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Abstract

To retrieve more relevant, appropriate and useful documents
given a query, finding clues about that query through the text
is crucial. Recent deep learning models regard the task as a
term-level matching problem, which seeks exact or similar
query patterns in the document. However, we argue that they
are inherently based on local interactions and do not gener-
alise to ubiquitous, non-consecutive contextual relationships.
In this work, we propose a novel relevance matching model
based on graph neural networks to leverage the document-
level word relationships for ad-hoc retrieval. In addition to
the local interactions, we explicitly incorporate all contexts
of a term through the graph-of-word text format. Matching
patterns can be revealed accordingly to provide a more accu-
rate relevance score. Our approach significantly outperforms
strong baselines on two ad-hoc benchmarks. We also exper-
imentally compare our model with BERT and show our ad-
vantages on long documents.

Introduction
Deep learning models have proved remarkably successful
for information retrieval (IR) in recent years. The goal herein
is to rank among a collection of documents the top relevant
ones given a query. By utilising deep neural networks, these
models aim to learn a function that can automatically extract
matching patterns from two pieces of text, that is the query
and the document, end-to-end in place of hand-crafted fea-
tures.

In general, there are two categories of neural matching
architectures. One is called representation-based matching,
which projects the query and document into the same low-
dimensional semantic space and scores according to their
similarity. Examples include DSSM (Huang et al. 2013),
ARC-I (Hu et al. 2014), and CDSSM (Shen et al. 2014). An-
other is called interaction-based matching, which learns rel-
evant patterns directly from the interaction signals between
the query and the document. Examples include DRMM
(Guo et al. 2016), KNRM (Xiong et al. 2017), and PACRR
(Hui et al. 2017, 2018). While the first category primarily
concentrates on the semantics, the second emphasises more
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(a) Query-document pair from Robust04

(b) A local context scheme (c) A graph-based context scheme

Figure 1: An example of relevant query-document pair
with two sentences far apart in the document (some words
omitted). Local context scheme fails to discover the long-
distance matching patterns due to the restriction of con-
text. Graph-based context scheme works since words “Car-
rillo” and “ocular” play an important bridge role to connect
“melanoma” and “treat” together.

on the relevance. As discussed in (Guo et al. 2016), there
are significant differences between semantic matching and
relevance matching. The latter is naturally more suitable for
ad-hoc retrieval since the term-level query-document inter-
action provides more specific matching signals than the en-
semble of semantic representations.

In addition to the term-level query-document interaction,
the document-level word relationships are also essential for
relevance matching yet less explored so far. Taking Fig-
ure 1(a) as an example, when searching with the query
“melanoma treatment”, the retrieved document is expected
to be highly relevant to them as a whole rather than to
any single of “melanoma” or “treatment”. However, query
phrases do not always appear exactly in the document. It
occurs more frequently that they (or their synonyms) dis-
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tribute non-consecutively in any passage and still reserve a
long-distance contextual association. Many works that rely
on local word sequences (Pang et al. 2016, 2017; Hui et al.
2017) fail to discover such dependencies due to the restric-
tion of context, as illustrated in Figure 1(b). They, there-
fore, lead to a low score. We argue that these traditional
term-level interactions are insufficient for relevance match-
ing, and document-level relationships should be considered
explicitly and concurrently.

With recent researches towards graphs for natural lan-
guage processing (NLP), Yao, Mao, and Luo (2019) and
Zhang et al. (2020) have demonstrated the usage of graph
neural networks as a language model and their benefit
in capturing long-distance word dependencies. Such graph
structures could help search for non-consecutive phrases
while maintaining their contextual meaning. For instance,
Figure 1(c) illustrates a connected graph for the docu-
ment, where the words “ocular” and “Carrillo” nearby
“melanoma” and “treat” could serve as a bridge connect-
ing them. The query phrase emerges integrally in this way,
resulting in a strong matching signal. Given the above, we
aim to leverage the graph neural networks to expand the re-
spective field through a flexible text format and assist in the
document-level word relationships for ad-hoc retrieval.

In this work, we propose a Graph-based Relevance
Matching Model (GRMM) to resolve the match problem of
long-distance terms. For a pair of query and document, we
first transform the document into the graph-of-word form
(Rousseau, Kiagias, and Vazirgiannis 2015), where nodes
are unique words, and edges are their co-occurrent link-
ages. Each node feature is assigned with the interaction be-
tween its word and query terms. Instead of raw word fea-
tures, the interaction vector contains substantial matching
signals, which is critical for relevance matching. We then
apply graph neural networks to propagate these matching
signals on the document graph. Thus the query-document
interaction and intra-document word relationships can be
modeled jointly. Finally, to estimate a relevance score, we
adopt a k-max-pooling strategy for each query term to filter
out irrelevant noisy information and feed their features into
a dense neural layer.

We validate GRMM on two representative ad-hoc re-
trieval benchmarks, where empirical results show the effec-
tiveness and rationality of GRMM. We also compare our
model with BERT-based method, where we find that BERT
potentially suffers from the same problem when the docu-
ment becomes long.

To sum up, the contributions of this work are as follows:

• We point out the importance of explicitly considering
long-distance word relationships for ad-hoc retrieval to
enhance the query search.

• We propose a novel graph-based relevance matching
model to address word relationships over the document,
which can learn term-level and document-level matching
signals jointly.

• We conduct comprehensive experiments to examine the
effectiveness of GRMM and understand its working prin-
ciple.

Related Work
In this section, we briefly review some existing neural
matching models and graph neural networks.

Neural Matching Models
Most neural matching models fall within two categories:
representation-focused models, e.g. DSSM (Huang et al.
2013), ARC-I (Hu et al. 2014), CDSSM (Shen et al. 2014),
and interaction-focused models, e.g. MatchPyramid (Pang
et al. 2016), DRMM (Guo et al. 2016), PACRR (Hui et al.
2017), KNRM (Xiong et al. 2017).

The representation-focused models follow the represen-
tation learning approach adopted in many natural language
processing tasks. Queries and documents are projected into
the same semantic space individually. The cosine similar-
ity is then used between their high-level text representations
to produce the final relevance score. For example, DSSM
(Huang et al. 2013), one of the earliest neural relevance
matching models, employs simple dense neural layers to
learn high-level representations for queries and documents.
To enhance the projecting function, ARC-I (Hu et al. 2014)
and CDSSM (Shen et al. 2014) devoted much effort into
convolutional layers later on.

In comparison, interaction-focused methods model the
two text sequences jointly, by directly exploiting detailed
query-document interaction signals rather than high-level
representations of individual texts. For example, DRMM
(Guo et al. 2016) maps the local query-document interac-
tion signals into a fixed-length histogram, and dense neural
layers are followed to produce final ranking scores. Xiong
et al. (2017) and Dai et al. (2018) both use kernel pooling
to extract multi-level soft match features. Many other works
rely on convolutional layers or spatial GRU over interaction
signals to extract ranking features such as (Pang et al. 2016,
2017; Hui et al. 2017, 2018; Fan et al. 2018), which consid-
ers just local word connections.

There are also several studies investigating how to apply
BERT in ranking, e.g. Dai and Callan (2019) and MacA-
vaney et al. (2019). A common approach is to concatenate
the document and query text together and feed them into the
next sentence prediction task, where the ‘[CLS]’ token em-
beds the representation of the query-document pair.

Nevertheless, the majority of existing neural matching
models only take the linear text sequence, inevitably lim-
iting the model capability. To this end, we propose to break
the linear text format and represent the document in a flex-
ible graph structure, where comprehensive interactions can
be explicitly modeled.

Graph Neural Networks
Graph is a kind of data structure which cooperates with a set
of objects (nodes) and their relationships (edges). Recently,
researches of analysing graphs with machine learning have
attracted much attention because of its great representative
power in many fields.

Graph neural networks (GNNs) are deep learning based
methods that operate in the graph domain. The concept of
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Figure 2: The workflow of the GRMM model. The document is first transformed into the graph-of-word form, where the node
feature is the similarity between the word and each query term. Then, graph neural networks are applied to propagate these
matching signals on the document graph. Finally, to estimate a relevance score, top-k signals of each query term are chosen to
filter out irrelevant noisy information, and their features are fed into a dense neural layer.

GNNs is previously proposed by (Scarselli et al. 2008). Gen-
erally, nodes in GNNs update own hidden states by aggregat-
ing neighbourhood information and mixing things up into
a new context-aware state. There are also many variants of
GNNs with various kinds of aggregators and updaters, such
as (Li et al. 2016; Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2017; Veličković et al. 2018).

Due to the convincing performance and high interpretabil-
ity, GNNs have become a widely applied structural analysis
tool. Recently, there are many applications covering from
recommendation (Wu et al. 2019; Li et al. 2019b) to NLP
area, including text classification (Yao, Mao, and Luo 2019;
Zhang et al. 2020), question answering (De Cao, Aziz, and
Titov 2019), and spam review detection (Li et al. 2019a).

In this work, we employ GNNs in the relevance matching
task to extract implicit matching patterns from the query-
document interaction signals, which is intrinsically difficult
to be revealed by existing methods.

Proposed Method
In this section, we introduce thoroughly our proposed
Graph-based Relevance Matching Model (GRMM). We first
formulate the problem and demonstrate how to construct the
graph-of-word formation from the query and document, and
then describe the graph-based matching method in details.
Figure 2 illustrates the overall process of our proposed ar-
chitecture.

Problem Statement
Given a query q and a document d, they are represented
as a sequence of words q =

[
w

(q)
1 , . . . , w

(q)
M

]
and d =[

w
(d)
1 , . . . , w

(d)
N

]
, where w(q)

i denotes the i-th word in the

query, w(d)
i denotes the i-th word in the document, M and

N denote the length of the query and the document respec-
tively. The aim is to compute a relevance score rel(q, d) re-
garding the query words and the document words.

Graph Construction
To leverage the long-distance term dependency information,
the first step is to construct a graph G for the document. It
typically consists of two components denoted as G = (V, E),
where V is the set of vertexes with node features, and E is
the set of edges as the topological structure.

Node features. We represent each unique word instead of
sentence or paragraph in the document as a node. Thus the
word sequence is squeezed to a node set

{
w

(d)
1 , . . . , w

(d)
n

}
,

where n is the number of unique words in the document
(|V| = n ≤ N ). Each node feature is set the interaction
signal between its word embedding and query term embed-
dings. We simply employ the cosine similarity matrix as the
interaction matrix, denoted as S ∈ Rn×M , where each ele-
ment Sij between document node w(d)

i and query term w
(q)
j

is defined as:

Sij = cosine
(
e
(d)
i , e

(q)
j

)
(1)

where e(d)i and e
(q)
j are embedding vectors forw(d)

i andw(q)
j

respectively. In this work, we use word2vec (Mikolov et al.
2013) technique to convert words into dense and semantic
embedding vectors.

Topological structure. In addition to the node feature ma-
trix, the adjacency matrix representing the topological struc-
ture constitutes for the graph as well. The structure gener-
ally describes the connection between the nodes and reveals
their relationships. We build bi-directional connections for
each pair of word nodes that co-occur within a sliding win-
dow, along with the original document word sequence d. By
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restricting the size of the window, every word can connect
with their neighbourhood words which may share related
contextual meanings. However, GRMM differs from those
local relevance matching methods in that the combined word
node can bridge all neighbourhoods together and therefore
possess a document-level receptive field. In other words, it
breaks the constraints of local context and can model the
long-distance word dependencies that we concern. Note that
in the worst case where there are no duplicate words, the
graph would still perform as a sequential and local scheme.

Formally, the adjacency matrix A ∈ Rn×n is defined as:

Aij =

{
count(i, j) if i 6= j
0 otherwise (2)

where count(i, j) is the number of times that the words
w

(d)
i and w

(d)
j appear in the same sliding window. To al-

leviate the exploding/vanishing gradient problem (Kipf and
Welling 2017), we normalise the adjacency matrix as Ã =

D−
1
2AD−

1
2 , where D ∈ Rn×n is the diagonal degree ma-

trix and Dii =
∑

j Aij .

Graph-based Matching
Once we obtain the graph G, we focus on making use of
its node features and structure information with graph neu-
ral networks. In particular, the query-document interaction
and the intra-document word interaction are learned mutu-
ally following the procedures - neighbourhood aggregation,
state update and graph readout.

Neighbourhood Aggregation. As discussed in Section ,
we initialise the node state h0

i with the query-document in-
teraction matrix:

h0
i = Si,: (3)

where ∀i ∈ [1, n] denotes the i-th node in the graph, and Si,:

is the i-th row of the interaction matrix S.
Assume each word node either holds the core information

or serves as a bridge connecting others, it is necessary to
make the information flow and enrich the related fractions
on the graph. Through propagating the state representations
to a node from its neighbours, it can receive the contextual
information within the first-order connectivity as:

ati =
∑

(wi,wj)∈E

ÃijWah
t
j (4)

where ati ∈ RM denotes the summed message from neigh-
bours, t denotes the current timestamp, and Wa is a train-
able transformation matrix to project features into a new
relation space. When aggregate t times recursively, a node
can receive the information propagated from its t-hop neigh-
bours. In this way, the model can achieve high-order ag-
gregation of the query-document interaction as well as the
intra-document interaction.

State Update. To incorporate the contextual information
into the word nodes, we engage a GRU-like function (Li
et al. 2016) to automatically adjust the merge proportion of
its current representation ht

i and the received representation
ati, which is formulated as:

zti = σ (Wza
t
i +Uzh

t
i + bz) (5)

rti = σ
(
Wra

t
i +Urh

t
i + br

)
(6)

h̃t
i = tanh

(
Wha

t
i +Uh

(
rti � ht

i

)
+ bh

)
(7)

ht+1
i = h̃t

i � zti + ht
i �
(
1− zti

)
(8)

where σ(·) is the sigmoid function, � is the Hardamard
product operation, tanh(·) is the non-linear tangent hyper-
bolic activation function, and all W∗,U∗ and b∗ are train-
able weights and biases.

Specifically, rti determines irrelevant information for hid-
den state h̃t

i to forget (reset gate), while zti determines which
part of past information to discard and which to push for-
ward (update gate). With the layer t going deep, high-order
information becomes complicated, and it is necessary to
identify useful dependencies with the two gates. We have
also tried plain updater such as GCN (Kipf and Welling
2017) in our experiments but did not observe satisfying per-
formance due to its simplicity.

Graph Readout. The last phase involves locating the po-
sition where relevance matching happens as a delegate for
the entire graph. Since it is suggested that not all words
make contributions, and some may cause adverse influences
(Guo et al. 2016), here we only select the most informative
features to represent the query-document matching signals.
Intuitively, higher similarity means higher relevance possi-
bility. Hence we perform a k-max-pooling strategy over the
query dimension and select the top k signals for each query
term, which also prevents the model from being biased by
the document length. The formulas are expressed as:

H = ht
1 ‖ ht

2 ‖ . . . ‖ ht
n (9)

xj = topk(H:,j) (10)
where ∀j ∈ [1,M ] denotes the j-th query term, and H:,j is
the j-th column of the feature matrix H.

Matching Score and Training
After obtaining low-dimensional and informative matching
features xj , we move towards converting them into actual
relevance scores for training and inference. Considering dif-
ferent terms may have different importances (Guo et al.
2016), we assign each with a soft gating network as:

gj =
exp (c · idfj)∑M
j=1 exp (c · idfj)

(11)

where gj denotes the term weight, idfj is the inverse docu-
ment frequency of the j-th query term, and c is a trainable
parameter. To reduce the amount of parameters and avoid
over-fitting, we score each query term with a weight-shared
multi-layer perceptron (MLP) and sum them up as the final
result:

rel(q, d) =
M∑
j=1

gj · tanh (Wxxj + bx) (12)

where Wx, bx are trainable parameters for MLP.
Finally, we adopt the pairwise hinge loss which is com-

monly used in information retrieval to optimise the model
parameters:

L
(
q, d+, d−

)
= max

(
0, 1− rel

(
q, d+

)
+ rel

(
q, d−

))
(13)
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where L (q, d+, d−) denotes the pairwise loss based on a
triplet of the query q, a relevant (positive) document sample
d+, and an irrelevant (negative) document sample d−.

Experiments
In this section, we conduct experiments on two widely used
datasets to answer the following research questions:

• RQ1: How does GRMM perform compared with different
retrieval methods (typically traditional, local interaction-
based, and BERT-based matching methods)?

• RQ2: How effective is the graph structure as well as the
long-dependency in ad-hoc retrieval?

• RQ3: How sensitive (or robust) is GRMM with different
hyper-parameter settings?

Experiment Setup
Datasets. We evaluate our proposed model on two
datasets: Robust04 and ClueWeb09-B.

• Robust041 is a standard ad-hoc retrieval dataset with
0.47M documents and 250 queries, using TREC disks 4
and 5 as document collections.

• ClueWeb09-B2 is the ”Category B” subset of the full web
collection ClueWeb09. It has 50M web pages and 200
queries, whose topics are accumulated from TREC Web
Tracks 2009-2012.

Table 1 summarises the statistic of the two collections. For
both datasets, there are two available versions of the query:
a keyword title and a natural language description. In our
experiments, we only use the title for each query.

Baselines. To examine the performance of GRMM, we
take three categories of retrieval models as baselines, includ-
ing traditional (QL and BM25), local interaction-based (MP,
DRMM, KNRM, and PACRR), and BERT-based (BERT-
MaxP) matching methods, as follows:

• QL (Query likelihood model) (Zhai and Lafferty 2004) is
one of the best performing language models that based on
Dirichlet smoothing.

• BM25 (Robertson and Walker 1994) is another effec-
tive and commonly used classical probabilistic retrieval
model.

• MP (MatchPyramid) (Pang et al. 2016) employs CNN to
extract the matching features from interaction matrix, and
dense neural layers are followed to produce final ranking
scores.

• DRMM (Guo et al. 2016) performs a histogram pooling
over the local query-document interaction signals.

• KNRM (Xiong et al. 2017) introduces a new kernel-
pooling technique that extracts multi-level soft matching
features.

1https://trec.nist.gov/data/cd45/index.html
2https://lemurproject.org/clueweb09/

Dataset genre # of qrys # of docs avg. len

Robust04 news 250 0.47M 460
ClueWeb09-B webpages 200 50M 1506

Table 1: Statistics of datasets.

• PACRR (Hui et al. 2017) uses well-designed convolu-
tional layers and k-max-pooling layers over the interac-
tion signals to model sequential word relations in the doc-
ument.

• Co-PACRR (Hui et al. 2018) is a context-aware variant of
PACRR that takes the local and global context of match-
ing signals into account.

• BERT-MaxP (Dai and Callan 2019) applies BERT to pro-
vide deeper text understanding for retrieval. The neural
ranker predicts the relevance for each passage indepen-
dently, and the document score is set as the best score
among all passages.

Implementation Details. All document and query words
were white-space tokenised, lowercased, and lemmatised
using the WordNet3. We discarded stopwords as well as
low-frequency words with less than ten occurrences in
the corpus. Regarding the word embeddings, we trained
300-dimensional vectors with the Continuous Bag-of-Words
(CBOW) model (Mikolov et al. 2013) on Robust04 and
ClueWeb-09-B collections. For a fair comparison, the other
baseline models shared the same embeddings, except those
who do not need. Implementation of baselines followed their
original paper.

Both datasets were divided into five folds. We used them
to conduct 5-fold cross-validation, where four of them are
for tuning parameters, and one for testing (MacAvaney et al.
2019). The process repeated five times with different random
seeds each turn, and we took an average as the performance.

We implemented our method in PyTorch4. The optimal
hyper-parameters were determined via grid search on the
validation set: the number of graph layers t was searched
in {1, 2, 3, 4}, the k value of k-max-pooling was tuned
in {10, 20, 30, 40, 50, 60, 70}, the sliding window size in
{3,5,7,9}, the learning rate in {0.0001, 0.0005, 0.001, 0.005,
0.01}, and the batch size in {8, 16, 32, 48, 64}. Unless oth-
erwise specified, we set t = 2 and k = 40 to report the per-
formance (see Section and for different settings), and the
model was trained with a window size of 5, a learning rate
of 0.001 by Adam optimiser for 300 epochs, each with 32
batches times 16 triplets. All experiments were conducted
on a Linux server equipped with 8 NVIDIA Titan X GPUs.

Evaluation Methodology. Like many ad-hoc retrieval
works, we adopted a re-ranking strategy that is more effi-
cient and practical than ranking all query-document pairs.
In particular, we re-ranked top 100 candidate documents for
each query that were initially ranked by BM25. To evaluate

3https://www.nltk.org/howto/wordnet.html
4Our code is at https://github.com/CRIPAC-DIG/GRMM
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the re-ranking result, we used the normalised discounted cu-
mulative gain at rank 20 (nDCG@20) and the precision at
rank 20 (P@20) as evaluation matrices.

Model Comparison (RQ1)
Table 2 lists the overall performance of different models,
from which we have the following observations:
• GRMM significantly outperforms traditional and local

interaction-based models, and it is comparable to BERT-
MaxP, though without massive external pre-training.
To be specific, GRMM advances the performance of
nDCG@20 by 14.4% on ClueWeb09-B much more than
by 5.4% on Robust04, compared to the best-performed
baselines excluding BERT-MaxP. It is reasonably due
to the diversity between the two datasets. ClueWeb09-
B contains webpages that are usually long and casual,
whereas Robust04 contains news that is correspond-
ingly shorter and formal. It suggests that useful infor-
mation may have distributed non-consecutively, and it is
beneficial to capture them together, especially for long
documents. GRMM can achieve long-distance relevance
matching through the graph structure regardless of the
document length.

• On the contrary, BERT-MaxP performs relatively better
on Robust04 than on ClueWeb09-B. We explain the ob-
servation with the following two points. First, since the
input sequence length is restricted by a maximum of 512
tokens, BERT has to truncate those long documents from
ClueWeb09-B into several passages. It, therefore, loses
relations among different passages, i.e. the long-distance
dependency. Second, documents from Robust04 are gen-
erally written in formal languages. BERT primarily de-
pends on the pre-trained semantics, which could naturally
gain benefit from that.

• Regarding the local interaction-based models, their per-
formances slightly fluctuate around the initial ranking
result by BM25. However, exceptions are DRMM and
KNRM on ClueWeb09-B, where the global histogram and
kernel pooling strategy may cause the difference. It im-
plies that the local interaction is insufficient in ad-hoc re-
trieval task. Document-level information also needs to be
considered.

• Traditional approaches like QL and BM25 remain a
strong baseline though quite straightforward, which
means the exact matching of terms is still of necessity as
Guo et al. (2016) proposed. These models also avoid the
problem of over-fitting, since they do not require parame-
ter optimisation.

Study of Graph Structure (RQ2)
To dig in the effectiveness of the document-level word re-
lationships of GRMM, we conduct further ablation experi-
ments to study their impact. Specifically, we keep all settings
fixed except substituting the adjacency matrix with:
• Zero matrix: Word nodes can only see themselves, and

no neighbourhood information is aggregated. This alter-
native can be viewed as not using any contextual informa-

Model Robust04 ClueWeb09-B

nDCG@20 P@20 nDCG@20 P@20

QL 0.415− 0.369− 0.224− 0.328−

BM25 0.418− 0.370− 0.225− 0.326−

MP 0.318− 0.278− 0.227− 0.262−

DRMM 0.406− 0.350− 0.271− 0.324−

KNRM 0.415− 0.359− 0.270− 0.330−

PACRR 0.415− 0.371− 0.245− 0.278−

Co-PACRR 0.426− 0.378− 0.252− 0.289−

BERT-MaxP 0.469 - 0.293 -

GRMM 0.449 0.387 0.310 0.354

Table 2: Performance comparison of different methods. The
best performances on each dataset and metric are high-
lighted. Significant performance degradation with respect to
GRMM is indicated (-) with p-value ≤ 0.05.

Figure 3: Ablation study on graph structure of GRMM.

tion. The model learns directly from the query-document
term similarity.

• Word sequence, the original document format: No words
are bound together, and they can see themselves as well
as their previous and next ones. This alternative can be
viewed as only using local contextual information. It does
not consider long-distance dependencies.
Figure 3 illustrates the comparison between the original

GRMM and the alternatives. We can see that:
• GRMM (zero matrix) performs inferior to others in

all cases. Since it merely depends on the junior term
similarities, the model becomes approximate to term-
based matching. Without contextualised refinement, some
words and their synonyms can be misleading, which
makes it even hard to discriminate the actual matching
signals.

• GRMM (word sequence) promotes GRMM (zero matrix)
by fusing local neighbourhood information but still under-
performs the original GRMM by a margin of 2-3 points.
This observation resembles some results in Table 2. It
shows that such text format could advantage local context
understanding but is insufficient in more comprehensive
relationships.

• From an overall view of the comparison, the document-
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Figure 4: Influence of different graph layer numbers.

level word relationships along the graph structure is
proved effective for ad-hoc retrieval. Moreover, a rela-
tively greater gain on ClueWeb09-B indicates that longer
texts can benefit more from the document-level respective
field.

Study of Neighbourhood Aggregation (RQ2 &
RQ3)
Figure 4 summarises the experimental performance w.r.t a
different number of graph layers. The idea is to investi-
gate the effect of high-order neighbourhood aggregations.
For convenience, we notate GRMM-0 for the model with
no graph layer, GRMM-1 for the model with a single graph
layer, and so forth for the others. From the figure, we find
that:

• GRMM-1 dramatically boosts the performance against
GRMM-0. This observation is consistent with Sec-
tion that propagating the information within the
graph helps to understand both query-term interac-
tion and document-level word relationships. The ex-
act/similar query-document matching signals are likely to
be strengthened or weakened according to intra-document
word relationships.

• GRMM-2 improves, not as much though, GRMM-1 by in-
corporating second-order neighbours. It suggests that the
information from 2-hops away also contributes to the term
relations. The nodes serving as a bridge can exchange the
message from two ends in this way.

• However, when further stacking more layers, GRMM-3
and GRMM-4 suffer from slight performance degrada-
tion. The reason could be nodes receive more noises from
high-order neighbours which burdens the training of pa-
rameters. Too much propagation may also lead to the is-
sue of over-smooth (Kipf and Welling 2017). A two-layer
propagation seems to be sufficient for capturing useful
word relationships.

• Overall, there is a tremendous gap between using and not
using the contextual information, and the model peaks at
layer t = 2 on both datasets. The tendency supports our
hypothesis that it is essential to consider term-level inter-
action and document-level word relationships jointly for
ad-hoc retrieval.

Figure 5: Influence of different k values of k-max pooling.

Study of Graph Readout (RQ3)
We also explored the effect of graph readout for each query
term. Figure 5 summarises the experimental performance
w.r.t different k values of k-max-pooling. From the figure,
we find that:
• The performance steadily grows from k = 10 to k = 40,

which implies that a small feature dimension may limit
the representation of terms. By enlarging the k value, the
relevant term with more matching signals can distinguish
from the irrelevant one with less.

• The trend, however, declines until k = 70, which implies
that a large feature dimension may bring negative influ-
ence. It can be explained that a large k value may have
a bias to the document length, where longer documents
tend to have more matching signals.

• Overall, there are no apparent sharp rises and falls in the
figure, which tells that GRMM is not that sensitive to
the selection of k value. Notably, almost all performances
(except k = 70) exceed the baselines in Table 2, suggest-
ing that determinative matching signals are acquired dur-
ing the graph-based interactions before feeding into the
readout layer.

Conclusion
In this paper, we introduced a new ad-hoc retrieval approach
GRMM which explicitly incorporates document-level word
relationships into the matching function. The flexible graph
structure allows the model to find more comprehensive
matching patterns and less noises. GRMM exceedingly ad-
vances the performance over various baselines, where it em-
pirically witnesses an increment by a large margin on longer
documents. Further studies exhibited the rationality and ef-
fectiveness of GRMM. There are also possible extensions,
such as training with large click logs (Jiang et al. 2016)
and query descriptions. Another interesting future work is
to extend the current graph with lexical or knowledge graphs
which might contain more useful information.
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