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Abstract

Hawkes processes have been shown to be efficient in mod-
eling bursty sequences in a variety of applications, such
as finance and social network activity analysis. Tradition-
ally, these models parameterize each process independently
and assume that the history of each point process can be
fully observed. Such models could however be inefficient
or even prohibited in certain real-world applications, such
as in the field of education, where such assumptions are vi-
olated. Motivated by the problem of detecting and predict-
ing student procrastination in students Massive Open Online
Courses (MOOCs) with missing and partially observed data,
in this work, we propose a novel personalized Hawkes pro-
cess model (RCHawkes-Gamma) that discovers meaningful
student behavior clusters by jointly learning all partially ob-
served processes simultaneously, without relying on auxiliary
features. Our experiments on both synthetic and real-world
education datasets show that RCHawkes-Gamma can effec-
tively recover student clusters and their temporal procrastina-
tion dynamics, resulting in better predictive performance of
future student activities. Our further analyses of the learned
parameters and their association with student delays show
that the discovered student clusters unveil meaningful repre-
sentations of various procrastination behaviors in students.

Introduction
Academic procrastination, or postponing the starting of
planned studies, has been associated with negative side-
effects on students’ academic performance, psychological
well-being, and health (Moon and Illingworth 2005; Steel
2007). This behavior is more prevalent in online educational
settings, that require high levels of time-management and
self-regulation skills (Lee and Choi 2011) and can lead to
low academic outcomes and course drop-outs (Vitiello et al.
2018). With the growth of online education, it is essential to
devise mechanisms to detect the potential future procrasti-
nation in students, to be able to prevent this behavior and its
associated negative consequences.

In studies on self-reported academic procrastination, this
behavior is indicated by cramming of studying activities:
given a time interval followed by a deadline, students show
limited studying activities at the beginning of the interval,
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followed by a burst of studying (cramming) closer to the
deadline Perrin et al. (2011); Gelman et al. (2016). How-
ever, these studies do not provide a unified quantitative defi-
nition of procrastination, other than qualitative student self-
reports, that can be scarce and hard to obtain. Prior work
also shows that although each student has their individual
studying habits, students can be clustered into a few dis-
tinct groups by their studying behaviors (Yao, Sahebi, and
Feyzi-Behnagh 2020; Uzir et al. 2020). In essence, in highly
procrastinating students, getting closer to the deadline may
trigger more intense studying activities, while in others, their
studies are more regulated and distributed across the time in-
terval. Despite these finding, most of the studies on student
procrastination either ignored the temporal aspects of stu-
dents’ behavior (Cerezo et al. 2017; Kazerouni et al. 2017),
or were not personalized for students (Baker, Evans, and Dee
2016; Park et al. 2018; Backhage, Ojeda, and Sifa 2017).
More importantly, current research cannot predict when stu-
dent’s next activity will take place. Ideally, a procrastina-
tion model can capture the underlying cluster structures in
student activity sequences, can be personalized to capture
different students’ studying habits, and can deal with unseen
data such as assignments that are not yet started by students,
and represent students’ activity burstiness.

We note that Hawkes processes (Hawkes 1971) have the
potential to represent students’ procrastination behavior, as
they model activity burstiness, as opposed to memoryless
Poisson processes. However, when modeling one sequence
per user-item pair, conventional Hawkes processes model
each item’s sequences individually and do not rely on the
similarities between different items. Thus, they cannot infer
parameters for items that have unseen data (Hosseini et al.
2016; Choi et al. 2015; Mei and Eisner 2017; Du et al. 2016).
In some recent work, low-rank personalized Hawkes models
aim to address this problem (Du et al. 2015b), usually with
the help of auxiliary features to reinforce the low-rank as-
sumption (Shang and Sun 2018, 2019). Yet, to the best of our
knowledge, none of the previous Hawkes models were able
to represent the cluster structure between sequences, while
being personalized and inferring unseen data.

In this paper, we propose a novel Relaxed Clustered
Hawkes process with a Gamma prior (RCHawkes-Gamma)
to model and predict the cramming procrastination behavior
in students of Massive Open Online Courses (MOOCs). To
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do this, we model each student-assignment pair, that is the
interactions of a student with a course assignment character-
ized by activity times, as a uni-variate Hawkes process. By
modeling all student-assignment pairs jointly, our proposed
model is able to capture similarities shared among students
(i.e. cluster structures) by learning a low-dimensional rep-
resentation of procrastination (i.e. personalization). As a re-
sult, even for student-assignment pairs without observed his-
tory (i.e. unseen data), their parameters can be inferred based
on the group structure, without relying on auxiliary features
or historical observations.

It is worth noting that our proposed approach can be use-
ful in real-world scenarios such as for professional educa-
tors or adaptive learning systems. As an example, the pre-
diction of future activities especially on the unseen student-
assignment pairs can provide teachers the opportunity to in-
tervene with students who show strong procrastination ten-
dencies. For students, their learning activities can be pre-
sented in formats such as a dashboard, for visualization,
summarization, and feedback generation, which in turn can
be beneficial in regularizing students’ learning behaviors.
While our model is created with the education domain in
mind, it can be applied to other domains, such as recom-
mender systems.

To summarize, our contributions are: (1) We propose a
Relaxed Clustered Hawkes model, driven by the problem of
modeling academic procrastination in MOOCs; (2) Our per-
sonalized model represents the similarity structure between
multiple event sequences without requiring auxiliary fea-
tures (Section ) and infers unseen data in event sequences;
(3) We experiment on both synthetic and real-world datasets
to show that the proposed model can recover clusters of stu-
dents and their temporal procrastination dynamics, resulting
in a better predictive performance of future activities (Sec-
tion ); and (4) We further study the learned parameters to
demonstrate that the discovered student clusters are mean-
ingful representations of various procrastination-related be-
haviors in students (Section ).

Related Work
Low-Rank Hawkes Processes Hawkes processes (Hawkes
1971) have been successfully used in applications such
as social networks (e.g. Chen et al. 2019), mobility pat-
terns (e.g. Vassøy et al. 2019), and recommender sys-
tems (e.g. Du et al. 2015b). Among them, the most rele-
vant work to ours is low-rank uni-variate Hawkes processes
proposed by Du et al., to capture user-item interaction and
recommend items “at the right moment” (Du et al. 2015b).
However, this work does not incorporate the clustering be-
havior that is essential in our problem domain.

Other relevant literature on Hawkes processes mainly
falls into 3 categories: (1) Multi-variate Hawkes processes
that focus on modeling the mutual excitation among se-
quences (Zhou, Zha, and Song 2013; Luo et al. 2015; Bacry
et al. 2020; Lemonnier, Scaman, and Kalogeratos 2017). (2)
Uni-variate Hawkes models that model each sequence in-
dependently and discard the potential relatedness among all
sequences, thus cannot infer sequence’s future when its his-
tory is not observed e.g. (Mei and Eisner 2017; Du et al.

2016, 2015a; Xiao et al. 2017; Li, Wei, and Ke 2018; Li
and Ke 2020). For example, Du et al. propose to use RNN
to model the arrival times of a given sequence to capture
more complicated sequence dynamics compared to tradi-
tional Hawkes models (Du et al. 2016). Such RNN-based
models predict future time after time t based on the ob-
served history unfolded up to time t, therefore cannot di-
rectly predict sequences that do not have historical observa-
tions; (3) Approaches that jointly model different sequences
as uni-variate Hawkes processes by capturing the similari-
ties among the sequences (e.g. via a low-rank constraint).
Therefore, they can predict the future events for the se-
quences without historical observations, by utilizing histo-
ries from sequences that are structurally similar. However,
such methods usually rely on auxiliary information (He et al.
2015; Li, Wei, and Ke 2018; Shang and Sun 2018, 2019). For
example, in the recommender system setting, Shang et al.
impose a local low-rank constraint on the parameter matrix
to model large-scale user-item interactions by first comput-
ing user-item pairs’ similarities via item features (Shang and
Sun 2018). In contrast, due to privacy constraints in our ap-
plication, many educational datasets are highly anonymized
and scarce. Consequently, having a model that does not re-
quire such information is valuable in our context.
Procrastination Modeling in Education Domain As there
is no quantitative definition for procrastination behavior,
in most of the recent educational data mining literature,
procrastination-related behavior has been summarized by
curating time-related features from student interactions in
the course. These studies aim to evaluate the relationships
between these time-related features with student perfor-
mance and do not model temporal aspects of procrastina-
tion (Baker, Evans, and Dee 2016; Cerezo et al. 2017; Kaze-
rouni et al. 2017; Agnihotri, Baker, and Stalzer 2020). The
few recent works that model student activity sequences, are
limited in their assumptions, do not capture student activ-
ity intensities, are not personalized, do not model time de-
pendencies between student actions, and do not infer miss-
ing data (Park et al. 2018; Yao, Sahebi, and Feyzi-Behnagh
2020). For example, Park et al. classify students to procrasti-
nators vs. non-procrastinators by formulating a measure us-
ing a mixture model of per-day student activity counts dur-
ing each week of the course (Park et al. 2018). But, it can-
not model non-homogeneously spaced deadlines in a course.
Furtheremore, even though each student’s activity is counted
in a daily basis, it is not a temporal approach that models ac-
tivity time points. Indeed, none of these models can predict
when the future activities will happen. Similarly, Backhage
et al. proposed Poisson distribution to model students’ daily
activity count in order to capture procrastination-deadline
cycles of all students in the course (Backhage, Ojeda, and
Sifa 2017). In their work, each day of the week is associ-
ated with a Poisson rate parameter that is constant during the
whole course. Despite representing individual student activ-
ity counts, this model cannot differentiate between different
weeks in the course, does not have a continuous time scale,
and cannot capture non-homogeneously spaced deadlines in
a course.

To the best of our knowledge, the only model that can be
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compared to ours in predicting activity times is a Hawkes
process model by Yao et al. (Yao, Sahebi, and Feyzi-
Behnagh 2020) that relates procrastination to the mutual ex-
citation among activity types. This work does not model stu-
dent behavior clusters, and cannot infer unseen data. We use
this model, called EdMPH, as one of our baselines.

Problem Formulation
Our goal is to model partially observed student-assignment
interactions and predict two types of future student-
assignment interactions: 1) future assignments with no his-
torical activities (unseen data requirement), and 2) cur-
rent assignments that students are working on (assignment-
student pairs with partially observed history).

Specifically, we consider a course that includes N non-
parallel assignments and M students. Each student uj can
perform a sequence of activities towards each assignment ai,
such that each sequence is indexed by a student-assignment
pair (ai, uj). Activities in a sequence are presented with
a timestamp that marks their arrival time. We assume that
the activities within each student-assignment pair happen ei-
ther because they are a pre-requisite for another assignment-
related activity (internal stimuli), or because of a non-
activity related reason (external stimuli). For an example of
internal stimuli, think of when students divide their big tasks
(e.g., submitting the final assignment response) into smaller
sub-tasks (e.g., solving a sub-problem of the assignment),
within each sub-task, one activity spontaneously leads to an-
other related activity. Conversely, external stimuli can come
from the individual student’s tendency to study regularly or
due to the assignment deadline 1. On the other hand, we
assume no causal relationship between student-assignment
pairs: since assignments are not parallel, activities towards
assignments do not trigger each other. Further, since students
do not work in teams and are not in a social setting, there
are no triggering effects between student activities. We also
assume that while students having their individual learning
pattern towards each assignment (personalization assump-
tion), their studying activities follow a latent structure that
can group students with similar learning behaviors (cluster
assumption).

Model: Relaxed Clustered Hawkes
According to our problem formulation and assumptions, we
build our model based on uni-variate Hawkes processes. The
reason behind our choice of the model is two-fold: (1) Un-
like the memoryless Poisson process that assumes the in-
dependence among activities, Hawkes can model the afore-
mentioned internal and external stimuli that exist in stu-
dent activities; (2) Unlike the multi-variate Hawkes pro-
cesses that assume triggering effects between dimensions,
there are no exciting effects between assignments or student
sequences. We first present the intensity function that de-
fines student-assignment pairs. We then add low-rank and
relaxed clustering constraints to capture our personalization

1As student activities are triggered by the upcoming deadlines
from the future but not the past, without loss of generalizability, we
use a reversed activity timeline for our data.

and cluster assumptions, and add a Gamma prior to address
the unseen data requirement.

Uni-Variate Hawkes Intensity Function
Formally, given a sequence of activities for an assignment-
student pair (ai, uj), we model its activities’ arrival times
Xj
i = {xjiτ |τ = 1, ..., nji} by a uni-variate Hawkes pro-

cess, via the intensity function of time t, defined as fol-
lows (Hawkes 1971):

λ(t)ij = Uij +Aijβ

nij∑
τ=1

exp(−β(t− xji,τ )), (1)

where xji,τ is the τ -th element in the vector Xj
i ∈ Rnij ,

which denotes the arrival time of the τ -th activity that be-
longs to assignment-student pair (ai, uj), nij is the total
number of observed activities for (ai, uj); U ∈ RN×M
is the non-negative base rate matrix, where Uij quantifies
the expected number of activities that are triggered exter-
nally within (ai, uj); A ∈ RN×M is the non-negative self-
excitement matrix, withAij representing the self-exciting or
bursty nature of (ai, uj), i.e., the expected number of activi-
ties that are triggered by the past activities; and β is a global
decay rate that represents how fast the historical activities
stop affecting the future activities.

Relaxed Clustered Hawkes
Conventional uni-variate Hawkes processes model each pro-
cess individually. In this work, we assume that the occur-
rences of assignment activities and their characteristics, pa-
rameterized by Hawkes process, are similar among some
students, but less similar to some others, i.e. parameter ma-
trix A exhibits cluster structure on its columns.

Particularly, we assume that students form k < M clus-
ters according to their behaviors towards all assignments
represented in A’s column vectors. To impose this, we add a
clustering constraint to our model using the sum of squared
error (SSE) penalty, similar to K-means clustering:

P (A,W ) = ρ1tr(A>A−W>A>AW ) + ρ2tr(A>A) (2)

= tr(A((1 +
ρ1
ρ2

)I −WWT )A>,

where ρ1 and ρ2 are regularization coefficients; W ∈
RM×k is an orthogonal cluster indicator matrix, withWij =
1√
nj

if i is in j-th cluster, and 0 otherwise (showing which
students belong to which cluster); and nj is the size of clus-
ter j.

Since this strict constraint is non-convex, we follow Ja-
cob et al.’s work (Jacob, Vert, and Bach 2009) to obtain its
convex relaxation problem:

minLc(A,Z) = min
ρ2(ρ2 + ρ1)

ρ1
tr(A(

ρ1
ρ2
I + Z)−1A>) (3)

s.t. tr(Z) = k, Z � I, Z ∈ SM+ .

Z = WW> ∈ RM×M represents cluster-based similarity
of students, with W defined in Eq. 2. Here, the trace norm is
a surrogate of the original assumption that there are k clus-
ters and the other two constraints are the relaxation of W
being orthogonal. As a result, this equation is jointly convex
to both A and Z. We call this model RCHawkes.
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A mixture Gamma prior
To improve our model’s robustness to potential outliers and
to possibly reduce overfitting, we add a mixture Gamma
prior on the self-excitement matrix A. As a result, the sum-
mation of the first three terms in Equation 8 is the A-
Posteriori estimation, which not only is more robust compar-
ing with Maximum Likelihood Estimation, also it provides
an interpretation of each component’s hyperparameters in
student clusters: i.e. the pseudo counts of externally and in-
ternally excited activities. Specifically, consider the prior for
Aij when student i is in m-th cluster:

p(Aij ; Θm) =
1

Γ(sm)θsmm
Asm−1
ij exp(−Aij

θsmm
), (4)

where Θm = (sm, km), are hyperparameters which re-
spectively control the shape and the scale of the gamma
distribution in cluster m. The loss brought by the mixture
Gamma prior can be computed as follows:
Lg = log p(A; Θ1, ..,Θk) (5)

=
∑
X

j
i ∈O

[
log

k∑
m=1

1

k

1

Γ(sm)θsmm
Asm−1
ij exp(− Aij

θkmm
)
]
,

where O is the collection of all observed Xj
i .

Objective Function
For our model, we need to consider the multiple sequences
(as in Eq. 1) and add the introduced constraints. Here we
first introduce a recursive function R that can be computed
offline to ease the computation. It is set to be 0 when τ is 1
and updated recursively via the following equation.

Rij(τ) =
(
1 +Rij(τ − 1)

)
exp(−β

(
xji,τ − x

j
i,τ−1)

)
(6)

We also construct the matrix T as follows to avoid repeti-
tive computation in iterations:

T = [

nij∑
τ=1

(exp(−β(xji,nij
− xji,τ ))− 1)]N×M (7)

To this end, the final objective function of our proposed
model, given the observed activities for all assignment-
student pairs X can be described as in Eq. 8.

min
A≥0,U≥0,Z

−L(X;A,U) (8)

= −
∑
X

j
i ∈O

nij∑
τ=1

log
(
Uij +AijβR

j
i (τ)

)
+ Uijx

j
i,nij

+A ◦ T − Lg(A; Θ1, ..,Θk) + Lc(A,Z) + ρ3tr(A)

s.t. A ≥ 0, U ≥ 0,

where Lcand Lg are the previously defined losses intro-
duced by clustering and gamma prior respectively and ρ3 is
a regularization coefficient.

The trace norm regularization, is a convex surrogate for
computing rank of A, which enables the knowledge trans-
fer from the processes with observations to the unseen
assignment-user pairs that do not have any observed histori-
cal activities. Finally, to not violate the definition of Hawkes
process, we have non-negative constraints on A and U .

Optimization
To solve the minimization problem in Eq. 8, we could
use the Stochastic Gradient Descent algorithms. However,
the non-negative constraints on A and U along with the
non-smoothed trace norms can complicate the optimization.
To tackle this problem, we used the Accelerated Gradient
Method (Nesterov 2013). The key component of using this
method is to compute the following proximal operator:

min
Az ,Uz ,Zz

‖Az −As‖2F + ‖Uz − Us‖2F + ‖Zz − Zs‖2F + L

(9)

s.t. tr(Zz) = k, tr(Az) ≤ c, Az ≥ 0, Uz ≥ 0, Zz � I, Zz ∈ SM+
where subscripts z and s respectively represents the corre-

sponding parameter value at the current iteration and search
point (Nesterov 2013). To efficiently solve the objective
function, we use the Accelerated Gradient Descent frame-
work. 2

Experiments
In this section we evaluate our approach with several state-
of-the-art competitors on both simulated and real datasets.
Setup. In simulated data, we randomly select a ratio of
r = [0.1, 0.3, 0.5, 0.7] amount of students’ last two assign-
ment activities to be entirely missing (unseen set), and for
the rest of the student-assignment pairs, the first 70% of ac-
tivities are used for training (training set) and the last 30%
are used for testing (seen set). In both real datasets, the unit
time is set to be an hour, and we use activities that took
place before the mid point of the last assignment as train-
ing. Hyperparameters of the proposed and baseline models
are tuned via grid search.

Baselines
We consider two sets of state-of-the-art baselines: the ones
that are able to infer unseen data, and the ones that cannot. A
summary of all baseline approaches is presented in Table 1.
In the following we briefly introduce each of the baselines.
EdMPH: A Hawkes model that was recently proposed to
model student procrastination in Educational Data Mining
domain (Yao, Sahebi, and Feyzi-Behnagh 2020). It applies
a Multivariate Hawkes Model which utilizes student activity
types as extra information, and cannot infer unseen data.
RMTPP: A Recurrent Neural Network Hawkes model to
represent user-item interactions (Du et al. 2016). It does not
directly infer parameters of unseen data and it uses activity
markers (i.e. features) as an input.
ERPP: A similar approach to baseline RMTPP, but it in-
cludes time-series loss in the loss function (Xiao et al. 2017).
HRPF and DHPR: Two Poisson factorization models pro-
posed in (Hosseini et al. 2018) that do not require user-
network as auxiliary features. These models, however, do
not directly model the time-dependencies between the future
and the past, thus cannot quantify activity self-excitement.
HPLR: An item recommendation model using Hawkes pro-
cess (Du et al. 2015b). It is the most similar to ours, as it

2Details of the algorithm, its complexity, convergence analy-
ses, and our code can be found in https://github.com/persai-lab/
AAAI2020-RCHawkes-Gamma.
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Application Model
Infer

Unseen
Data

Require No
External
Features

Model Time
Dependency

RCHawkes-Gamma X X X
RCHakwes X X XEDM

EdMHP 7 7 X
HPLR X X X
ERPP 7 7 X
HRPF X X 7
DRPF X X 7

Rec-Sys

RMTPP 7 7 X

Table 1: A summary of baseline approaches.

imposes a low rank assumption on matrices A and U and
can infer unseen data. However, unlike our model, it does
not consider the cluster structure of parameter matrix A.
RCHawkes: A variation of our proposed model that does
not use a Gamma prior. Its objective is to find the maximum
of log-likelihood rather than the maximum of A-posterior.

Datasets
Synthetic Data To create simulated student-assignment
pairs, we first construct the parameter matrices. We build
As by: a) sampling k = 3 sets of column α’s from different
Gamma distributions, for different student procrastination
behavior clusters; b) adding white noise (σ2 = 0.1); and c)
shuffling all columns randomly to break the order. We build
Us, by sampling it from a normal distribution. Then, we
sample 150 activities for each assignment-student pair us-
ing the Ogata thinning algorithm (Ogata 1988), which is the
most commonly used sampling method in the related litera-
ture. Finally, we obtain 5400 simulated student-assignment
pairs and 810K synthetic activities.
Computer Science Course on Canvas Network (CAN-
VAS) This real-world MOOC dataset is from the Can-
vas Network platform (Canvas-Network 2016). Canvas Net-
work is an online platform that hosts various open courses
in different academic disciplines. The computer science
course we use happens during ∼ 6 weeks. In each week,
an assignment-style quiz is published in the course result-
ing in 6 course assignments. In total, we extract ∼ 740K
assignment-related activity timestamps from 471 students.
Big Data in Education on Coursera (MORF) Our sec-
ond real-world dataset is collected from an 8-week “Big
Data in Education” course in Coursera platform. The dataset
is available through the MOOC Replication Framework
(MORF) (Andres et al. 2016). In total, we extract ∼ 102K
activities of 675 students related to 8 assignments.

Fit and Prediction Performance of
RCHawkes-Gamma
Estimated Parameters on Simulated Data In the simu-
lated dataset, as we know the true parameters (i.e. A and U ),
we compare the Root Mean Squared Error (RMSE) of esti-
mated Â and Û , varying unseen data ratio r 3. The results
are presented in Tbl. 2. RCHawkes-Gamma and RCHakwes
outperform the baseline methods usually by a large margin,
for both the sequences with seen and unseen history. Also,

3Baselines ERPP, RTMPP, and EdHawkes cannot be used in
this analysis, since they parameterize the processes differently.

even though all models perform worse with the increase of r,
RCHawkes-Gamma and RCHakwes’ RMSEs have a lower
standard deviation, indicating less variation in their perfor-
mance even in high missing data ratios. Additionally, the
models’ performances in unseen data are generally worse
than their performances in the processes with observed his-
torical activities. One possible reason is that the Hawkes
parameters for unseen data in this simulation can only be
inferred from the similar processes with observed data by
leveraging the row and column relatedness, while the true
characteristics of the unseen processes can not be entirely
captured as there are no observations that the models can
use.
Clustering Structure of Hawkes Parameters To see if
the cluster structure of students is well captured by each
model, we compute and present the correlation matrix of Â
between students with the recovered cluster orders in Fig-
ure 3. Our proposed models recover this structure closer
to the ground truth (Figure 3 (a)), i.e. a higher correlation
within clusters (darker blocks) and a lower correlation be-
tween clusters (lighter blocks). HPLR introduces unneces-
sary correlations between clusters, possibly because of not
having the student cluster assumption. HRPF simply as-
sumes all assignment-student pairs share the same param-
eter, thus has a meaningless correlation of 1 among all stu-
dents. Finally, although DRPF improves HRPF by consider-
ing activity self-excitements, it fails to capture any meaning-
ful correlation within clusters.
Returning Time Prediction on Simulated and Real Data
In these experiments, we use a popular metric that has been
used in many Hawkes-based models, i.e. RMSE on Time
Prediction (TP), where TP is defined on the estimated next
activity time, given the observed history (e.g. (Du et al.
2013)). The baselines that do not directly infer parameters
on unseen data (the future assignment scenario) are not in-
cluded in the unseen data evaluation. Following the method
used in (Du et al. 2013), we sampled future activities based
on the learned parameters via Ogata’s thinning algorithm.

Figures 1 and 2 respectively present the prediction error
and 95% confidence interval on simulated and real-world
data. As we can see from Figure 1, the proposed meth-
ods RCHawkes-Gamma and RCHakwes consistently out-
perform other baselines in all settings, except when the miss-
ing ratio is 0.1. In that case, RMTPP and ERPP achieve the
smallest error in seen data. However, unlike the proposed
models that are almost invariant to the increase of missing
ratio, ERPP and RMTPP’s performances change dramati-
cally with increasing r. More importantly, they lack the abil-
ity to directly predict the next activity time when the activity
history is unseen. When comparing the baselines in the real
datasets (Figure 2), all approaches perform better in CAN-
VAS dataset, compared to MORF. One possible explanation
is that, in CANVAS, each assignment-student pair contains
more historical activity time stamps. Therefore it provides
all approaches more training data than the MORF dataset.

Student Procrastination in RCHawkes-Gamma
In the following section, we will focus to finding the connec-
tions between the characteristics of students’ learning activ-
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RMSE
for A

Model r = 0.1 r = 0.3 r = 0.5 r = 0.7
seen unseen seen unseen seen unseen seen unseen

RCHawkes-Gamma 0.094±0.024 0.102±0.037 0.121±0.017 0.114±0.056 0.141±0.033 0.139±0.033 0.136±0.077 0.137±0.052
RCHawkes 0.108±0.017 0.108±0.054 0.115±0.024 0.116±0.039 0.126±0.033 0.136±0.033 0.180±0.072 0.170±0.048

HPLR 0.631±0.110 0.663±0.331 0.645±0.141 0.607±0.216 0.635±0.133 0.633±0.133 0.634±0.304 0.634±0.204
HRPF 0.664±0.769 0.664±0.769 0.664±0.770 0.664±0.770 0.663±0.769 0.663±0.770 0.664±0.769 0.664±0.767
DRPF 0.474±0.461 0.474±0.461 0.479±0.465 0.479±0.465 0.473±0.462 0.473±0.462 0.474±0.463 0.474±0.463

RMSE
for U

RCHawkes-Gamma 0.075±0.022 0.085±0.036 0.069±0.017 0.060±0.050 0.062±0.030 0.064±0.030 0.071±0.039 0.075±0.026
RCHawkes 0.074±0.020 0.089±0.061 0.074±0.020 0.075±0.032 0.077±0.030 0.079±0.030 0.069±0.026 0.062±0.017

HPLR 0.110±0.082 0.078±0.047 0.081±0.060 0.078±0.094 0.091±0.035 0.091±0.035 0.090±0.096 0.095±0.065
HRPF 0.105±0.055 0.311±0.055 0.119±0.068 0.183±0.068 0.141±0.071 0.142±0.071 0.179±0.068 0.120±0.070
DRPF 0.062±0.052 0.300±0.035 0.088±0.049 0.165±0.045 0.121±0.051 0.121±0.050 0.167±0.053 0.102±0.054

Table 2: RMSE (±error standard deviation) of Â and Û on seen and unseen data, with various missing data ratios (r)

Figure 1: Time prediction error and 95% confidence interval on synthetic seen (left) and unseen (right) datasets with varying
data missing ratios (r)

Figure 2: Time prediction error on seen (left) and unseen (right) data with 95% confidence interval on real-world datasets

ities (parameterized by our model) and students’ cramming
behaviors.

Students’ Cramming Behaviors Since procrastination
does not have a quantitative definition, in the first step of
our analysis, we define the following measure to describe
the degree of student procrastination presented in MOOCs:
delay =

taij−t
s
ij

tdij−tsij
to quantify student j’s normalized delay

in starting any activity that is associated with assignment i,
where superscript s, a, d respectively represents the start of
the assignment, the first, and the last activity in the student-
assignment pair. Intuitively, this measure is the absolute time
that student j delays in starting assignment i, normalized by
the duration that assignment i is available for student j. Note
that this measure is just a simple representation and cannot
replace our model in predicting next activity times or uncov-
ering cluster structures.

Correlation Analysis In order to show how students ac-
tivities parameterized by Hawkes and student delays are as-
sociated, we compute the Spearman’s rank correlation co-

efficient between each pair of the variables. We choose the
Spearman’s correlation because it does not assume a nor-
mal distribution on the parameters, nor a linear relationship
between the variables as Pearson correlation does. As we
can see in Table 3, the two-sided p-values suggest that the
correlations between these variables are statistically signif-
icant. We can also see that all the correlation coefficients
are positive, meaning that student delays are positively as-
sociated with the base rate, i.e. expected number of occur-
rences per unit time that are excited by external stimuli (for
example deadlines), and the burstiness of the occurrences.
On the other hand, by looking at the two courses side-by-
side, we can see that delay is more strongly associated with
α in CANVAS. But, its association with the base rate µ is
stronger in MORF. This suggests two different kinds of rela-
tionships between students and assignments: while in CAN-
VAS big bursts of activities might suggest delays, in MORF
small but frequent activities are associated with student de-
lays.
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Figure 3: The ground truth of A’s correlation matrix (a), and
the estimated Â’s correlation matrix learned by each model.

α µ delay

CANVAS
α 1
µ 0.284*** 1

delay 0.345*** 0.144*** 1

MORF
α 1
µ 0.243*** 1

delay 0.264*** 0.412*** 1

Table 3: Spearman’s correlation between learned parame-
ters and computed normalized student delays. p<0.001***
p<0.01 ** p<0.05*

Clustering Analysis To see if there are meaningful dif-
ferences in the delay measure for students in different clus-
ters, we first cluster the students using the K-means cluster-
ing algorithm, which has a similar objective to the cluster-
structure term in our model (Eq. 2), on the learned Âmatrix.
Specifically, student uj is represented by the vector of es-
timated self-excitement parameters (α̂1,i, ..., α̂N,i) that are
learned by RCHawkes-Gamma, and the cluster number for
K-means is decided via grid search by looking at SSE. To ex-
amine the possible differences between clusters of students
in terms of student delays, we conduct the Kruskal-Wallis
test on all student delays across the clusters for each assign-
ment. We report the average delay of all students in each
cluster and for each assignment. The results are shown in
Table 4 for CANVAS and in Table 5 for MORF dataset.
In CANVAS, 4 student clusters are found. These clusters
all have significant differences in terms of delays. For ex-
ample, students in cluster 1 have the smallest delay, with a

Assign. #. cluster 1 cluster 2 cluster 3 cluster 4 p-value
size 81 144 207 39 -

1 0.3335 0.4583 0.6108 0.9064 1.34E-16***
2 0.6245 0.5788 0.8476 1.0854 3.59E-09***
3 0.6911 0.7143 0.8633 0.9655 4.36E-05***
4 0.6050 0.6958 0.8515 1.0717 0.0008***
5 0.5969 0.7080 0.9084 1.1217 0.0195*
6 0.5351 0.7647 0.9002 1.0970 0.0149*

Table 4: Kruskal Wallis test on delays in different clusters in
CANVAS dataset. p<0.001*** p<0.01 ** p<0.05*

Assign. #. cluster 1 cluster 2 cluster 3 p-value
size 573 34 68 -

1 0.4991 0.6710 0.4477 2.30E-09***
2 0.5120 0.7288 0.4855 1.90E-08***
3 0.5570 0.6904 0.6105 7.50E-05***
4 0.4699 0.6122 0.5360 0.0004***
5 0.5626 0.6358 0.6308 0.0070***
6 0.5329 0.6236 0.6642 8.56E-06***
7 0.4325 0.5598 0.7672 2.12E-20***
8 0.3974 0.5172 0.7629 3.84E-27***

Table 5: Kruskal Wallis test on delays in different clusters in
MORF dataset. p<0.001*** p<0.01 ** p<0.05*

general decreasing trend towards the later assignments. On
the other hand, delays are the worst for students in cluster
4, with an average delay greater or close to 1 for all assign-
ments, which implies that this group of students tend to start
the assignments very close to or even later than the dead-
line. In the 3 clusters that are found in the MORF dataset,
the p-values of Kruskal-Wallis tests show strong evidence
of cluster differences for each assignment. Specifically, the
majority of the students in the MORF course are in cluster 1
and their delays are overall the lowest comparing to the other
two clusters. They tend to delay less and less over time. On
the other hand, students in cluster 3 start the course with a
low delay but increase their delay so fast that at the end of the
course, they turn out to be the students who delay the most.
This analysis demonstrates that the self-excitement parame-
ters have strong associations with student delays, which not
only reinforces the findings from the correlation analysis,
but also suggests that they are good indicators in character-
izing students’ cramming behaviors.

Conclusion

In this paper, we proposed a novel uni-variate clustered
Hawkes process model, RCHawkes-Gamma to model pro-
crastination behaviors of students in MOOCs assuming a
cluster structures between students. We test our proposed
model on a synthetic dataset and two real-world MOOC
datasets. The results of our experiments show that our pro-
posed model can predict students’ next activity time with
lower time prediction error on both seen and unseen data,
compared to the baseline methods. We also study and ana-
lyze the parameters learned by the proposed model on both
MOOC datasets. Our analysis reveals the positive associa-
tions between student delays with our model’s parameters.
The model also discovers meaningful clusters of students
who show different delaying behavior trends. A limitation
of this work is that the delay measure is used as a proxy
for procrastination, while self-reported procrastination mea-
sures could have helped in labeling delays more accurately
as procrastination.
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