embeddings in the dynamic setting, since any change in the
graph (reflected in the Laplacian L) will impact both aggrega-
tion and transformation operations in GCN. Model effective
and efficient for dynamic alignment task should meet the
requirement that the model’s parameters are robust to graph
topology’s change. In a better case, the dynamic process will
just affect a small part of node embeddings.

To address this challenge, the key idea is to disentangle the
graph topology from the parameter matrix of GCN, and de-
sign a topology-invariant model to extract node embeddings.
We first view GCN as a transformation-before-aggregation
function by changing the orders of matrix multiplications.
We first project the node embeddings matrix X l to a hidden
space via the linear transformation W l, and then aggregate
the projected features of the neighboring nodes based on
L. In this way, we weaken the coupling between the graph
topology L and the parameter matrixW l. Based on this view-
point, we introduce topology-invariant functions, including
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Figure 2: Overview of DINGAL algorithm family.

Figure 3: The structures of GCN layer for retraining DIN-
GAL-B(transparent part) and adopting DINGAL-O(shaded
part).

a mask gate and a highway gate (Wu et al. 2019a; Srivas-
tava, Greff, and Schmidhuber 2015), which are intentionally
decoupled with the graph topology by bypassing graph lapla-
cian. The target to meet dynamic task requirement determines
the design strategy of DINGAL-B and DINGAL-B will lead
to two effective and efficient algorithms (DINGAL-O and
DINGAL-U) in the dynamic setting.

DINGAL-B
We first present a base version DINGAL-B of the DINGAL
family on the static knowledge graphs. Given the aforemen-
tioned intuition, we seek to build topology-invariant functions
based upon the transformation process of the GCN and avoid
involving the aggregation process. In this way, the evolution
of graph topology will only incur limited influence on such
functions.

We view the two KGs as one combined graph with ad-
jacency matrix A and feature matrix X0, where A is the
adjacency matrices of the two KGs: A1 and A2. Then, we
propose two topology-invariant functions, i.e., a mask gate
and a highway gate, as shown in Figure 4. In the l-th layer of
DINGAL-B, for any entity ei with input feature X l

i , it will

Figure 4: The structure of DINGAL-B.

first enter a topology-invariant mask gate M l:

M l(X l
i) = X l

i � σ(W l
m) (2)

� denotes Hadamard product and it determines relative im-
portance of different dimensions of the features, which is
similar to the attention mechanism.

Then, M l(X l) will be fed into a GCN layer as follows:

X l+1 = σ(LM l(X l)W l
g) (3)

We use L = D̃−1Ã rather than L = D̃−
1
2 ÃD̃−

1
2 in the orig-

inal GCN for computational efficiency. Detailed explanations
are presented in the Appendix.

Since the GCN layer has a feature transformation operation
on the original distribution of feature, we propose to use a
highway gate similar to (Wu et al. 2019a; Sun et al. 2019), an
interpolation between the original feature distribution and the
transformed feature distribution, which is disentangled with
the topology. Given the masked input M l(X l), the proposed
highway gate is:

T l(X l) = σ(M l(X l)W l
h) (4)

The final output of one DINGAL-B layer is:

X l+1=T l(X l)�X l+1+(1− T l(X l))�X l (5)

With the final embeddings matrix X of two KGs, we use
Manhattan distance to measure the distance between two
nodes:

d(ei1 , ei2) = |Xei1
−Xei2

| (6)
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Figure 5: The affected entities in this dynamic process.

We use the same margin ranking loss function as previous
works:

J=
∑

(ei1 ,ei2 )

∑
(e′i1

,e′i2
)

max{0, d(ei1,ei2)−d(e′i1, e
′
i2)+γ} (7)

where γ > 0 is a margin hyper-parameter, the anchor link
(ei1 , ei2) ∈ L is the training set and (e′i1 , e

′
i2
) ∈ L′ is the

negative sampling set. For a given (ei1 , ei2), we construct the
negative samples by replacing ei1 with e′i1 or replacing ei2
with e′i2 such that e′i1 and e′i2 , respectively, have the smallest
distances d to ei2 and ei1 in the embedding space.

DINGAL-O
For DINGAL-O, we keep all the parameters of DINGAL-
B and update the embeddings of those affected entities in
the dynamic process. We define one-hop affected entities as
the new entities and the old entities having changed (delet-
ed/added) edges. Note that the deleted entities are not taken
into consideration because they are not involved in the dy-
namic alignment task. The definition of the affected entity
can be extended to multi-hop. Figure 5 presents an example
of an affected local part of the KG, where the number of the
affected entities n1 is 5 and the size of one-hop neighbor-
hood of these affected entities n2 is 6. Instead of updating
the global graph topology and rerunning the entire model for
the KG, we focus on the affected local regions and propose a
novel local updating strategy on DINGAL-B and we refer to
the new model as DINGAL-O.Since all the components of
DINGAL-B are specially designed to be decoupled with the
graph topology, DINGAL-O can utilize DINGAL-B’s pa-
rameters and update a small part affected nodes’ embeddings
with a little accuracy loss efficiently. As shown in Figure 3,
for the GCN layer within the l-th layer of DINGAL-O, we
construct the affected local Laplacian matrix Ll

a ∈ Rn1×n2

upon the global Laplacian matrix L ∈ Rn×n, where n is the
total number of nodes (including the new nodes), n1, n2 � n
are the number of the affected nodes and the size of the af-
fected one-hop neighborhood. Based on the Ll

a, the node
embedding X l+1

a for the affected nodes can be easily ob-
tained by the embedding X l

a of the local neighborhood:

X l+1
a = σ(Ll

aM
l(X l

a)W
l
g) (8)

Compared with retraining the entire GCN layer, DINGAL-O
significantly saves both space and time cost.

DINGAL-U
DINGAL-O extracts the node embeddings for the affected
nodes by directly leveraging the pre-trained parameters of

DINGAL-B without updating them. In this section, we take
one step further and consider the setting that the anchor links
are provided in the new entities. We propose a novel DIN-
GAL-U, which leverages the new anchor links to fine-tune
the parameters of DINGAL-B and update the embedding for
all entities. To be more specific, DINGAL-U treats the new
entities as the affected nodes and adopts the same updating
function as DINGAL-O (Equation (8)) in the GCN layer. The
loss function for DINGAL-U is the same as Equation (7),
where only newly added anchor links will be used as positive
samples to fine-tune the parameters. DINGAL-U saves the
training time by avoiding re-training the weight matrix from
scratch, while DINGAL-O uses the old weight matrix to ob-
tain the embedding of new nodes, and thus DINGAL-O even
more efficient than DINGAL-U. Note that DINGAL-U only
uses the newly added entities to fine-tune the parameters.

Experiment
We evaluate the proposed DINGAL family in the following
two aspects. First, following (Chen et al. 2016; Sun, Hu,
and Li 2017), we evaluate DINGAL-B in the standard static
knowledge graph alignment setting. Second, for DINGAL-O
and DINGAL-U, we evaluate their effectiveness and effi-
ciency by comparing with rerunning static knowledge graph
alignment methods in the dynamic setting.

Experimental Setup
Datasets Datasets for the static setting. We use
DBP15K (Sun, Hu, and Li 2017) benchmark datasets,
including DBP15KZH−EN , DBP15KJA−EN and
DBP15KFR−EN built on Chinese, English, Japanese and
French versions of DBpedia. Each dataset provides two KGs
in different languages with 15K pre-aligned entity pairs. the
detailed statistics of datasets is shown in Appendix for page
limitation.

Datasets for the dynamic setting. We randomly split the
15,000 ground-truth aligned pairs in each of DBP15K
datasets into three dynamic time steps (t0, t1 and t2) with a
ratio 8:1:1, which is 12,000:1,500:1,500 for each time step.
For the start time step t0, the KG pair removes 3,000 aligned
entity pairs in ground-truth set and the edges linked to them.
For any entity not belonging to the ground-truth, if it becomes
an isolated entity due to the temporal change, it is deleted. At
time step t1, 1,500 aligned pairs together with the isolated
entities linked to them will be added to the KG pairs at t0,
which will form the new KG pairs at time step t1. At time
step t2, by adding the remaining 1,500 aligned pairs into the
KG pairs at t1, we recover the original DBP15K datasets.

Metrics Hit@k is the proportion of correctly aligned enti-
ties ranked in the top-k list. We strictly follow the evaluation
protocol used in the entity linking and KG alignment commu-
nity(e.g., GCN-Align, RDGCN, HGCN-JE and AliNet etc.).
When calculating Hit@k for one specific entity from KG1 in
the test set, it *only* considers entities in test set from KG2
as candidate set instead of all KG2 entities. This evaluation
method is fair to compare different methods for a *given*
test set.
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Models ZH-EN JA-EN FR-EN
Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

MtransE (Chen et al. 2016) 30.8 61.4 27.9 57.5 24.4 55.6
JAPE (Sun, Hu, and Li 2017) 41.2 74.5 36.3 68.5 32.4 66.7

BootEA (Sun et al. 2018) 62.9 84.8 62.2 85.4 65.3 87.4
GCN-Align (Wang et al. 2018) 41.3 74.4 39.9 74.5 37.3 74.5

SEA (Pei et al. 2019) 42.4 79.6 38.5 78.3 40.0 79.7
RSN (Guo, Sun, and Hu 2019) 50.8 74.5 50.7 73.7 51.6 76.8

MuGNN (Cao et al. 2019a) 49.4 84.4 50.1 85.7 49.5 87.0
RDGCN (Wu et al. 2019a) 70.8 84.6 76.7 89.5 88.6 95.7
GMNN (Xu et al. 2019) 67.9 78.5 74.0 87.2 89.4 95.2
KECG (Li et al. 2019) 47.8 83.5 49.0 84.4 48.6 85.1

HGCN-JE (Wu et al. 2019b) 72.0 85.7 76.6 89.7 89.2 96.1
NAEA (Zhu et al. 2019) 65.0 86.7 64.1 87.3 67.3 89.4

MMEA (Shi and Xiao 2019) 68.1 86.7 65.5 85.9 67.7 89.0
AliNet (Sun et al. 2019) 53.9 82.6 54.9 83.1 55.2 85.2

DINGAL-B(w/o highway gate) 42.7 70.6 43.1 73.3 55.9 82.3
DINGAL-B(w/o mask gate) 69.8 84.8 76.2 88.9 91.0 97.2

DINGAL-B(one-layer) 70.0 84.3 77.0 89.5 91.0 96.9
DINGAL-B 72.5 87.4 78.2 91.3 92.0 97.9

Table 1: The alignment performance for DBP15K with 0.3 training ratio.

Baselines For the static setting, we use 14 recent em-
bedding based state-of-the-art methods as baselines for
DINGAL-B, including MTransE (Chen et al. 2016),
JAPE (Sun, Hu, and Li 2017), BootEA (Sun et al. 2018),
GCN-Align (Wang et al. 2018), MMEA (Shi and Xiao
2019), NAEA (Zhu et al. 2019), KECG (Li et al. 2019),
RDGCN (Wu et al. 2019a), MuGNN (Cao et al. 2019a),
GMNN (Xu et al. 2019), SEA (Pei et al. 2019), RSN (Guo,
Sun, and Hu 2019), HGCN-JE (Wu et al. 2019b), AliNet (Sun
et al. 2019). We report the same results as in the cor-
responding original papers. For the dynamic setting, we
use 8 baselines, including MTransE (Chen et al. 2016),
BootEA (Sun, Hu, and Li 2017), GCN-Align (Wang et al.
2018), MMEA (Shi and Xiao 2019), KECG (Li et al. 2019),
NAEA (Zhu et al. 2019), MuGNN (Cao et al. 2019a) and
RDGCN (Wu et al. 2019a). The implementation of the first
6 baseline methods are from EAkit, an open-source entity
alignment toolkit.

Implementaion details In the static setting, we use the
same split as the previous works, i.e., 30% for the training
set and 70% for the test set. The epoch number is set as 1500.
The number of negative samples for each positive sample
is 125. The learning rate is 0.001. We use a two-layer DIN-
GAL-B in the experiment. The margin hyper-parameter γ in
Equation (7) is 1. The embedding dimension is 300. We use
Google translation api and glove.840B.300d as initial node
features, which is the same as GMNN and RDGCN.

In the dynamic setting, for each time step, we split the
ground-truth with 30% for training and 70% for test. The
size of the training set is 3600:450:450 and the test set is
8400:1050:1050 for new entities at each time step2. The

2The static setting result in Table 1 is the largest dataset at t2.

training set at t1 and t2 are used by DINGAL-U. DINGAL-
O does not need the new training set at t1 or t2 because
it keeps the same parameter matrices as DINGAL-B from
t0. For baselines and DINGAL-B, we retrain each model
from scratch for each step. The learning rate is 0.005 and
the epoch number is 700. The sizes of entire training sets
and entire test sets for these methods are 3600:4050:4500
and 8400:9450:10500 respectively at each time step. The
fine-tuning learning rate for DINGAL-U is 0.001. It has
80 training epochs. The remaining hyper-parameters are the
same as the static setting. The experiment are run on a 1080-
Ti GPU.

Static Knowledge Graph Alignment
A - Alignment Performance Comparison. From Table 1, we
observe that the proposed DINGAL-B consistently outper-
forms all 14 recent embedding-based methods on both Hit@1
and Hit@10 metrics for all three benchmark datasets.

Among different baselines, GCN-based methods (e.g.,
RDGCN and HGCN-JE) have a small advantage over the
methods in translational family (e.g., JAPE and BootEA) for
the reason that GCN offers a better capacity to capture the at-
tribute information. Besides, some methods (such as HGCN-
JE, RDGCN, and GMNN) utilizing glove.840B.300d have
a better performance with more than 10% improvement in
Hit@1 and Hit@10 metrics than other methods, which cor-
roborates the importance of having good initialization fea-
ture vectors. DINGAL-B has an improvement in Hit@1 and
Hit@10 about 1.8% over HGCN-JE, 2.3% over RDGCN,
and 4.5% over GMNN, all of which are the recent strong
baselines. The proposed DINGAL-B shares some similar
structures as some baseline methods, such as the highway
gate used in RDGCN, HGCN-JE, and AliNet. We further
analyze the detailed implementation of these methods. We

4568



Models ZH-EN JA-EN FR-EN
Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

MtransE (Chen et al. 2016) 33.7 67.1 33.1 65.3 28.7 61.1
BootEA (Sun et al. 2018) 44.1 76.9 44.8 78.5 45.2 80.8

GCN-Align (Wang et al. 2018) 31.8 68.0 34.1 69.9 32.9 69.7
NAEA (Zhu et al. 2019) 17.4 23.2 16.4 23.9 22.2 34.4

MMEA (Shi and Xiao 2019) 22.9 48.8 23.9 50.6 27.4 60.2
MuGNN (Cao et al. 2019a) 38.2 73.7 36.4 74.0 35.5 74.9

KECG (Li et al. 2019) 33.6 69.5 34.9 72.0 36.4 73.2
RDGCN (Wu et al. 2019a) 69.6 84.9 75.7 88.9 87.3 97.1

DINGAL-B 72.7 88.0 78.3 91.2 91.8 97.9
DINGAL-O 71.6 86.8 77.3 90.3 91.8 97.6
DINGAL-U 71.7 87.5 77.4 90.6 91.4 97.5

Table 2: The alignment performance for the entire test set at t1 with 0.3 training ratio.

Models ZH-EN JA-EN FR-EN
Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

MtransE (Chen et al. 2016) 61.5 86.8 57.7 82.9 51.4 80.3
BootEA (Sun et al. 2018) 69.5 90.1 71.6 92.4 72.6 94.8

GCN-Align (Wang et al. 2018) 61.2 89.0 62.7 88.3 59.2 89.4
NAEA (Zhu et al. 2019) 32.3 48.7 23.4 45.1 35.2 51.7

MMEA (Shi and Xiao 2019) 45.0 66.5 43.7 67.3 52.3 77.1
MuGNN (Cao et al. 2019a) 64.3 90.9 65.9 90.8 66.6 94.1

KECG (Li et al. 2019) 61.4 89.0 64.4 89.7 63.6 89.4
RDGCN (Wu et al. 2019a) 81.6 91.8 86.0 93.9 93.1 98.1

DINGAL-B 85.6 95.4 89.4 97.3 97.1 99.9
DINGAL-O 85.0 95.1 88.4 97.1 96.4 99.4
DINGAL-U 85.7 95.8 88.8 97.2 96.5 99.4

Table 3: The alignment performance for the newly added test set at t1 with 0.3 training ratio.

find that when they (RDGCN, HGCN-JE, and AliNet) imple-
ment their novel components in the corresponding models,
they bring in some unnecessary parameters, which cause the
over-fitting problem that leads to the inferior performance.

B - Ablation Study.
We conduct the ablation study for DINGAL-B. We design

three DINGAL-B variants, including DINGAL-B without
highway gate, DINGAL-B without mask gate, and one layer
DINGAL-B, whose performances are shown at the bottom
of Table 1. We can see that DINGAL-B without highway
gate has a dramatic drop of about 33% in Hit@1 and 16% in
Hit@10, which is consistent with ablation study in previous
models (Wu et al. 2019a,b). The reason is that GCN’s weight
matrix primarily acts as a feature transformation, which is in
turn determined by the relationship between different dimen-
sions of the node feature instead of the graph topology. The
transformed feature space alone performs poorly. The high-
way gate performs a linear interpolation between the original
feature space and transformed feature space, whose interpo-
lation coefficient is obtained via training. Based on the result,
the interpolation between the old and transformed spaces is
the key that makes the highway gate perform well. DINGAL-
B without mask gate and one-layer DINGAL-B both have

around a 1.5% drop in Hit@1 and a 2.3% drop in Hit@10,
which shows the effectiveness of mask gate component and
setting the layer number as 2.

Dynamic Knowledge Graph Alignment
A - Effectiveness. The results of the entire test set and the
newly added test set at t1 3 are shown in Table 2 and Table 3
respectively. DINGAL-B still achieves the highest perfor-
mance for the entire test set (9,450 pairs) and the newly added
test set (1,050 pairs) after retraining. With the same parame-
ters as DINGAL-B at time step t0, DINGAL-O updates the
embeddings of affected entities in t1. It only has a small drop
in the performance compared to retraining DINGAL-B. By
using a small newly added training set, DINGAL-U’s perfor-
mance lies between DINGAL-O and retraining DINGAL-B.
Although the performance of DINGAL-O and DINGAL-U is
not as high as DINGAL-B, they only have a small (about 1%)
drop in Hit@1 metrics. In the meanwhile, both DINGAL-
O and DINGAL-U outperform the 8 baselines even though
these baselines need to be retrained when KGs change over

3The remaining experiment results are attached in the Appendix
due to the page limitation.
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time. Quality-speed Trade-off. The running time and Hit@1
for the entire test set on DBP15KZH−EN dataset of dif-
ferent methods at t1 are shown in Figure 6. For DBP15K
dataset, DINGAL-U is 10× faster than most static knowl-
edge graph alignment algorithms. Compared with DINGAL-
U, DINGAL-O achieves another 10× acceleration, which
spends only 3-5s at each time step. Even though some base-
line methods (e.g., GCN-Align) have a comparable running
time as DINGAL-U, their performance is significantly lower
than DINGAL-U and DINGAL-O. Among other baselines,
RDGCN has a competitive Hit@1 as DINGAL-U and DIN-
GAL-B, yet with a significantly longer running time.

Figure 6: The running time of different methods at t1.

Related Work
Knowledge Graph Alignment
Knowledge graph alignment, also known as entity linking or
entity alignment, first appears in the context of knowledge
base integration. In (Rinser, Lange, and Naumann 2013;
Nguyen et al. 2011), well-defined schema and ontology are
used to boost the entity mapping. Since the emergence of
TransE (Bordes et al. 2013), many works seek to solve the
alignment problem from the embedding perspective. JE (Hao
et al. 2016), MTransE (Chen et al. 2016), IPTransE (Zhu
et al. 2017) and BootEA (Sun et al. 2018) are based on
translational family embedding methods. SEA (Pei et al.
2019) pays attention to degree-aware embedding and KD-
CoE (Chen et al. 2018) co-trains the embeddings for entity
description and multilingual KGs. To make better use of en-
tity attributes, GNN has been applied to knowledge graph
alignment. Among others, (Wang et al. 2018) and (Cao et al.
2019b) are two recent representative knowledge graph align-
ment works utilizing GNN. In addition, some works (Wu
et al. 2019a; Mao et al. 2020; Sun et al. 2019) aim to use re-
lation attributes or distant neighborhood information, which
might lead to further performance improvement.

Static Graph Embedding
Static graph embedding (i.e., representation learning) aims to
embed the nodes or entities in the graph to a low dimensional
space. It can be categorized as network representation learn-
ing (NRL) and knowledge graph embedding. For NRL, Deep-
Walk(Perozzi, Al-Rfou, and Skiena 2014), Node2Vec(Grover

and Leskovec 2016) and LINE(Tang et al. 2015) are designed
to preserve local context of nodes. In order to further incor-
porate attributes information, algorithms like (Ou et al. 2015,
2016; Wang et al. 2017b) and graph convolutional network
(Bruna et al. 2014; Hamilton, Ying, and Leskovec 2017) have
been proposed. Knowledge graph embedding methods can be
roughly divided into translational distance models, semantic
matching models and others (Wang et al. 2017a). Transla-
tional distance models (Bordes et al. 2013) are based on
distance score for different entities. Semantic matching mod-
els like RESCAL (Nickel, Tresp, and Kriegel 2011) seek to
use a matrix to measure the similarity between two entities.
SME (Bordes et al. 2014) uses a neural network to conduct
this task. Other works include relation paths (Lao and Cohen
2010) and entity types (Nickel, Tresp, and Kriegel 2012).

Dynamic Graph Embedding
Research on dynamic graph embedding can be divided into
continuous and discrete methods. For continuous graph rep-
resentation learning, the embedding can be thought as a func-
tion of the time t. (Dasgupta, Ray, and Talukdar 2018) formu-
lates a vector of time for graphs at different time steps. Time
is used as a regularizer in (Chakrabarti, Kumar, and Tomkins
2006). In (Nguyen et al. 2018), the event stream model has
been proposed to model continuous dynamic graphs. The
dynamic knowledge graph alignment task is more related to
discrete graph representation learning because the dynamic
change in the alignment task occurs step by step. (Sun et al.
2012) is the first to study relation formation between nodes.
(Zhou et al. 2018) views the dynamic graph as a process
of triadic closure. (Sharan and Neville 2008) gives a large
weight to the most recent graph snapshot when combined
with previous ones. (Sajjad, Docherty, and Tyshetskiy 2019)
has extended the random walk based method by keeping the
valid old random walks in previous time steps and sampling
some new walks with new nodes.

Conclusion
In this paper, we propose a family of algorithms (DINGAL)
for knowledge graph alignment based on graph convolutional
network. The key idea is to distance the coupling between
the parameter matrix in GCN and the underlying graph topol-
ogy. By introducing two topology-invariant functions, the
proposed DINGAL-B consistently outperforms 14 existing
knowledge graph alignment methods in the static setting.
Based on that, we propose two effective and efficient al-
gorithms to align dynamic knowledge graph, including (1)
DINGAL-O which leverages previous parameter matrices to
update the embeddings of affected entities; and (2) DINGAL-
U which resorts to newly obtained anchor links to fine-tune
parameter matrices. Compared with their static counterpart
(DINGAL-B), DINGAL-U and DINGAL-O are 10× and
100× faster respectively, with little alignment accuracy loss.
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