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Abstract

Graph Convolutional Network (GCN) has been widely ap-
plied in transportation demand prediction due to its excellent
ability to capture non-Euclidean spatial dependence among
station-level or regional transportation demands. However,
in most of the existing research, the graph convolution was
implemented on a heuristically generated adjacency matrix,
which could neither reflect the real spatial relationships of
stations accurately, nor capture the multi-level spatial depen-
dence of demands adaptively. To cope with the above prob-
lems, this paper provides a novel graph convolutional network
for transportation demand prediction. Firstly, a novel graph
convolution architecture is proposed, which has different ad-
jacency matrices in different layers and all the adjacency ma-
trices are self-learned during the training process. Secondly, a
layer-wise coupling mechanism is provided, which associates
the upper-level adjacency matrix with the lower-level one. It
also reduces the scale of parameters in our model. Lastly, a
unitary network is constructed to give the final prediction re-
sult by integrating the hidden spatial states with gated recur-
rent unit, which could capture the multi-level spatial depen-
dence and temporal dynamics simultaneously. Experiments
have been conducted on two real-world datasets, NYC Citi
Bike and NYC Taxi, and the results demonstrate the superi-
ority of our model over the state-of-the-art ones.

Introduction
Recently Intelligent Transportation System (ITS) has be-
come a hot research spot, which is mainly contributed by
the two following factors: 1) the rapid development of urban
transportation, and 2) the wide application of big data tech-
nology in transportation information system. Even though,
there are still several important problems that remain to be
dug into, such as traffic environment monitoring, travel route
recommendation, in which transportation demand prediction
is the most essential and crucial issue. By obtaining the pre-
cise number of the demand in each region in advance, the
transport resource can be pre-allocated and re-balanced to
maximize the transportation capacity, and residents will be
provided with a better service in daily travel.

Due to the importance of transportation demand predic-
tion, many efforts have been made in this field in the past
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Figure 1: A visual comparison of CGC with other GCNs.

few years. The development of mainstream could be divided
into three stages: 1) The researches in the early time em-
ployed the empirical statistical analysis which mainly focus
on forecasting the demand in a specific region instead of the
whole city (Moreira-Matias et al. 2013; Liu et al. 2016), and
the incapability of capturing spatial and temporal correla-
tion simultaneously leads to relatively low prediction accu-
racy. 2) Recently, deep learning grows up quickly and gives
us a new solution of modeling spatio-temporal correlations.
By treating the entire city as an image and partitioning it into
several grids, researchers employ Convolutional Neural Net-
work (CNN) to extract spatial correlations (Zhang, Zheng,
and Qi 2017) and Recurrent Neural Network (RNN) to ex-
tract temporal correlations (Yao et al. 2018), which makes
a huge progress on the formalization. However, aggregating
with neighbors in space makes CNN-based methods insen-
sitive to long-distance transition patterns and only fit for Eu-
clidean spatial relationship. 3) Graph convolutional network,
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a generalization of CNN, is fit to deal with non-Euclidean
data naturally. Due to topological structure of road networks,
it has been successfully and widely applied in transporta-
tion field. Li et al. (2017) first extracted spatial dependency
with diffusion graph convolution network in traffic forecast-
ing problem. Yu, Yin, and Zhu (2017) combined GCN with
casual convolutional network, and stacked the blocks to cap-
ture spatio-temporal dependence simultaneously.

Though GCN has demonstrated its effectiveness in trans-
portation prediction problem, there are still four important
issues which have not been discussed elaborately: 1) The
adjacency matrix which determines the aggregation manner
in the graph convolutional network is mostly fixed and gen-
erated by heuristic methods according to spatial distance or
network connectivity, which cannot capture the genuine spa-
tial dependence. 2) Existing methods ignore the hierarchical
dependence of transportation demand prediction. For exam-
ple, a sudden rainstorm causes the global reduction of shar-
ing bike usage, but a congestion led by traffic accident can
only make a local impact. 3) Mainly following the perspec-
tive of graph signal processing, current graph convolution
approaches tend to smooth nodes’ input signals. In this situ-
ation, it is difficult for stacked graph convolution layers with
only one adjacency matrix to obtain multi-level representa-
tions of transportation demand efficiently. 4) The represen-
tations in different layers contributing to the final transporta-
tion demand should not be static but dynamic over time. For
example, a traffic emergency may raise the influence of low-
level features. Obviously, the above four problems could be
exploited to improve current demand prediction research,
which has been rarely discussed in existing research.

To cope with aforementioned issues, a novel deep learn-
ing framework named Coupled Layer-wise Convolutional
Recurrent Neural Network (CCRNN) is proposed. Specifi-
cally, to address the problem that it is difficult for the popular
GCNs to capture multi-level spatial dependence efficiently
and accurately, we propose a novel graph convolution ar-
chitecture, Coupled Layer-wise Graph Convolution (CGC),
with self-learned adjacency matrices varying from layer to
layer. Figure 1 shows a visual comparison between CGC
and several popular graph convolutional networks. Further-
more, by modeling the layer-wise topological structure cor-
relations, we provide a coupled mapping mechanism to im-
plement this graph convolution structure at a small com-
putational cost. The extracted representations are attached
different importance by a multi-level aggregation module.
Finally, the above components are fused with a recurrent
unit to capture spatio-temporal correlations simultaneously.
In summary, this paper has the following contributions:

• A novel graph convolution architecture is proposed to
extract multi-level spatial dependence adaptively. This
structure has different adjacency matrices in different lay-
ers and all adjacency matrices are self-learned during the
training process.

• A layer-wise coupling mechanism is proposed to bridge
the upper-level adjacency matrix with the lower-level one
according to the hidden correlations of topological struc-
tures in different layers. It also reduces computational

costs during the training process.

• A unitary prediction framework is proposed to make the
final prediction by integrating the spatial hidden states
with gated recurrent unit in a sequence to sequence ar-
chitecture, where the spatial hidden states are obtained by
aggregating multi-level demand dependence.

Related Work
In this section, we review the literature related to our work
from the perspectives of transportation demand prediction
and graph convolution.

Transportation Demand Prediction
Huge efforts have been made in traffic prediction due to
the years of continuous research. In the early time, the at-
tention was mainly paid to combining data mining meth-
ods and empirical statistical analysis (Moreira-Matias et al.
2013; Liu et al. 2016; Tong et al. 2017). Those methods
have limited researched region and spatio-temporal corre-
lations could not be captured simultaneously. Deep learn-
ing methods provide a new perspective to deal with non-
linear relations. Lv et al. (2014) used a SAE (stacking au-
toencoders) to extract representations. Zhang, Zheng, and Qi
(2017) treated the demands in the whole city as an image at
each time step, and leveraged popular models in CV field at
that time, residual network, to capture correlations between
different grids. Following this line, Yao et al. (2018) pro-
posed a multi-view network incorporating CNN and Long
Short-Term Memory (LSTM) to capture sptatio-temporal
correlations simultaneously. Zhou et al. (2018) clustered the
demand snapshots to select representations. Ye et al. (2019)
explored the correlations between different modes of trans-
portation and made a co-prediction. However, it is hard for
CNN-based methods to capture long-distance transition pat-
terns, which makes graph convolutional network step onto
the stage (Yu, Yin, and Zhu 2017; Bai et al. 2019; Yu et al.
2020). Li et al. (2017) unified diffusion convolutional layer
with Gated Recurrent Unit (GRU) in an encoder-decoder ar-
chitecture. Chen et al. (2019) explored the correlations of
both nodes and edges with two types adjacency matrices. Yu
et al. (2019) proposed a 3D graph convolutional network. It
is worth mentioning that Wu et al. (2019b) employed an ran-
dom initialized adaptive adjacency matrix to capture the hid-
den spatial dependency precisely. However, it is difficult for
grid-based data incorporating with graph convolution based
methods to get satisfying results.

Graph Convolutional Network
Graph convolutional network which generalizes convolu-
tional neural network to non-Euclidean data has received in-
creasing attention over past few years. Bruna et al. (2013)
extended the convolution network to graph-based data. Def-
ferrard, Bresson, and Vandergheynst (2016) reduced the
computational cost with Chebyshev polynomials. A first-
order Chebyshev polynomials approximation was intro-
duced by Kipf and Welling (2016).

Graph convolutional networks fall into two main cate-
gories, spatial-based and spectral-based (Wu et al. 2020).
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Spatial-based methods update information by designing dif-
ferent strategies to aggregate features of their neighbors
(Hamilton, Ying, and Leskovec 2017). Veličković et al.
(2017) employed attention mechanisms to learn weights be-
tween two nodes. Spectral-based methods treat graph con-
volution operation as removing noises from graph signal,
and the key to this stream is the structure and capacity of
the filter. Along this line, Chiang et al. (2019) weakened the
influence of neighbors by adding an identity matrix to adja-
cency matrix. Xu et al. (2019) enhanced low-frequency fil-
ters with the heat kernel. Li et al. (2018) learned an adaptive
residual Laplacian matrix with generalized Mahalanobis dis-
tance. However, they all leverage the initial adjacency ma-
trix and its variants, which fails to capture multi-level de-
pendence efficiently and accurately.

Preliminaries
In this section, we present several definitions and the prob-
lem formalization.

Station-level Demand Prediction
Transportation Station. The modes of transportation could
be divided into two categories, station-based and station-
less. For the station-based transportation, such as bus and
subway, it is intuitive to be formalized as graph structure by
denoting each station as a node. For the station-less trans-
portation, such as taxi and sharing bike, although the loca-
tions of passengers’ arrival and departure are discrete, they
tend to gather around certain places. For example, there are
many taxi order requests at the main entrance of a university,
which forms a virtual station naturally (Du et al. 2020). Dis-
covering potential stations can help to capture transportation
demand features and make predictions more accurately. It is
worth mentioning that most recent deep learning based de-
mand prediction methods partition the city into grids to meet
the requirement of CNN. We employ a Density Peak Clus-
tering (DPC) (Rodriguez and Laio 2014) based method to
discover virtual stations.

Adjacency Matrix. Given a graph G = (V,E), we de-
note V as the set of nodes and E as the set of edges. In the
transportation system, the stations correspond to the nodes
V in study regions. At time step t, the graph G has a feature
matrix Xt ∈ RN×d where d is the input feature dimension
andN is the number of nodes. Given graph signals of τ time
steps, we aim at obtaining an adjacency matrixA ∈ RN×N

with a data-driven method to complete the definition of G.
The mapping function F1 is described as:

[Xta:ta+τ−1]
F1−−→ A, (1)

where ta denotes the first time step in this adjacency matrix
generating problem.

Transportation Demand Prediction. At time step t,
given the graph G and P steps historical graph signals, we
intend to obtain a mapping function F2 to forecast next Q
steps graph signals. This can be defined as:

[Xt−P+1:t, G]
F2−−→ Xt+1:t+Q, (2)

where Xt+1:t+Q ∈ RQ×N×d and Xt−P+1:t ∈ RP×N×d.

Graph Convolutional Network
Given a graph G = (V,E), we denote Â as the normalized
adjacency matrix:

Â = D−1A, (3)
where A is the adjacency matrix, D is a diagonal matrix of
node degrees,Dii =

∑
jAij . Following (Li et al. 2017), we

remove the activation function and model the diffusion pro-
cess with K steps under undirected graph structure, which
leads to the final feature propagation equation:

X ?G gθ =
K∑
i=0

(Â)iXθi, (4)

where gθ is the filter with the parameters θ, and X is the
input signals.

An Unifying View of the Existing GCNs. Spectral-based
graph convolutional network research mainly focuses on the
definition of convolution filter gθ . As illustrated in Figure 1,
(a) GCN introduces a first-order Chebyshev polynomials fil-
ter approximation (Kipf and Welling 2016), which has been
widely adopted; (b) GIN (Graph Isomorphism Network) is
constructed with an added weighted identity matrix on the
adjacency matrix (Xu et al. 2018). They proved graph convo-
lutional network is as powerful as Weisfeiler-Lehman (WL)
graph isomorphism test (Weisfeiler and Lehman 1968); (c)
SGC (Simple Graph Convolution) simplifies the multi-layer
graph convolutional network by multiplying the initial adja-
cency matrix by itself k times (Wu et al. 2019a); (d) gfNN
(graph filter Neural Network) adds an activation function
and a mapping function on the basis of SGC in order to
model non-linear correlations (NT and Maehara 2019); (e)
MixHop explores the latent representations of the immedi-
ate neighbors and further neighbors by mixed powers of the
adjacency matrix (Abu-El-Haija et al. 2019).

Those researches employed graph convolution with the
initial adjacency matrix and its high powers, which makes
it difficult to capture multi-level dependence efficiently. As
shown in Table 1 (f ), to address this problem, CGC extracts
the hierarchical representations with self-learned adjacency
matrices varying from layer to layer.

Methodology
In this section, we introduce the details of CCRNN. Figure
2 shows the architecture of our proposed method.

Adjacency Matrix Generation
Adjacency matrix is crucial as it determines the aggregation
manner of nodes themselves and their neighbors in graph
convolution. Different from the proposed methods which use
hand-designed features to construct the graph structure in
advance, our adjacency matrix generation method is totally
data-driven, and temporal correlations are extracted.

Given a set of graph signals Xta:ta+τ−1 ∈ Rτ×N×d, we
reshape this 3-D tensor as a 2-D matrix shaped (τ · d)×N .
To capture interior similarity between different stations and
filter the redundant information among stations, we decom-
pose the 2-D matrixXa into two:

Xa = XtXsT , (5)
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Figure 2: The framework of CCRNN.

where Xt,Xs indicate the time-wise and station-wise
matrices. Actually, we use Singular Value Decomposition
(SVD) to decomposeXa in experiments.

A large number of repeated transportation patterns are
hidden in Xa. SVD could filter the redundant information
out by dimension reduction.Xs ∈ RN×ξ contains the com-
pact and high-level representations of each station, where ξ
is the dimension of the stations’ features. We calculate the
similarity of x-th and y-th rows of Xs as their edge weight
in adjacency matrix:

Axy = Similarity(Xs
x,X

s
y), (6)

where Axy indicates the x-th row and y-th column of the
adjacency matrixA. Here we use the Gaussian kernel based
method to estimate the pairwise similarity. The Equation (6)
can be redefined as:

Axy = exp(−
‖Xs

x −Xs
y‖2

ε2
), (7)

where ε is the standard deviation.

Coupled Layer-wise Graph Convolution
Previous works partition the city into regular grids to meet
the requirement of CNN, but the fixed and local receptive
field of CNN makes it hard to capture the features of long-
distance transition and the similarity between regions. The
theory of spectral graph generalizes the convolution oper-
ation from regular gird structure to graph structure. How-
ever, it is still unwise to use graph convolution on gird-based
data to extract high-level representations of each time step
to make precise predictions, because there might be multi-
ple modes of transportation patterns mixed together in one
gird simultaneously. To address this problem, we introduce

a unified graph formalization for station-based and station-
less transportations.

To capture multi-level dependence efficiently and accu-
rately, we propose a novel graph convolutional network,
Coupled Layer-wise Graph Convolution (CGC), which has
different adjacency matrices in different layers. This struc-
ture can be defined recursively:

Z(m+1) = Z(m) ?G g
(m)
θ =

K∑
i=0

(A(m))iZ(m)θ
(m)
i , (8)

where Z(m) represents the input of layer m+ 1. Z(m+1) is
not only the output of layer m+ 1 but also the input of layer
m + 2. The multi-level relationship of nodes is modeled by
A(m) which varies from layer to layer. We use a coupled
mapping function ψ(m) to construct upper-level adjacency
matrix in layer m+ 1:

A(m+1) = ψ(m)(A(m)). (9)

Self-adaptive convolution multiplies two random initial
matrices which does not require any prior knowledge and
matrices are trained end-to-end through stochastic gradient
descent (Wu et al. 2019b). In this way, a new adjacency
matrix is generated to extract hidden spatial dependencies.
However, random initialization brings the difficulty of con-
vergence and numerical instability. To solve this problem,
we initialize the self-adaptive matrix with original graph
structure and employ stochastic gradient descent to optimize
it. The first layer of CGC is defined as:

Z(1) =
K∑
i=0

(A(0))iZ(0)θ
(0)
i , (10)
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where Z(0) = X . The feature matrix X ∈ RN×d at each
time step is fed into the first layer of CGC as input. In this
paper, we employ Equation (3) to normalize the adjacency
matrix generated by Equation (6). The output is taken as
original A(0), and we optimize it with stochastic gradient
descent to discover the real spatial relationships.

However, due to the huge number of nodes, N ×N adja-
cency matrix and ψ obtain high computational costs, which
lead to the over-parameterization in above formulations. To
solve this problem, we decompose A(0) ∈ RN×N into two
small matrices with SVD:

A(0) = E
(0)
1 E

(0)
2

T
, (11)

where E(0)
1 ∈ RN×L is the source node embedding in the

first layer, E(0)
2 ∈ RN×L is the target node embedding, and

L is the representation dimension. The number of trainable
parameters is reduced fromN×N to 2×N×L (N >> L).
Equation (10) can be redefined as:

Z(1) =
K∑
i=0

(E
(0)
1 E

(0)
2

T
)iZ(0)θ

(0)
i . (12)

Additionally, function ψ is implemented by fully connected
layer to model the layer-wise correlations. We share the pa-
rameters of fully connected layers between E1 and E2:

E
(m)
1 =E

(m−1)
1 W (m−1) + b(m−1),

E
(m)
2 =E

(m−1)
2 W (m−1) + b(m−1),

(13)

where E(m)
1 and E(m)

2 denote the source node embedding
and target node embedding in m-th layer. W (m−1) and
b(m−1) represent the weight and bias. To simplify the model,
the feature dimensions of E1 and E2 in different layers are
all set as L. The parameter number of each coupled mapping
is reduced to L× (L+ 1).

According to Equation (8) and (13), the mathematical ex-
pression of CGC can be redefined recursively as:

Z(m+1) =
K∑
i=0

(E
(m)
1 E

(m)
2

T
)iZ(m)θ

(m)
i . (14)

It is worth mentioning that only E1,E2 in the first layer are
optimized straightforward by stochastic gradient descent,
and the others are updated by coupled mapping ψ.

Multi-level Aggregation
For gathering the information from all graph convolution
layers rather than extracting from only one fixed layer, we
implement the multi-level aggregation by an attention mech-
anism to select the information which is relatively important
to the current prediction task.

Graph signals’ multi-level representations obtained by
CGC are denoted as Z = {Z(1),Z(2), ...,Z(m), ...,Z(M)},
Z ∈ RM×N×β , where M represents the total number of
graph convolution layers, and β denotes the dimension of
features. The attention scores are calculated by a linear
transformation, and Softmax function helps to normalize the

coefficients. With summing up the outputs of multiplying the
Z and normalized scores, the aggregation is defined as:

α(m) =
exp(Ẑ(m)Wα + bα)∑M
m=1 exp(Ẑ

(m)Wα + bα)
, (15)

h =
M∑
m=1

α(m)Z(m), (16)

where Wα and bα represent the weight and bias in linear
transformation, Ẑ(m) is the flattened version of Z(m), and
α(m) is the attention score of Z(m). h is the final result of
CGC, and the output will be fed into GRU.

Temporal Dependence Modeling
GRU, a simple but powerful variant of RNN, solves the
problem of exploding and vanishing gradient. Following (Li
et al. 2017), we replace the linear transformation in GRU
with the combination of CGC and multi-level aggregation.
The Coupled Layer-wise Convolutional Recurrent Gated
Recurrent Unit (CCGRU) is defined as:

r(t) = σ(Θr ?G [h(t),H(t−1)] + br),

u(t) = σ(Θu ?G [h(t),H(t−1)] + bu),

c(t) = tanh(Θc ?G [h(t), (r(t) �H(t−1))] + bc),

H(t) = u(t) �H(t−1) + (1− u(t))� c(t),

(17)

where h(t) and H(t) represent the result of attention mech-
anism and output of GRU at t time step. � is the Hadamard
product, and σ is the Sigmoid function. Reset gate r(t) helps
to forget dispensable information, and the update gate u(t)

controls the output of GRU at time step t. We denote the con-
volution operation in Equation (14) as ?G, and Θr,Θu,Θc

represent the parameters of corresponding filters.
In multi-step forecasting model, we employ the sequence

to sequence architecture and scheduled sampling strategy
(Li et al. 2017). During the training period, the final state
of the encoder is copied to initialize the decoder, and the
decoder obtains previous ground truth in a decaying proba-
bility to predict. The forecasting results replace the ground
truth observations in the testing step. Along with the last
piece of the puzzle, we finish building Coupled Layer-wise
Convolutional Recurrent Neural Network (CCRNN).

Experiments
In this section, experimental results and detailed analysis
will be presented. The source code is available 1.

Datasets
Experiments are conducted on two real-world datasets col-
lected from NYC OpenData. The two datasets contain order
records of taxi and bike in NYC.
• NYC Citi Bike2: This dataset includes the NYC Citi

bike orders of people daily using. We choose the trans-
action records from April 1st, 2016 to June 30th, 2016
1https://github.com/Essaim/CGCDemandPrediction
2https://www.citibikenyc.com/system-data
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Method NYC Citi Bike NYC Taxi
RMSE MAE PCC RMSE MAE PCC

HA 5.2003 3.4617 0.1669 29.7806 16.1509 0.6339
XGBoost (Chen and Guestrin 2016) 4.0494 2.4690 0.4861 21.1994 11.6806 0.8077

FC-LSTM (Hochreiter and Schmidhuber 1997) 3.8139 2.3026 0.5675 18.0708 10.2200 0.8645
DCRNN (Li et al. 2017) 3.2094 1.8954 0.7227 14.7926 8.4274 0.9122

STGCN (Yu, Yin, and Zhu 2017) 3.6042 2.7605 0.7316 22.6489 18.4551 0.9156
STG2Seq (Bai et al. 2019) 3.9843 2.4976 0.5152 18.0450 9.9415 0.8650

Graph WaveNet (Wu et al. 2019b) 3.2943 1.9911 0.7003 13.0729 8.1037 0.9322
CCRNN 2.8382 1.7404 0.7934 9.5631 5.4979 0.9648

Table 1: Evaluations of CCRNN and baselines on NYC Citi Bike and NYC Taxi.

(91 days). Following information is contained: bike pick-
up station, bike drop-off station, bike pick-up time, bike
drop-off time, trip duration.

• NYC Taxi3: This dataset consists of 35 million taxicab
trip records in New York from April 1st, 2016 to June
30th, 2016. Following information is contained: pick-up
time, drop-off time, pick-up longitude, pick-up latitude,
drop-off longitude, drop-off latitude, trip distance.

Baselines
Following methods are compared and we tune the key hyper-
parameters to make sure that they have the best performance.

• HA: We calculate the average of historical values at pre-
vious time steps as history average.

• XGBoost: XGBoost (Chen and Guestrin 2016) is a
widely used method based on gradient boosting tree.

• FC-LSTM: LSTM (Hochreiter and Schmidhuber 1997)
incorporates with fully connected network.

• DCRNN: Diffusion convolution recurrent neural network
(Li et al. 2017) combines diffusion graph convolution
with GRU in an encoder-decoder manner.

• STGCN: Spatial-temporal graph convolution network
(Yu, Yin, and Zhu 2017) combines graph convolution with
casual convolution.

• STG2Seq: Spatial-temporal graph to sequence model
(Bai et al. 2019) can capture the long-term and the short-
term information.

• Graph WaveNet: Graph WaveNet (Wu et al. 2019b) con-
ducts graph convolution with adaptive adjacency matrix.

Experimental Setup
The researched region is an 8.42km × 14.45km rectan-
gle covering West New York, Manhattan Island and part of
Brooklyn. NYC Citi Bike is dock-based and every depot of
bikes is considered as a station. We filter out the stations
with fewer orders and keep the 250 stations with the most
orders. As for dockless NYC Taxi, their orders are clustered
into 266 virtual stations. The time step length is set to half an
hour, such as 0 : 00am to 0 : 30am, 0 : 30am to 1 : 00am,

3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

1 : 00am to 1 : 30am. Among the last four weeks, the first
two are used for validation, and the last two are for testing.

The demands in all stations are standardized. The fea-
ture dimension D is 2, representing the pick-up demand and
drop-off demand. The historical demand length P is set to
12 and the prediction length Q is 12, too. In the adjacency
matrix generation, to avoid the influence of validation and
testing data, we employ the entire training dataset to learn
stations’ representations. That is to say, the first time step
of generating adjacency matrix ta is 0, and the length τ is
3,011 (the length of training set). The dimension of station
feature ξ is set to 20. In CGC, the number of stacked con-
volution layers M is 3. We use Equation (14) as final con-
volution layer with diffusion steps K = 3. The dimension
of two adaptive matrices L is 50. The hidden states dimen-
sion β is set to 25. Learning rates for NYC Citi Bike and
NYC Taxi datasets are 0.0005 and 0.0015. For training sta-
bility, we initialize the weightW as identity matrix and bias
b as 0 in coupled mapping. All methods are optimized by
Adam algorithm (Kingma and Ba 2014). The model is im-
plemented with the PyTorch framework. We choose the fol-
lowing three evaluation metrics: Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and Pearson Corre-
lation Coefficient (PCC). RMSE between the output and the
ground truth is used as the loss function.

Main Results
Comparison with Baselines. Table 1 shows the compari-
son results with different baselines. We evaluate models on
the multi-step outputs to obtain a global view. Each base-
line is trained for 10 times to obtain an average result. Com-
pared with the performances on NYC Taxi, methods have
relatively smaller RMSE in NYC Citi Bike since NYC Taxi
has a larger demand number. Our method achieves the best
performance in all evaluation metrics on two datasets.

Poor performances of HA, XGBoost, FC-LSTM indicate
the limitation of employing temporal correlations only. Al-
though STGCN has a bigger RMSE than XGBoost on NYC
Taxi, the outputs of STGCN show relatively high correla-
tions on both two datasets. STG2Seq is a novel multi-step
demand prediction architecture which combines long-term
and short-term dependencies with attention mechanism.
However, the zero padding for capturing spatial and tem-
poral correlations simultaneously with simple graph convo-
lution component might lead to the unsatisfactory results for
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STG2Seq. Combining the sequence to sequence architecture
for time series prediction with graph convolution contributes
to the good performance of DCRNN. Benefit from adaptive
adjacency matrix learning, Graph WaveNet also has com-
petitive results. Our method achieves 13.85% and 26.85%
RMSE lower than Graph WaveNet on two datasets, which
indicates CCRNN captures transportation demand depen-
dencies more accurately and efficiently.

Performances on Multi-step Demand Prediction. In the
section, we illustrate the superiority of our model on single
step prediction. Because of the space limitation, we evalu-
ate our methods with several baselines at four specific time
steps. As it is shown in Figure 3, we choose the first step
(0.5 hour), the last step (6.0 hour), and two middle steps (2.5
hour and 4.5 hour).

Figure 3: Comparison on different time steps.

XGBoost has the worst performance in middle-term and
long-term predictions (2.5 hour, 4.5 hour and 6.0 hour) since
its ignorance of spatial correlations. Due to the recurrent pre-
diction architecture, the performance of DCRNN declines
as the forecast time becomes longer. Graph WaveNet out-
puts multi-step demands at once, which leads to stable re-
sults at different time steps, but relatively lower accuracy in
short-term prediction (0.5 hour). Although our model is in
a sequence to sequence manner and suffers from the per-
formance declining, we achieve the lowest RMSE and the
highest PCC.

Ablation Study
We conduct an detailed ablation study on our method by re-
moving or changing several components. In particular, five
variants of our model are obtained by 1) No Adaptive: set-
ting E0

1 and E0
2 untrainable, 2) No Coupling: removing the

coupled mapping, 3) Random Init: randomly initializingE0
1

and E0
2 , 4) Distance Init: initializing A0 with the distance

between nodes (Li et al. 2017), 5) PCC Init: initializing A0

Method RMSE MAE PCC

NYC
Citi
Bike

No Adaptive 3.2648 1.9157 0.7143
No Coupling 3.0555 1.8217 0.7702
Random Init. 4.7308 3.0366 0.0204
Distance Init. 2.9718 1.7995 0.7768

PCC Init. 2.9096 1.7729 0.7851
CCRNN 2.8382 1.7404 0.7934

NYC
Taxi

No Adaptive 12.0516 7.2842 0.9404
No Coupling 10.1864 5.8168 0.9594
Random Init. 36.0307 22.2210 0.0065
Distance Init. 10.6882 6.1476 0.9559

PCC Init. 10.0244 5.7927 0.9619
CCRNN 9.5631 5.4979 0.9648

Table 2: Comparison with variants of CCRNN.

with PCC of demand time series (Bai et al. 2019).
As it is shown in Table 2, we could make a conclusion

that the complete CCRNN achieves the best performance
and the adjacency matrix generated by our method contains
the most information. The adaptive and coupled layer-wise
matrices help our model discover more accurate connectivity
information and obtain high-level representations more effi-
ciently. Benefit from those components, although the vari-
ants initialized by the distance between stations and PCC
of the time series obtain higher RMSE than CCRNN, their
performances outperform all baselines in Table 1. Randomly
initializing E0

1 and E0
2 leads to the poor performances with

PCC lower than 0.1. It is necessary for our method to get the
adjacency matrix initialized properly to guide training.

Conclusion
In this paper, we presented a novel transportation demand
prediction model, namely, CCRNN. In particular, to capture
multi-level spatial dependence, we proposed a novel graph
convolution architecture, CGC. The adjacency matrices in
CGC were self-learned and varied from layer to layer. Fur-
thermore, a layer-wise coupling mechanism was employed
to bridge the upper-level graph structure with the lower-
level one. It also reduced the scale of parameters in our
model. Then, the different importance was attached to ex-
tracted representations by a multi-level aggregation module.
A unitary network fused the above components to make final
predictions. Experiments were conducted on real-world taxi
and sharing bike datasets, and state-of-the-art results were
achieved by CCRNN. This research represented a new per-
spective in graph convolutional network with layer-wise ad-
jacency matrices. In the future, we will study performances
of CGC on other graph convolution tasks.
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