
Interpretable Clustering on Dynamic Graphs
with Recurrent Graph Neural Networks

Yuhang Yao, Carlee Joe-Wong
Carnegie Mellon University

{yuhangya,cjoewong}@andrew.cmu.edu

Abstract
We study the problem of clustering nodes in a dynamic graph,
where the connections between nodes and nodes’ cluster
memberships may change over time, e.g., due to community
migration. We first propose a dynamic stochastic block model
that captures these changes, and a simple decay-based clus-
tering algorithm that clusters nodes based on weighted con-
nections between them, where the weight decreases at a fixed
rate over time. This decay rate can then be interpreted as sig-
nifying the importance of including historical connection in-
formation in the clustering. However, the optimal decay rate
may differ for clusters with different rates of turnover. We
characterize the optimal decay rate for each cluster and pro-
pose a clustering method that achieves almost exact recov-
ery of the true clusters. We then demonstrate the efficacy of
our clustering algorithm with optimized decay rates on simu-
lated graph data. Recurrent neural networks (RNNs), a popu-
lar algorithm for sequence learning, use a similar decay-based
method, and we use this insight to propose two new RNN-
GCN (graph convolutional network) architectures for semi-
supervised graph clustering. We finally demonstrate that the
proposed architectures perform well on real data compared to
state-of-the-art graph clustering algorithms.

Introduction
Clustering nodes based on their connections to each other
is a common goal of analyzing graphs, with applications
ranging from social to biological to logistics networks. Most
such clustering approaches assume that the connections (i.e.,
edges) between nodes, and thus the optimal clusters, do
not change over time (Lei, Rinaldo et al. 2015; Qin and
Rohe 2013). In practice, however, many graph structures
will evolve over time. Users in social networks, for exam-
ple, may migrate from one community to another as their
interests or employment status changes, forming new con-
nections with other users (i.e., new edges in the graph) and
changing the cluster or community to which they belong.
Thus, clustering algorithms on such evolving graphs should
be able to track changes in cluster membership over time.

A major challenge in tracking cluster membership
changes is to carefully handle historical information and
assess its value in predicting the current cluster member-
ship. Since clusters will often evolve relatively slowly, an

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

extreme approach that does not consider edges formed in
the past risks ignoring useful information about the ma-
jority of nodes whose memberships have not changed. On
the other hand, making no distinction between historical
and more recently formed edges may lead to slow detection
of nodes’ membership changes, as the historically formed
edges would dominate until the nodes have enough time
to make connections within their new clusters. Prior works
have balanced these effects by introducing a decay rate: the
weight of each edge is reduced by a constant decay factor
in each time step between the connection formation and the
time at which cluster membership is estimated. The cluster
membership can then be estimated at any given time, by tak-
ing the weighted connections as input to a static algorithm
like the well-studied spectral clustering (Abbe 2017).

Accounting for historical node connections with a single
decay rate parameter offers the advantage of interpretabil-
ity: the decay rate quantifies the emphasis put on historically
formed edges, which can be tuned for specific datasets. Yet
while prior works have examined the optimal decay rate for
stylized network models, they use a single decay rate for
all edges (Keriven and Vaiter 2020). In practice, the optimal
rate will likely vary, e.g., with higher decay rates for clusters
with higher membership turnover where historical informa-
tion might reflect outdated cluster memberships, making it
less useful. Introducing different decay rates for each cluster,
on the other hand, raises a new challenge: since we do not
know the true cluster memberships for each node, we may
use the wrong decay rate if a node is erroneously labeled.
Moreover, the optimal decay rates for different clusters will
be correlated due to connections between nodes in different
clusters that themselves must be optimally weighted, poten-
tially making the decay rates difficult to optimize.

More sophisticated semi-supervised clustering methods
combine LSTM (long-short-term memory) or RNN (recur-
rent neural network) structures with graph convolutional net-
works (GCNs), producing a neural network that classifies
nodes based on their cluster membership labels. This net-
work can be carefully trained to optimize the use of histori-
cal edge information, without explicitly specifying different
node decay rates (Pareja et al. 2020). However, while such
algorithms show impressive empirical performance on large
graph datasets, they are generally not easily interpretable.

Our work seeks to connect the theoretical analysis of

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

4608

graph clustering algorithms with the graph neural networks
commonly used in practice. Our key insight in doing so is
that prefacing a GCN with a RNN layer can be interpreted
as imposing a decay rate on node connections that depends
on each node’s current cluster membership, and then approx-
imating spectral clustering on the resulting weighted graph
via the GCN. Following this insight, we propose two new
transitional RNN-GCN neural network architectures (RN-
NGCN and TRNNGCN) for semi-supervised clustering. We
derive the theoretically optimal decay rates for nodes in
each cluster under stylized graph models, and show that the
weights learned for the RNN layer in TRNNGCN qualita-
tively match the theoretically optimal ones. After reviewing
related work on theoretical and empirical graph clustering,
we make the following specific contributions:

• A theoretical analysis of the optimal decay rates for
spectral clustering algorithms applied to the dynamic
stochastic block model, a common model of graph clus-
tering dynamics (Keriven and Vaiter 2020).

• Two new RNN-GCN neural network architectures that
use an interpretable RNN layer to capture the dynamics
of evolving graphs and GCN layers to cluster the nodes.

• Our algorithm can achieve almost exact recovery by in-
cluding a RNN layer that decays historical edge informa-
tion. Static methods can only partially recover the true
clusters when nodes change their cluster memberships
with probability O

(
logn
n

)
, n being the number of nodes.

• Experimental results on real and simulated datasets that
show our proposed RNN-GCN architectures outperform
state-of-the-art graph clustering algorithms.

Related Work
Over the past few years, there has been significant research
dedicated to graph clustering algorithms, motivated by ap-
plications such as community detection in social networks.
While some works consider theoretical analysis of such
clustering algorithms, more recently representation learning
algorithms have been proposed that perform well in practice
with few theoretical guarantees. We aim to connect these ap-
proaches by using a theoretical analysis of decay-based dy-
namic clustering algorithms to design a new neural network-
based approach that is easily interpretable.

Theoretical analyses. Traditional spectral clustering al-
gorithms use the spectrum of the graph adjacency matrix to
generate a compact representation of the graph connectiv-
ity (Lei, Rinaldo et al. 2015; Qin and Rohe 2013). A line
of work on static clustering algorithms uses the stochas-
tic block model for graph connectivity (Abbe 2017), which
more recent works have extended to a dynamic stochas-
tic block model (Keriven and Vaiter 2020; Pensky, Zhang
et al. 2019). While these works do not distinguish between
clusters with different transition probabilities, earlier mod-
els incorporate such heterogeneity (Xu 2015). Other works
use a Bayesian approach (Yang et al. 2011), scoring met-
rics (Agarwal et al. 2018; Zhuang, Chang, and Li 2019), or
multi-armed bandits (Mandaglio and Tagarelli 2019) to de-

tect communities and their evolution, while Xu, Kliger, and
Hero (2010) use a decay rate similar to the one we propose.

As representation learning becomes popular, graph neu-
ral networks (Zhang and Chen 2018; Wu et al. 2020; Kipf
and Welling 2016) such as GraphSage (Hamilton, Ying,
and Leskovec 2017) have been used to cluster nodes in
graphs based on (static) connections between nodes and
node features. Graph Attention Networks (GAT) (Veličković
et al. 2017; Xu et al. 2019b) use attention-based methods to
construct a neural network that highlights the relative im-
portance of each feature, while dynamic supervised (Ku-
mar, Zhang, and Leskovec 2019) and unsupervised (Goyal,
Chhetri, and Canedo 2020) methods can track general net-
work dynamics, or may be designed for clustering on graphs
with dynamic edges and dynamic node features (Chen et al.
2018; Xu et al. 2019a, 2020). EvolveGCN (Pareja et al.
2020) usesa GCN to evolve the RNN weights, which is sim-
ilar to our approach; however, we ensure interpretability of
the RNN weights by placing the RNN before the GCN lay-
ers, which we show improves the clustering performance.

Finally, several works have considered the interpretabil-
ity of general GCN and RNN structures (Dehmamy,
Barabási, and Yu 2019; Liang et al. 2017; Guo, Lin, and
Antulov-Fantulin 2019), such as GNNExplainer (Ying et al.
2019). In the context of graph clustering, some works have
used attention mechanisms to provide interpretable weights
on node features (Xu et al. 2019a), but attention may not
capture true feature importance (Serrano and Smith 2019).
Moreover, these works do not consider the importance of
historical information, as we consider in this work.

Model
We first introduce a dynamic version of the Stochastic Block
Model (SBM) often used to study graph clustering (Holland,
Laskey, and Leinhardt 1983; Abbe 2017), which we will use
for our theoretical analysis in the rest of the paper.

Stochastic Block Model
For positive integers K and n, a probability vector
p ∈ [0, 1]K , and a symmetric connectivity matrix B ∈
[0, 1]K×K , the SBM defines a random graph with n nodes
split into K clusters. The goal of a prediction method for
the SBM is to correctly divide nodes into their correspond-
ing clusters, based on the graph structure. Each node is in-
dependently and randomly assigned a cluster in {1, ...,K}
according to the distribution p; we can then say that a node
is a “member” of this cluster. Undirected edges are indepen-
dently created between any pair of nodes in clusters i and j
with probability Bij , where the (i, j) entry of B is

Bij =

{
α, i = j

τα, i 6= j,
(1)

for α ∈ (0, 1) and τ ∈ (0, 1), implying that the probability
of an edge forming between nodes in the same cluster is α
(which is the same for each cluster) and the edge formation
probability between nodes in different clusters is τα.

Let Θ ∈ {0, 1}n×K denotes the matrix representing the
nodes’ cluster memberships, where Θik = 1 indicates that

4609

node i belongs to the k-th cluster, and is 0 otherwise. We use
A ∈ {0, 1}n×n to denote the (symmetric) adjacency matrix
of the graph, where Aij indicates whether there is a con-
nection (edge) between node i and node j. From our node
connectivity model, we find that given Θ, for i < j, we have

Aij |{Θik = 1,Θjl = 1} v Ber(Bkl), (2)
where Ber(p) indicates a Bernoulli random variable with pa-
rameter p. We define Aii = 0 (nodes are not connected
directly to themselves) and since all edges are undirected,
Aij = Aji. We further define the connection probability ma-
trix P = ΘBΘT ∈ [0, 1]n×n, where Pij is the connection
probability of node i and node j and E[A] = P − diag(P).

Dynamic Stochastic Block Model
We now extend the SBM model to include how the graph
evolves over time. We consider a set of discrete time steps
t = 1, 2, . . . , T . At each time step t, the Dynamic SBM
generates new intra- and inter-cluster edges according to the
probabilities α and τα as defined for the SBM above. All
edges persist over time. We assume a constant number of
nodes n, number of clusters K, and connectivity matrix B,
but the node membership matrix Θt depends on time t, i.e.,
nodes’ cluster memberships may change over time. We sim-
ilarly define the connectivity matrix Pt = ΘtB(Θt)

T .
We model changes in nodes’ cluster memberships as a

Markov process with a constant transition probability ma-
trix H ∈ [0, 1]K×K . Let εj ∈ (0, 1) denotes the change
probability of nodes in cluster j, i.e., the probability a node
in cluster j changes its membership. At each time step, node
vi in cluster j changes its membership to cluster k with the
following probability (independently from other nodes):

Hj,k = P
[
Θt
ik = 1|Θt−1

ij = 1
]

=

 1− εj , j = k
εj

K − 1
, j 6= k,

Note that εj may be specific to cluster j, e.g., if some clus-
ters experience less membership turnover. We give an exam-
ple of such a graph in our experimental evaluation. The goal
of a clustering algorithm on a graph is to recover the mem-
bership matrix Θ up to column permutation. Static cluster-
ing algorithms give an estimate Θ̂ of the node membership;
a dynamic clustering algorithm should produce such an esti-
mate for each time t. We define two performance metrics for
these estimates (in dynamic graphs, they may be evaluated
for an estimate Θ̂ = Θ̂t relative to Θ = Θt at any time t):

Definition 1 (Relative error of Θ̂). The relative error of a
clustering estimate Θ̂ is

E(Θ̂,Θ) =
1

n
min
π∈P
‖Θ̂π −Θ‖0, (3)

where P is the set of all K × K permutation matrices and
‖.‖0 counts the number of non-zero elements of a matrix.
Definition 2 (Almost Exact Recovery). A clustering esti-
mate Θ̂ achieves almost exact recovery when

P
[
1− 1

n
min
π∈P
‖Θ̂π −Θ‖0 = 1− o(1)

]
= 1− o(1). (4)

which also implies that the expectation of E(Θ̂,Θ) is o(1).

Our goal is then to find an algorithm that produces an esti-
mate Θ̂ minimizingE(Θ̂,Θ). In the next section, we discuss
the well-known (static) spectral clustering algorithm and an-
alyze a simple decay-based method that allows a static algo-
rithm to make dynamic membership estimates.

Spectral Clustering with Decay Rates
We now introduce the Spectral Clustering algorithm and op-
timize the decay rates to minimize its relative error.

Spectral Clustering Algorithm
Spectral Clustering is a commonly used unsupervised
method for graph clustering. The key idea is to apply K-
means clustering to the K-leading left singular vectors of
the adjacency matrix A (Stella and Shi 2003); we denote the
corresponding matrix of singular vectors as EK . We then
estimate the membership matrix Θ̄ by solving

(Θ̄, C̄) ∈ arg min
Θ∈{0,1}n×K ,C∈RK×K

‖ΘC − EK‖2F , (5)

where ‖.‖F denotes the Frobenius norm. It is well known
that finding a global minimizer of Eq. (5) is NP-hard. How-
ever, efficient algorithms (Kumar, Sabharwal, and Sen 2004)
can find a (1 + δ)-approximate solution (Θ̂, Ĉ), i.e., with
‖Θ̂Ĉ − EK‖2F ≤ (1 + δ)‖Θ̄C̄ − EK‖2F .

Introducing Decay Rates
Spectral clustering performs poorly on the dynamic SBM:

Proposition 1 (Partial Recovery of Spectral Clustering).
When nodes change their cluster membership over time with
probabilities εj = O(logn

n), Spectral Clustering recovers
the true clusters at time T with relative error E(Θ̂T ,ΘT) =

O(logn
n T).

To improve this performance, one can replace the adja-
cency matrixAt with an exponentially smoothed version Ât:

Ât = (1− λ)Ât−1 + λAt, (6)

where we call λ ∈ [0, 1] the decay rate (Chi et al. 2009).
Intuitively, a larger value of λ puts less weight on the past
information, “forgetting” it faster. However, in the dynamic
SBM, each cluster j may have a different change proba-
bility εj , implying that they may benefit from using dif-
ferent decay rates λ. We thus introduce a decay matrix
Λ ∈ [0, 1]K×K that gives a different decay rate to connec-
tions between each pair of clusters:

Ât = (1−ΘtΛ(Θt)
T)� Ât−1 + ΘtΛ(Θt)

T �At. (7)

Bounding the Relative Error
Our analysis uses Lei, Rinaldo et al. (2015)’s result that the
relative error rate of the Spectral Clustering on the dynamic
SBM at each time t is bounded by the concentration of the
adjacency matrix around its expectation:

E(Θ̂,Θ) . (1 + δ)
n′maxK

nα2n2
minτ

2
‖Â− P‖2, (8)

4610

where n′max and nmin are respectively the second largest and
smallest cluster sizes, and ‖.‖ denotes the spectral norm.

Thus, E(Θ̂,Θ) is determined by the concentration ‖Â −
P‖, where P = Pt = ΘtB(Θt)

T as defined in the SBM
model. To bound this concentration, we consider K diago-
nal blocks of the adjacency matrix Ât, with each block cor-
responding to edges between nodes in a single cluster, after
re-indexing the nodes as necessary. Let Âkt denote the block
matrix corresponding to cluster k, and similarly consider K
blocks P tk of the connection probability matrix Pt. We can

then upper-bound
∥∥∥Âkt − P kt ∥∥∥ in terms of the decay rate:

Proposition 2 (Optimal Decay Rate). The concentration of
each block k is upper-bounded by∥∥∥Âkt − P kt ∥∥∥ . E1(βk) + E2(βk), (9)

where βk denotes the maximum decay rate of class k and

E1(βk) =
√
nαβk, E2(βk) = α

√
n2εk
βk

, (10)

which is minimized when βk =
√
nαεk.

We formally prove this result in our supplementary ma-
terial. The intuition is that if the change probability εk is
larger, we need a higher decay rate to remember less past
information. We thus define the decay rates as

Λjk =

{
min(1,

√
nαεk), j = k

1, j 6= k.
(11)

This decay rate yields almost exact recovery:
Proposition 3 (Almost Exact Recovery). Let λmax denote
the maximum element on the diagonal of Λ. With probabil-
ity at least 1− n−ν for any ν > 0, at any time t we have∥∥∥Ât − Pt∥∥∥ .

√
nαλmax (12)

When K is constant, εk = O
(

logn
n

)
and α = O

(
logn
n

)
,

the relative error is O
(

1

n
1
4 logn

)
, which implies almost ex-

act recovery at time T .

Connection between GCN and Spectral Clustering
We empirically demonstrate that Proposition 2’s decay rate
is optimal by varying the decay rates used in both spec-
tral clustering and the commonly used Graph Convolutional
Network (GCN), which is a first-order approximation of
spectral convolutions on graphs (Kipf and Welling 2016).
A multi-layer GCN has the layer-wise propagation rule:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)), (13)

where Ã = A+IN , IN is the identity matrix, D̃ii =
∑
j Ãij

and W (l) is a layer-specific trainable weight matrix. The ac-
tivation function is σ, typically ReLU (rectified linear units),
with a softmax in the last layer for graph clustering. The
node embedding matrix in the l-th layer is H(l) ∈ RN×D,

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

GCN n=100

GCN n=250

GCN n=500

Spectral n=100

Spectral n=250

Spectral n=500

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

n=100

n=250

n=500

Figure 1: Accuracy and Spectral Norm as we vary n. The
optimal decay rate λ increases with n, as in Proposition 2.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

1,1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2
,2

0.6

0.7

0.8

0.9

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9

1,1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2
,2

0.6

0.7

0.8

0.9

Figure 2: Accuracy as we vary Λ1,1 and Λ2,2. Spectral Clus-
tering(left) and GCN(right) have similar optimal decay ma-
trix. The change probabilities are ε1 = 0.05, ε2 = 0.1.

which contains high-level representations of the graph nodes
transformed from the initial features; H(0) = IN . Figure 1
shows that Spectral Clustering and GCN have qualitatively
similar accuracy on simulated data as we vary the decay
rate λ (the same λ is used for all nodes). As expected from
Eq. (8) and Proposition 2, the optimal decay rate λ increases
as we increase the number of nodes n, as does the value of
λ that minimizes the spectral norm ‖Â − P‖. Although the
optimal decay rate is consistently larger than the one mini-
mizing the spectral norm (which upper-bounds the relative
error as in Eq. (8)), GCN’s accuracy is more correlated with
the spectral norm, which is the first singular value of the
smoothed adjacency matrix.

We then perform a grid search for the optimal decay ma-
trix Λ on simulated data with n = 200 nodes and change
probabilities ε1 = 0.05 and ε2 = 0.1. As shown in Fig-
ure 2, GCN and Spectral Clustering achieve high accuracy.
Cluster 2, which has a higher ε2, has larger decay rate Λ2,2,
as expected from Proposition 2, for both GCN and Spectral
Clustering.

Decay Rates as RNNs
Although searching for the optimal decay matrix in Spectral
Clustering can result in good performance, this method is
expensive: the grid search for the optimal decay matrix can
be time-consuming, and the time complexity of calculating
the spectral norm is O(n3). In this section, we propose two
neural network architectures, RNNGCN and TRNNGCN,
that use a single decay rate λ and decay matrix Λ, respec-
tively, and then show they perform well on simulated data.

RNNGCN The RNNGCN model uses a single decay rate
λ ∈ [0, 1] as the RNN parameter. RNNGCN first uses a Re-
current Neural Network to learn the decay rate, then uses a

4611

Algorithm 1: RNNGCN
Input : Temporal graph (A1, A2, ..., AT),

Membership matrix of training data Θtrain
T

Output: Membership matrix estimate Θ̂T

1 Â = A0, H0 = IN ;
2 for iteration i = 1, ..., I do
3 for t = 2, ..., T do
4 Ât = (1− λ)Ât−1 + λAt
5 end
6 H(1) = σ1(ÂTH

(0)W (1))

7 H(2) = σ2(ÂTH
(1)W (2))

8 CrossEntropyLoss(Htrain
i , Θtrain

T)
9 Backward()

10 end
11 Θ̂T = Onehot(arg max1≤j≤nH

(2)
jk)

two-layer GCN to cluster the weighted graphs. The formal
model is shown in Algorithm 1, where σ1 denotes a ReLU
layer and σ2 is a Softmax layer.

Transitional RNNGCN (TRNNGCN) The TRNNGCN
network is similar to the RNNGCN, but uses a matrix Λ ∈
[0, 1]K×K to learn the decay rates for different pairs of
classes. During the training process, the labels (cluster mem-
berships) of the training nodes are known while the labels of
other nodes remain unknown, so we use the cluster predic-
tion Θ̂i−1 from each iteration i − 1 to determine the decay
rates for each node in iteration i. The TRNNGCN model re-
places the decay method (line 4 of Algorithm 1) with

Ât = (1−Θ̂i−1Λ(Θ̂i−1)T)�Ât−1 +Θ̂i−1Λ(Θ̂i−1)T �Ât,

where � denotes element-wise multiplication. After each it-
eration, it calculates Θ̂i as the input of the next iteration.

Empirical Validation We validate the performance of
RNNGCN and TRNNGCN on data generated by the dy-
namic stochastic block model. Our graph has 200 nodes,
23190 edges, 50 time steps and 2 clusters. The probabilities
of forming an edge between two nodes of the same or dif-
ferent clusters are α = 0.02 and τα = 0.001, respectively,
and a node changes its cluster membership with probability
ε1 = 0.05 and ε2 = 0.1 for clusters 1 and 2 respectively.

Figure 3 compares the RNNGCN and TRNNGCN perfor-
mance with the static Spectral Clustering and GCN methods.
For better visualization, the value at each time step is aver-
aged with the 2 timesteps immediately before and after. The
performance of GCN and Spectral Clustering decreases over
time, as in later timesteps they use accumulated historical
information that may no longer be relevant. RNNGCN and
TRNNGCN show consistently high performance over time,
indicating that they optimally utilize historical information.
On average over time, TRNNGCN leads to 5% accuracy and
AUC (area under the ROC curve) improvement, and a 10%
higher F1-score, than RNNGCN, due to using a lower decay
rate for the class with smaller change probability.

Experiments
In this section, we validate the performance of RNNGCN
and TRNNGCN on real datasets, compared to state-of-the-
art baselines. We first describe the datasets used and the
baselines considered, and then present our results.

Datasets
We conducted experiments on five real datasets, as shown
in Table 1, which have the properties shown in Table 2. All
datasets have edges that form at different times, although
only nodes in DBLP-E change their class (cluster mem-
bership) over time. We include four datasets with separate,
time-varying features associated with each node (DBLP-3,
DBLP-5, Brain and Reddit) to test RNNGCN’s and TRN-
NGCN’s ability to generalize to datasets with node features.

Dataset Nodes Edges Time Steps Classes
DBLP-E 6942 327392 14 2
DBLP-3 4257 23540 10 3
DBLP-5 6606 42815 10 5

Brain 5000 1955488 12 10
Reddit 8291 264050 10 4

Table 1: Real datasets used to evaluate our methods.

Dataset Dynamic Edge Dynamic Class Features
DBLP-E

√ √
×

DBLP-3
√

× 100
DBLP-5

√
× 100

Brain
√

× 20
Reddit

√
× 20

Table 2: Properties of datasets in Table 1.

DBLP-E dataset is extracted from the computer science
bibliography website DBLP1, which provides open biblio-
graphic information on major computer science journals and
conferences. Nodes represent authors, and edges represent
co-authorship from 2004 to 2018. Each year is equivalent to
one timestep, and co-author edges are added in the year a
coauthored paper is published. Labels represent the author
research area (“computer networks” or “machine learning”)
and may change as authors switch their research focus.

DBLP-3 & DBLP-5 use the same node and edge defini-
tions as DBLP-E, but also include node features extracted
by word2vec (Mikolov et al. 2013) from the authors’ pa-
per titles and abstracts. The authors in DBLP-3 and DBLP-5
are clustered into three and five classes (research areas) re-
spectively that do not change over time.

Reddit dataset is generated from Reddit2, a social news
aggregation and discussion website. The nodes represent
posts and two posts are connected if they share keywords.
Node features are generated by word2vec on the post com-
ments (Hamilton, Ying, and Leskovec 2017).

1https://dblp.org
2https://www.reddit.com/

4612

0 10 20 30 40 50

Time Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

GCN

Spectral

RNNGCN

TRNNGCN

0 10 20 30 40 50

Time Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

GCN

Spectral

RNNGCN

TRNNGCN

0 10 20 30 40 50

Time Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1

GCN

Spectral

RNNGCN

TRNNGCN

Figure 3: On simulated data with heterogeneous cluster transition probabilities, TRNNGCN and RNNGCN, which use opti-
mized decay rates to account for historical information, outperform the static GCN and Spectral Clustering methods. TRN-
NGCN slightly outperforms RNNGCN.

Brain dataset is generated from functional magnetic reso-
nance imaging (fMRI) data3. Nodes represent cubes of brain
tissue, and two nodes are connected if they show similar de-
grees of activation during the time period. Node features are
generated by principal component analysis on the fMRI.

Baselines and Metrics
We compare our RNNGCN and TRNNGCN with multiple
baselines. GCN, GAT (Veličković et al. 2017) and Graph-
Sage (Hamilton, Ying, and Leskovec 2017) are supervised
methods that include node features, while Spectral Cluster-
ing is unsupervised without features; all of these methods
ignore temporal information. DynAERNN (Goyal, Chhetri,
and Canedo 2020) is an unsupervised method, and GCNL-
STM (Chen et al. 2018) and EGCN (Pareja et al. 2020) are
supervised methods, which all utilize temporal information
of both graphs and features. We evaluate the performance of
methods with the standard accuracy (ACC), area under the
ROC curve (AUC) and F1-score classification metrics.

Experiment Settings
We divide each dataset into 70% training/ 20% validation/
10% test points. Each method uses two hidden Graph Neural
Network layers (GCN, GAT, GraphSage, etc.) with the layer
size equal to the number of classes in the dataset. We add a
dropout layer between the two layers with dropout rate 0.5.
We use the Adam optimizer with learning rate 0.0025. Each
method is trained with 500 iterations.

For static methods (GCN, GAT, GraphSage and Spectral
Clustering) we first accumulate the adjacency matrices of
graphs at each time step, then cluster on the normalized
accumulated matrix. DynAERNN, GCNLSTM, and EGCN
use the temporal graphs and temporal node features as in-
put. For our RNNGCN and TRNNGCN, we use the tempo-
ral graphs and the node features at the last time step as input.
The code of all methods and datasets are publicly available4.

Experimental Results
Node Classification with Temporal Labels We first com-
pare the predictions of temporally changing labels in DBLP-
E. Figure 4 shows the number of authors in the Machine

3https://tinyurl.com/y4hhw8ro
4https://github.com/InterpretableClustering/InterpretableClustering

2004 2006 2008 2010 2012 2014 2016 2018

Year

0

0.02

0.04

0.06

0.08

0.1

0.12

C
h
a
n
g
e
 P

ro
b
a
b
ili

ty
 o

f
A

u
th

o
rs

Machine Learning

Computer Network

2005 2010 2015

Year

2000

3000

4000

5000

N
u
m

b
e
r

o
f
A

u
th

o
rs

Figure 4: The two classes in DBLP-E exhibit different
change probabilities, with computer network authors more
likely to change their labels to machine learning. This trend
accelerates after 2014.

Learning and Computer Network fields in the years 2004-
2018, as well as the probabilities that authors in each class
change their labels. We observe that (i) the classes have dif-
ferent change probabilities (with users more likely to move
from computer networks to machine learning) and (ii) the
change probabilities evolve over time, with more users mi-
grating to machine learning since 2013. This dataset thus
allows us to test RNNGCN’s and TRNNGCN’s abilities to
adapt the optimal decay rate for each class.

Figure 5 shows the performance of RNNGCN and TRN-
NGCN in DBLP-E. Similar to Figure 3’s result on the sim-
ulated data, GCN’s performance decreases over time as the
accumulated effect of class change increases. Spectral Clus-
tering consistently performs poorly since it cannot learn the
high-dimensional patterns of the DBLP-E graph. RNNGCN
and TRNNGCN maintain good performance and fully uti-
lize the temporal information. As the two classes have dif-
ferent change probabilities, TRNNGCN learns a better de-
cay rate and performs better. We further show the average
accuracy, AUC, and F1-score for each baseline method at
each timestep; RNNGCN and TRNNGCN consistently out-
perform the other baselines. GCNLSTM comes the closest
to matching their performance. GCNLSTM uses a LSTM
layer to account for historical information, which is similar

4613

2006 2008 2010 2012 2014 2016 2018

Time Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u
ra

c
y

GCN

Spectral

RNNGCN

TRNNGCN

2006 2008 2010 2012 2014 2016 2018

Time Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
U

C

GCN

Spectral

RNNGCN

TRNNGCN

2006 2008 2010 2012 2014 2016 2018

Time Step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
1

GCN

Spectral

RNNGCN

TRNNGCN

Accuracy AUC F1
0

0.2

0.4

0.6

0.8

1
GCN

GAT

GraphSage

Spectral

DynAERNN

GCNLSTM

EGCN

RNNGCN

TRNNGCN

Figure 5: On DBLP-E data, TRNNGCN and RNNGCN outperform the static GCN and spectral clustering methods and show
better performance over time, indicating that they can optimize their decay rates to account for historical information. TRN-
NGCN slightly outperforms RNNGCN.

DBLP-3 DBLP-5 Reddit Brain
ACC AUC F1 ACC AUC F1 ACC AUC F1 ACC AUC F1

GCN 71.6 62.2 35.8 64.9 51.0 58.7 31.0 24.5 47.4 35.2 25.0 80.3
GAT 70.9 59.4 57.8 62.3 48.2 51.4 16.8 4.8 50.0 34.6 26.4 81.6

GraphSage 74.5 63.6 55.0 66.5 53.9 55.1 29.2 20.7 42.5 44.2 41.9 86.7
Spectral 45.7 51.6 51.2 43.8 45.6 51.3 30.1 24.1 51.7 42.7 41.7 68.1

DynAERNN 48.1 54.2 50.8 33.1 39.1 51.2 31.1 31.7 54.1 20.5 20.3 55.6
GCNLSTM 74.5 63.6 48.4 66.5 53.2 54.6 31.9 25.5 46.1 38.8 32.9 85.9

EGCN 72.3 60.7 48.1 63.2 50.6 53.2 28.3 12.5 50.0 28.6 26.1 73.7
RNNGCN 75.9 68.0 66.7 65.7 55.4 58.6 33.6 20.5 49.7 41.0 38.6 84.7

TRNNGCN 78.0 72.1 73.8 67.4 57.9 63.5 33.6 25.6 53.2 43.8 42.4 85.7

Table 3: TRNNGCN consistently achieves the best (bold) or second-best (bold italics) accuracy (ACC), area under the ROC
curve (AUC), and F1 score compared to baseline algorithms on four temporal datasets.

to our methods but lacks interpretability as the LSTM op-
erates on the output of the GCN layer (which is not readily
interpretable) instead of the original graph adjacency infor-
mation. We use a RNN instead of LSTM layer in our algo-
rithms for computational efficiency.

Node Classification with Temporal Features Although
our analysis is based on dynamic networks without features,
Table 3’s performance results demonstrate the applicability
of our RNNGCN and TRNNGCN algorithms to the DBLP-
3, DBLP-5, Brain, and Reddit datasets with node features.
TRNNGCN achieves the best or second-best performance
consistently on all datasets, even outperforming EGCN and
GCNLSTM, which unlike TRNNGCN fully utilize the his-
torical information of node features. While GraphSAGE
shows good accuracy, AUC, and F1-score on the Brain
dataset, no other baseline method does well across all three
metrics for any other dataset. RNNGCN performs second-
best on DBLP-3 but worse on the other datasets, likely be-
cause those datasets have more than three classes, which
would likely have different optimal decay rates. TRNNGCN
can account for these differences, but RNNGCN cannot.

We further highlight the importance of taking into account
historical information by noting that the static baselines
(GCN, GAT, GraphSAGE, and spectral clustering) gener-
ally perform poorly compared to the dynamic baselines (Dy-
nAERNN, GCNLSTM, EGCN). DynAERNN can perform
significantly worse than GCNLSTM and EGCN, likely be-
cause it is an unsupervised method that cannot take advan-
tage of labeled training data. Thus, RNNGCN and TRN-
NGCN’s good performance is likely due to their ability to

optimally take advantage of historical graph information,
even if they cannot use historical node feature information.

Conclusion
This work proposes RNNGCN and TRNNGCN, two new
neural network architectures for clustering on dynamic
graphs. These methods are inspired by the insight that RNNs
progressively decrease the weight placed on their inputs over
time according to a learned decay rate parameter. This decay
rate can in turn be interpreted as the importance of historical
connection information associated with each community or
cluster in the graph. We show that decaying historical con-
nection information can achieve almost exact recovery when
used for spectral clustering on dynamic stochastic block
models, and that the RNN decay rates on simulated data
match the theoretically optimal decay rates for such stochas-
tic block models. We finally validate the performance of RN-
NGCN and TRNNGCN on a range of real datasets, showing
that TRNNGCN consistently outperforms static clustering
methods as well as previously proposed dynamic clustering
methods. This performance is particularly remarkable com-
pared to dynamic clustering methods that account for histor-
ical information of both the connections between nodes and
the node features; TRNNGCN ignores the historical feature
information. We plan to investigate neural network architec-
tures that reveal the importance of these dynamic node fea-
tures in our future work. Much work also remains on better
establishing the models’ interpretability.

4614

Acknowledgements
This research was partially supported by NSF grant CNS-
1909306. The authors would like to thank Jinhang Zuo,
Mengqiu Teng and Xiao Zeng for their inputs to the work.

References
Abbe, E. 2017. Community detection and stochastic block
models: recent developments. The Journal of Machine
Learning Research 18(1): 6446–6531.
Agarwal, P.; Verma, R.; Agarwal, A.; and Chakraborty, T.
2018. DyPerm: Maximizing permanence for dynamic com-
munity detection. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, 437–449. Springer.
Chen, J.; Xu, X.; Wu, Y.; and Zheng, H. 2018. Gc-lstm:
Graph convolution embedded lstm for dynamic link predic-
tion. arXiv preprint arXiv:1812.04206 .
Chi, Y.; Song, X.; Zhou, D.; Hino, K.; and Tseng, B. L. 2009.
On evolutionary spectral clustering. ACM Transactions on
Knowledge Discovery from Data (TKDD) 3(4): 1–30.
Dehmamy, N.; Barabási, A.-L.; and Yu, R. 2019. Under-
standing the representation power of graph neural networks
in learning graph topology. In Advances in Neural Informa-
tion Processing Systems, 15413–15423.
Goyal, P.; Chhetri, S. R.; and Canedo, A. 2020. dyn-
graph2vec: Capturing network dynamics using dynamic
graph representation learning. Knowledge-Based Systems
187: 104816.
Guo, T.; Lin, T.; and Antulov-Fantulin, N. 2019. Exploring
interpretable lstm neural networks over multi-variable data.
arXiv preprint arXiv:1905.12034 .
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In Advances in neu-
ral information processing systems, 1024–1034.
Holland, P. W.; Laskey, K. B.; and Leinhardt, S. 1983.
Stochastic blockmodels: First steps. Social networks 5(2):
109–137.
Keriven, N.; and Vaiter, S. 2020. Sparse and Smooth: im-
proved guarantees for Spectral Clustering in the Dynamic
Stochastic Block Model.
Kipf, T. N.; and Welling, M. 2016. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907 .
Kumar, A.; Sabharwal, Y.; and Sen, S. 2004. A simple linear
time (1+/spl epsiv/)-approximation algorithm for k-means
clustering in any dimensions. In 45th Annual IEEE Sympo-
sium on Foundations of Computer Science, 454–462. IEEE.
Kumar, S.; Zhang, X.; and Leskovec, J. 2019. Predicting
dynamic embedding trajectory in temporal interaction net-
works. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining,
1269–1278.
Lei, J.; Rinaldo, A.; et al. 2015. Consistency of spectral clus-
tering in stochastic block models. The Annals of Statistics
43(1): 215–237.

Liang, X.; Lin, L.; Shen, X.; Feng, J.; Yan, S.; and Xing,
E. P. 2017. Interpretable structure-evolving lstm. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 1010–1019.
Mandaglio, D.; and Tagarelli, A. 2019. Dynamic consensus
community detection and combinatorial multi-armed bandit.
In 2019 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), 184–
187. IEEE.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781 .
Pareja, A.; Domeniconi, G.; Chen, J.; Ma, T.; Suzumura,
T.; Kanezashi, H.; Kaler, T.; Schardl, T. B.; and Leiserson,
C. E. 2020. EvolveGCN: Evolving Graph Convolutional
Networks for Dynamic Graphs. In AAAI, 5363–5370.
Pensky, M.; Zhang, T.; et al. 2019. Spectral clustering in
the dynamic stochastic block model. Electronic Journal of
Statistics 13(1): 678–709.
Qin, T.; and Rohe, K. 2013. Regularized spectral cluster-
ing under the degree-corrected stochastic blockmodel. In
Advances in neural information processing systems, 3120–
3128.
Serrano, S.; and Smith, N. A. 2019. Is attention inter-
pretable? arXiv preprint arXiv:1906.03731 .
Stella, X. Y.; and Shi, J. 2003. Multiclass spectral cluster-
ing. In Proceedings Ninth IEEE International Conference
on Computer Vision, 313–319. IEEE.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903 .
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE Transactions on Neural Networks and Learn-
ing Systems .
Xu, D.; Cheng, W.; Luo, D.; Liu, X.; and Zhang, X. 2019a.
Spatio-Temporal Attentive RNN for Node Classification in
Temporal Attributed Graphs. In IJCAI, 3947–3953.
Xu, D.; Ruan, C.; Korpeoglu, E.; Kumar, S.; and Achan,
K. 2019b. Self-attention with functional time representa-
tion learning. In Advances in Neural Information Processing
Systems, 15915–15925.
Xu, D.; Ruan, C.; Korpeoglu, E.; Kumar, S.; and Achan,
K. 2020. Inductive Representation Learning on Temporal
Graphs. arXiv preprint arXiv:2002.07962 .
Xu, K. 2015. Stochastic block transition models for dynamic
networks. In Artificial Intelligence and Statistics, 1079–
1087.
Xu, K. S.; Kliger, M.; and Hero, A. O. 2010. Evolution-
ary spectral clustering with adaptive forgetting factor. In
2010 IEEE International Conference on Acoustics, Speech
and Signal Processing, 2174–2177. IEEE.
Yang, T.; Chi, Y.; Zhu, S.; Gong, Y.; and Jin, R. 2011. De-
tecting communities and their evolutions in dynamic social

4615

networks—a Bayesian approach. Machine learning 82(2):
157–189.
Ying, Z.; Bourgeois, D.; You, J.; Zitnik, M.; and Leskovec, J.
2019. Gnnexplainer: Generating explanations for graph neu-
ral networks. In Advances in neural information processing
systems, 9244–9255.
Zhang, M.; and Chen, Y. 2018. Link prediction based on
graph neural networks. In Advances in Neural Information
Processing Systems, 5165–5175.
Zhuang, D.; Chang, M. J.; and Li, M. 2019. DynaMo: Dy-
namic community detection by incrementally maximizing
modularity. IEEE Transactions on Knowledge and Data En-
gineering .

4616

