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Abstract

Graph Neural Networks (GNNs) have recently received sig-
nificant research attention due to their superior performance
on a variety of graph-related learning tasks. Most of the cur-
rent works focus on either static or dynamic graph settings,
addressing a single particular task, e.g., node/graph classifi-
cation, link prediction. In this work, we investigate the ques-
tion: can GNNs be applied to continuously learning a se-
quence of tasks? Towards that, we explore the Continual
Graph Learning (CGL) paradigm and present the Experience
Replay based framework ER-GNN for CGL to alleviate the
catastrophic forgetting problem in existing GNNs. ER-GNN
stores knowledge from previous tasks as experiences and re-
plays them when learning new tasks to mitigate the catas-
trophic forgetting issue. We propose three experience node
selection strategies: mean of feature, coverage maximization,
and influence maximization, to guide the process of selecting
experience nodes. Extensive experiments on three benchmark
datasets demonstrate the effectiveness of our ER-GNN and
shed light on the incremental graph (non-Euclidean) structure
learning.

Introduction
Applying deep learning methods for graph data analytics
tasks has recently generated a significant research inter-
est (Wu et al. 2019b). Plenty of models have been de-
veloped to tackle various graph-related learning tasks, in-
cluding node classification, link prediction, broader graph
classifications, etc. Earlier efforts (Perozzi, Al-Rfou, and
Skiena 2014; Tang et al. 2015; Grover and Leskovec 2016)
mainly focused on encoding nodes in networks/graphs1

into a low-dimensional vector space, while preserving both
the topological structure and the node attribute informa-
tion in an unsupervised manner. However, researchers have
recently shifted from developing sophisticated deep learn-
ing models on Euclidean-like domains (e.g., image, text)
to non-Euclidean graph structure data. This, in turn, re-
sulted in many notable Graph Neural Networks (GNNs) –
e.g., GCN (Kipf and Welling 2017), GraphSAGE (Hamilton,
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1Whenever there is no ambiguity, the terms networks and
graphs will be used interchangeably throughout this paper.
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Figure 1: A CGL example. Nodes are papers and links in-
dicate there is a citation between two papers. The task is to
classify each node into several predefined classes (e.g., top-
ics). From left to right is the evolution of the citation net-
work. The histograms in different colors denote the node
classification performance for each corresponding task.

Ying, and Leskovec 2017), GAT (Veličković et al. 2018),
SGC (Wu et al. 2019a), and GIN (Xu et al. 2019).

Despite significant breakthroughs achieved in GNNs, ex-
isting models – in both static and dynamic graph settings
– primarily focus on a single task. Learning multiple tasks
in sequence remains a fundamental challenge for GNNs. A
natural question is how do these popular GNNs perform on
learning a series of graph-related tasks, which is termed as
Continual Graph Learning (CGL) in this paper. Take Cora
citation data as an illustrative scenario, as shown in Figure 1.
In the beginning, there are several nodes in the citation net-
work representing some papers belong to a set of classes. We
can train a node classification model on the current graph.
However, the real-word citation network is naturally evolv-
ing overtime. Consequently, a group of new nodes from new
classes (some are labeled and the others are unlabeled) will
be added into the graph. We expect that the same model can
classify the new nodes. Over time, multiple groups of nodes
have been added to the network at different time-points. We
term classifying each group of nodes as a task and expect
to learn a common node classifier across all tasks, rather
than one for the entire graph. Towards that, we train the
classifier using each set of nodes in a sequential way. How-
ever, this kind of training process can easily lead to the phe-
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nomenon known as catastrophic forgetting (cf. the bottom
of Figure 1), where the classifier is updated and overwritten
after learning a new task – which is likely to result in a sig-
nificant drop on the classification performance of previous
tasks. Note that the classes/labels in one task are different
from those in other tasks. Therefore, this learning process is
often perceived as task-incremental learning (De Lange et al.
2019), which has practical value for many real-world graph-
related applications, such as web-scale recommender sys-
tems (Ying et al. 2018), traffic condition predictions (Chen
et al. 2019), and protein design (Ingraham et al. 2019).

Continual learning, also referred to as lifelong learning,
sequential learning, or incremental learning, has recently
drawn significant research attention. Its objective is to grad-
ually extend the acquired knowledge for future learning,
which is very similar to human intelligence (Chen and Liu
2016). Continual learning focuses on learning multiple tasks
sequentially, targeting at two general goals: (i) learning a
new task does not lead to catastrophic forgetting of for-
mer tasks (Goodfellow et al. 2013) and (ii) the model can
leverage knowledge from prior tasks to facilitate the learn-
ing of new tasks. Catastrophic forgetting is a direct out-
come of a more general problem in neural networks, the
so-called “stability-plasticity” dilemma (Grossberg 2012).
While stability indicates the preservation of previously ac-
quired knowledge, plasticity refers to the ability to integrate
new knowledge. This stability-plasticity trade-off is an es-
sential aspect of both artificial and biological neural intelli-
gent systems. Existing studies in continual learning mainly
focus on image classification and reinforcement learning
tasks, which have yielded several successful methods – e.g.,
iCaRL (Rebuffi et al. 2017), GEM (Lopez-Paz and Ranzato
2017), EWC (Kirkpatrick et al. 2017), SI (Zenke, Poole,
and Ganguli 2017), LwF (Li and Hoiem 2017), and Pack-
Net (Mallya and Lazebnik 2018). However, despite the ex-
tensive studies and promising results, there are surprisingly
few works on CGL. The three major reasons are: (i) graph
(non-Euclidean data) is not independent and identically dis-
tributed data; (ii) graphs can be irregular, noisy and exhibit
more complex relations among nodes; and (iii) apart from
the node feature information, the topological structure in
graph plays a crucial role in addressing graph-related tasks.

To bridge this gap, in this work, we target at solving
the continual learning problem for graph-structured data
through formulating a continual node classification problem.
We also conduct an empirical investigation of catastrophic
forgetting in GNNs. To our knowledge, we are among the
first to analyze graph data in such a sequential learning set-
ting. We present a novel and general Experience Replay
GNN framework (ER-GNN) which stores a set of nodes
as experiences in a buffer and replays them in subsequent
tasks, providing the capability of learning multiple consecu-
tive tasks and alleviating catastrophic forgetting. For the ex-
perience selection, besides two intuitive strategies, we pro-
pose a novel scheme built upon influence function (Hampel
et al. 2011; Koh and Liang 2017), which performed quite
favorably in our evaluation. In summary, we make the fol-
lowing contributions:
• We present the continual graph learning (CGL) paradigm

and formulate a new continual learning problem for node
classification. The main difference from previous GNN
works is that we aim to learn multiple consecutive tasks
rather than a single task.

• We conduct an empirical investigation of the contin-
ual node classification task, demonstrating that existing
GNNs are in the dilemma of catastrophic forgetting when
learning a stream of tasks in succession.

• To address the catastrophic forgetting issue, we develop a
generic experience replay based framework that can be
easily combined with any popular GNNs model. Apart
from two intuitive experience selection schemes, we pro-
pose a novel strategy based on influence function.

• We conduct extensive experimental evaluations using
three benchmarks to demonstrate our framework’s supe-
riority over several state-of-the-art GNNs.

Related Work
Graph Neural Networks
Graph neural networks have recently become powerful mod-
els for learning representations of graphs. Many excellent
GNN models have been proposed to exploit the structural
information underlying graphs. They also potentially bene-
fit many real-world applications, ranging from node classi-
fication and link prediction to traffic prediction and better
recommendation (Kipf and Welling 2017; Gao, Wang, and
Ji 2018; Wu et al. 2019a; Zhang et al. 2019). Most of the
current GNNs can be categorized into two groups: spatial
and spectral methods. Spatial methods aggregate the node
representations directly from its neighborhood (Hamilton,
Ying, and Leskovec 2017; Veličković et al. 2018; Wang et al.
2019), while the basic idea behind spectral approaches is to
learn graph representation in the spectral domain where the
learned filters are based on Fourier transformation (Henaff,
Bruna, and LeCun 2015; Defferrard, Bresson, and Van-
dergheynst 2016; Kipf and Welling 2017). Although these
GNNs have achieved great success in many graph-related
applications, they only learn a single task. That is, they can-
not be generalized to scenarios that require continuous learn-
ing while maintaining the model performance on previous
tasks. In this work, we study a novel but fundamental prob-
lem in graph learning, i.e., how to train a GNN on a sequence
of tasks, each of which is a typical graph-related problem
such as node classification. Most importantly, the learned
GNNs can successfully overcome the forgetting issue and
allow us to retrospect earlier model behavior.

Continual Learning
Several approaches have been proposed to tackle catas-
trophic forgetting over the last few years. We can roughly
distinguish three lines of work: (i) experience replay based
methods; (ii) regularization-based methods; (iii) parame-
ter isolation based methods. The first line of works stores
samples in their raw format or compressed in a genera-
tive model. The stored samples from previous tasks are re-
played when learning new tasks without significant forget-
ting. These samples/pseudo-samples can be used either for
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rehearsal – approximating the joint training of previous and
current tasks – or to constrain the optimization (Lopez-Paz
and Ranzato 2017; Rebuffi et al. 2017). The second line of
works proposes an additional regularization term in the loss
function to consolidate previous knowledge when new data
are available (Kirkpatrick et al. 2017; Li and Hoiem 2017;
Zenke, Poole, and Ganguli 2017). The last line of works
attempts to prevent any possible forgetting of the previous
tasks via models where different parameter subsets are ded-
icated to different tasks. When there is no constraint on the
architecture’s scale, it can be done by freezing the set of pa-
rameters learned after each previous task and growing new
branches for new tasks. Alternatively, under a fixed archi-
tecture, methods proceed by identifying the parts used for
the earlier tasks and masking them out during the training
of the new task (Mallya and Lazebnik 2018; Mallya, Davis,
and Lazebnik 2018; Xu and Zhu 2018). These methods have
achieved great success in image classification and reinforce-
ment learning tasks. However, they have not been investi-
gated on graph-structured data, which motivates our study in
this paper. Our method belongs to the family of experience
replay based methods. Furthermore, we propose a new expe-
rience selection strategy based on influence function (Ham-
pel et al. 2011; Koh and Liang 2017), in addition to two
intuitive experience selection schemes.

Methodology
This section describes the details of our proposed general
framework ER-GNN for continual node classification. We
begin with the formal definition of our problem and the bio-
logical theory of experience replay based methods, followed
by the details of our ER-GNN where three experience selec-
tion strategies are presented.

Problem Definition
The settings of Continual Node Classification (i.e., task in-
cremental learning) problem assume the existence of a col-
lection of tasks: T = {T1, T2, . . . , Ti, . . . , TM} which are
encountered sequentially and each Ti ∈ T (|T | = M) is
a node classification task. Formally, the node classification
task is defined as:
Definition 1 (Node Classification) For each task Ti, we
have training node set Dtr

i and testing node set Dte
i . Node

classification aims to learn a task-specific classifier on Dtr
i

that is excepted to classify each node inDte
i into correct class

(yli ∈ Yi), where Yi =
{
y1
i , y

2
i , . . . , y

l
i, . . . , y

L
i

}
is the label

set and L is the number of classes in task Ti.
In the continual graph learning setting, instead of focusing

on a single task Ti, we need to learn a series of node classi-
fication task set T . That is, our goal is to learn a model fθ
parameterized by θ that can learn these tasks successively.
In particular, we expect the classifier fθ to not only perform
well on the current task but also overcome catastrophic for-
getting with respect to the previous tasks.

Biological Theory
Complementary Learning Systems (CLS) is a well-
supported model of biological learning in human beings.

Algorithm 1 Framework of our ER-GNN.
Input: Continual tasks T : {T1, T2, . . . , Ti, . . . , TM}; Expe-
rience buffer: B; Number of examples in each class added to
B: e.
Output: Model fθ which can mitigate catastrophic forget-
ting of preceding tasks.

1: Initialize θ at random;
2: while continual task T remains do
3: Obtain training set Dtr

i from current task Ti
4: Extract experience nodesB from experience buffer B
5: Compute loss function: L′Ti(fθ,D

tr
i , B)

6: Compute optimal parameters:
θ = argminθ∈Θ(L′Ti(fθ,D

tr
i , B))

7: Select experience nodes E = Select(Dtr
i , e)

8: Add E to experience buffer: B = B ∪ E
9: T = T \ {Ti}

10: end while
11: Return model fθ

It suggests that neocortical neurons learn with an algo-
rithm that is prone to catastrophic forgetting. The neocortical
learning algorithm is complemented by a virtual experience
system that replays memories stored in the hippocampus to
continually reinforce tasks that have not been recently per-
formed (McClelland, McNaughton, and O’Reilly 1995; Ku-
maran, Hassabis, and McClelland 2016). The CLS theory
defines the complementary contribution of the hippocam-
pus and the neocortex in learning and memory, suggesting
that there are specialized mechanisms in the human cog-
nitive system for protecting consolidated knowledge. The
hippocampal system exhibits short-term adaptation and al-
lows for the rapid learning of new information, which will,
in turn, be transferred and integrated into the neocortical sys-
tem for its long-term storage.

Experience Node Replay
Inspired by the CLS theory, we propose a novel and gen-
eral framework dubbed ER-GNN that selects and preserves
experience nodes from the current task and replays them in
future tasks. The framework of our ER-GNN is outlined in
Algorithm 1.

When learning a task Ti, we acquire its training setDtr
i and

testing set Dte
i . Subsequently, we select examples B from

the experience buffer B. Then we feed the training set Dtr
i

and the experience nodes B together to our classifier fθ . A
natural loss function choice for node classification task is the
cross-entropy loss function:

LTi(fθ,D) = −(
∑

(xi,yi)∈D

(yi log fθ(xi)

+ (1− yi) log(1− fθ(xi)))). (1)

Note that the number of nodes in training set Dtr
i is usually

significantly larger than the size of the experience buffer.
Here we need a weight factor β to balance the influence from
Dtr
i and B, averting the model from favoring a particular set
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of nodes. According to our empirical observations, we de-
sign a dynamic weight factor mechanism:

β = |B|/(|Dtr
i |+ |B|), (2)

where |Dtr
i | and |B| are the number of nodes in the train-

ing set of Ti and the size of current experience buffer, re-
spectively. The basic idea of this choice is to dynamically
balance the following two losses:

L′Ti(fθ,D
tr
i , B) =βLTi(fθ,Dtr

i )

+ (1− β)LTi(fθ, B). (3)

Subsequently, we perform parameter updates to obtain the
optimal parameters by minimizing the empirical risk:

θ = argmin
θ∈Θ

(L′Ti(fθ,D
tr
i , B)), (4)

which can be trained with any optimization methods such as
Adma optimizer (Kingma and Ba 2014). After updating the
parameters we need to select certain nodes in Dtr

i as expe-
rience nodes E and add them into the experience buffer B.
E = Select(Dtr

i , e) means choosing e nodes in each class as
experiences of this task which will be cached into experience
buffer B.

The experience selection strategy is crucial to the perfor-
mance of CGL. We now turn our attention to the problem of
identifying which nodes should be stored in the experience
buffer B. In the sequel, we present three schemes based on
mean of feature, coverage maximization, and influence max-
imization.
Mean of Feature (MF): Intuitively, the most representative
nodes in each class are the ones closest to the average fea-
ture vector. Similar to the prior work (Rebuffi et al. 2017)
on continual image classification, for each task we compute
a prototype for each class and choose e nodes that are the
first e nodes closest to this prototype to form the experi-
ences. In some attributed networks, each node has its own
attribute vector xi and embedding vector hi. This means
we can obtain our prototypes based on the average attribute
vector or the average embedding vector. Therefore, in the
MF scheme, we compute the mean of attribute/embedding
vector to produce a prototype and choose e nodes whose at-
tribute/embedding vectors are closest to the prototype:

cl =
1

|Sl|
∑

(xi,yi)∈Sl

xi, cl =
1

|Sl|
∑

(xi,yi)∈Sl

hi, (5)

where Sl is the set of training nodes in class l and cl is the
prototype of nodes in class l. It is worth noting that although
we can calculate prototypes from embedding vectors, we
save the original nodes (i.e., xi) as our experiences since
we will feed these nodes to our model again when learning
new tasks.
Coverage Maximization (CM): When the number of ex-
perience nodes e in each class is small, it might be help-
ful to maximize the coverage of the attribute/embedding
space. Drawing inspiration from the prior work (de Bruin
et al. 2016) on continual reinforcement learning, we hy-
pothesize that approximating a uniform distribution over all

nodes from the training set Dtr
i in each task Ti can facilitate

choosing experience nodes. To maximize the coverage of the
attribute/embedding space, we rank the nodes in each class
according to the number of nodes from other classes in the
same task within a fixed distance d:
N (vi) = {vj |dist(vi − vj) < d,Y(vi) 6= Y(vj)} , (6)

where Y(vi) is the label of node vi,N (vi) is the set of nodes
coming from different classes within distance d to vi. We can
choose e nodes with the lowest |N (vi)| in each class as our
experiences. Similarly to MF, we can maximize the coverage
of either the attribute space or the embedding space, but only
store the original nodes as experience.
Influence Maximization (IM): When training on each task
Ti, we can remove one training node v? from the training set
Dtr
i and obtain a new training setDtr

i?. Then we can calculate
the optimal parameters θ? as:

θ? = argmin
θ∈Θ

(L′Ti(fθ,D
tr
i?, B)), (7)

resulting in a change in model optimal parameters: θ? − θ.
However, obtaining the influence of every removed train-
ing node v? is prohibitively expensive since it requires re-
training the model for each removed node. Fortunately, in-
fluence function (Hampel et al. 2011) provides theoretical
foundations for estimating the change of parameters without
model retraining and has been successfully used in previous
works (Koh and Liang 2017) for explaining the behaviors of
neural networks. The basic idea is to compute the change of
optimal parameters if v? was upweighted by some small ε,
which gives the new parameters:

θε,?
def
= argmin

θ∈Θ
(L′Ti(fθ,D

tr
i , B) + εLTi(fθ, v?)), (8)

where the influence of upweighting v? on the parameters θ
is given by :

Iup,θ(v?)
def
=

∂θε,?
∂ε

∣∣∣∣
ε=0

= −H−1
θ ∇θLTi(fθ, v?), (9)

where Hθ is the Hessian matrix that can be computed as:

Hθ
def
=

1

(|Dtr
i |+ |B|)

(|Dtr
i |+|B|)∑
j=1

∇2
θLTi(fθ, vj), (10)

and Eq.(8) suggests that removing node v? is the same as
upweighting it by ε = −(1/(|Dtr

i |+ |B|)). Thus, we can lin-
early approximate the parameter change of removing v? as
θ? − θ ≈ −(1/(|Dtr

i |+ |B|))Iup,θ(v?), without retraining
the model. However, the Frobenius norm of θ? − θ is usu-
ally too small to find the exact θ?. Besides, calculating the
inverse of matrix Hθ is computationally expensive. To avoid
these issues, we can alternatively estimate the influence of
upweighting a training node v? on the loss for a testing node
vtest:

Iup,loss(v?, vtest)
def
=

∂LTi(fθε,? , vtest)

∂ε

∣∣∣∣
ε=0

= ∇θLTi(fθ, vtest)
∂θε,?
∂ε

∣∣∣∣
ε=0

= −∇θLTi(fθ, vtest)
TH−1

θ ∇θLTi(fθ, v?). (11)
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Therefore, we can sum all testing nodes’ influence
Iup,loss(v?, vtest) to derive the influence of the train-
ing node v?. During this process, one can use im-
plicit Hessian-vector products (HVPs) to approximate
wtest

def
= H−1

θ ∇θLTi(fθ, vtest)
T (Koh and Liang 2017), i.e.,

Iup,loss(v?, vtest) = −wtest∇θLTi(fθ, v?), so as to speed up
the computation. Since the Hessian Hθ is positive semi-
definite by assumption, we have:

wtest ≡ argmin
α

{
1

2
αTHθα−∇θLTi(fθ, vtest)

Tα

}
,

where the exact solution α can be obtained with conjugate
gradients that only requires the evaluation of Hθα instead
of explicitly computing H−1

θ .
We hypothesize that the larger the influence of v?, the

more representative v? for this task. Thus, we choose the
first e representative nodes in each class as our experiences.
To our knowledge, we are the first to incorporate influence
function into continual learning settings to guide the selec-
tion of experience samples. We also study the effectiveness
of the influence function based experience selection scheme
in our experiments. The empirical results verify the general-
ization of this strategy.

Our framework ER-GNN does not impose any restriction
on GNNs architecture and can be easily incorporated into
most of the current GNN models. In our evaluation, we im-
plement our ER-GNN with a vanilla GAT (Veličković et al.
2018), forming an instance of our framework – ER-GAT.

Experiments
We now present the results from the empirical evaluation
of our framework for continual node classification tasks to
demonstrate its effectiveness and applicability. We begin
with systematically investigating to what extent the state-of-
the-art GNNs forget on learning a sequence of node classi-
fication tasks, followed by the performance lift of our ER-
GNN. Subsequently, we verify the applicability of our ER-
GNN and study the hyperparameter sensitivity of our model.
Datasets: To evaluate the performance of our model on solv-
ing the CGL problem, we conduct experiments on three
benchmark datasets: Cora (Sen et al. 2008), Citeseer (Sen
et al. 2008), and Reddit (Hamilton, Ying, and Leskovec
2017) that are widely used for evaluating the performance
of GNN models. To meet the requirements of the contin-
ual graph learning (task-incremental) setting, we construct 3
tasks on Cora and Citeseer, and each task is a 2-way node
classification task, i.e., there are 2 classes in each task. For
Reddit, we generate 8 tasks and each task is a 5-way node
classification task due to its relatively large number of nodes
and unique labels. We note that each task is a new task since
classes in different tasks are entirely different. The statistics
of the datasets and continual task settings are shown in Ta-
ble 1.
Baselines: To demonstrate the effectiveness of our proposed
framework, we compare ER-GNN with the following GNNs
for continual node classification tasks:
• Deepwalk (Perozzi, Al-Rfou, and Skiena 2014): Deep-
walk uses local information from truncated random walks

Cora Citeseer Reddit
# Nodes 2,708 3,327 232,965

# Node Attributes 1,433 3,703 602
# Total Classes 7 6 41

# Tasks 3 3 8
# Classes in Each Task 2 2 5

Table 1: Descriptive statistics and task settings of three
datasets.

as input to learn a representation which encodes structural
regularities.
• Node2Vec (Grover and Leskovec 2016): Node2Vec learns
a mapping of nodes to a low-dimensional space of features
that maximize the likelihood of preserving network neigh-
borhoods of nodes.
• GCN (Kipf and Welling 2017): GCN uses an efficient
layer-wise propagation rule based on a first-order approxi-
mation of spectral convolution on the graph.
• GraphSAGE (Hamilton, Ying, and Leskovec 2017):
GraphSAGE learns a function that generates embeddings
by sampling and aggregating features from the node’s local
neighborhood.
• GAT (Veličković et al. 2018): GAT introduces an
attention-based architecture to perform node classification
of graph-structured data. The idea is to compute each node’s
hidden representations by attending over its neighbors, fol-
lowing a self-attention strategy.
• SGC (Wu et al. 2019a): SGC reduces this complexity in
GCN through successively removing nonlinearities and col-
lapsing weight matrices between consecutive layers.
• GIN (Xu et al. 2019): GIN develops a simple architec-
ture that is probably the most expressive among the class of
GNNs and is as powerful as the Weisfeiler-Lehman graph
isomorphism test.
Experimental Setting: We implement ER-GNN with GAT,
forming an example of our framework – ER-GAT, together
with our three experience selection strategies. In ER-GAT,
we can readily obtain the embedding vector (before the last
softmax layer). Thus, we get ER-GAT-MF, ER-GAT-MF?,
ER-GAT-CM, ER-GAT-CM?, and ER-GAT-IM, where -MF,
-MF?, -CM, -CM?, and -IM represent the mean of the at-
tributes, the mean of embeddings, attribute space cover-
age maximization, embedding space coverage maximiza-
tion, and influence maximization, respectively. The settings
of all baselines and the network architecture (i.e., GAT) in
our implementation are the same as suggested in the respec-
tive original papers. Without otherwise specified, we set the
number of experiences stored in the experience buffer from
each class as 1 (i.e., e = 1). However, we note that a larger
value of e would result in better performance.
Metric: To measure the performance in the continual graph
learning setup, we use performance mean (PM) and forget-
ting mean (FM) as the evaluation metrics (Chaudhry et al.
2018). Taking the Cora dataset as an example, when learn-
ing 3 tasks sequentially, there are 3 accuracy values, i.e., one
for each task after learning this task, and 3 forgetting values,
i.e., the difference between the performance after learning a
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Datasets Cora Citeseer Reddit

Methods
Metrics PM FM PM FM PM FM

DeepWalk 85.63% 34.51% 64.79% 25.92% 76.93% 33.24%
Node2Vec 85.99% 35.46% 65.18% 24.87% 78.24% 34.66%

GraphSAGE 94.15% 37.73% 81.26% 28.06% 95.01% 40.06%
GIN 90.17% 33.81% 74.92% 27.42% 93.75% 36.28%
GCN 93.62% 31.90% 80.63% 25.47% 94.43% 35.17%
SGC 93.06% 33.93% 78.18% 28.31% 94.01% 38.59%
GAT 94.19% 30.84% 81.37% 25.06% 95.13% 34.97%

ER-GAT-Random 93.58% 29.17% 81.48% 23.73% 93.84% 32.79%
ER-GAT-MF 94.15% 22.49% 80.03% 17.96% 94.18% 26.44%
ER-GAT-MF? 94.23% 21.88% 81.83% 17.83% 94.63% 23.54%
ER-GAT-CM 93.98% 22.14% 78.78% 18.03% 93.33% 26.17%
ER-GAT-CM? 94.25% 21.03% 80.86% 17.86% 94.23% 23.15%
ER-GAT-IM 95.66% 21.14% 80.85% 17.08% 95.36% 23.09%

Table 2: Performance comparisons among algorithms. The bold values denote the best performance.

particular task and the performance after learning its subse-
quent tasks. The evaluation on Citeseer is the same as Cora.
However, we use Micro F1 score as the performance metric
instead of accuracy due to the imbalance between the nodes
in different classes in the Reddit dataset. That is, PM and
FM in Reddit represent the average Micro F1 Score and the
average difference in Micro F1 Score, respectively.
Catastrophic Forgetting in GNNs. We first systemati-
cally evaluate the extent of catastrophic forgetting in cur-
rent GNNs. Table 2 shows the results of performance com-
parison on node classification, from which we can observe
that all GNNs as well as two graph embedding models suf-
fer from catastrophic forgetting problems on previous tasks.
For example, the FM value on Cora, Citeseer, and Reddit
are 30+%, 24+%, and 32+%, respectively. Interestingly, in
some cases (e.g., Reddit), DeepWalk and Node2Vec perform
better than GNNs in terms of FM, although their classifica-
tion performance (i.e., PM) is lower compared to the GNNs.
DeepWalk and Node2vec use truncated random walks for
sampling node sequences. Once the number of sampled
node sequences is large enough, the obtained node embed-
dings are more robust for continuous task learning, although
their performance is not comparable to others on single-task
learning. Therefore, it seems DeepWalk (or Node2Vec) sac-
rifices the performance on learning new tasks (i.e., plastic-
ity) to relieve the catastrophic forgetting (i.e., stability) is-
sue.

We also find some impressive results by examining the
performance of different GNNs. First, as a simplified GCN,
SGC is significantly faster than other GNN models because
it removes the nonlinearity between the layers in GNN –
it only keeps the final one. We speculate that nonlinearity
in-between multi-layers in GNN can help the model remem-
ber knowledge from previous tasks. Besides, GraphSAGE
achieves higher PM, but it is prone to previous task forget-
ting, mainly because it uses pooling operation (e.g., mean
here) for feature aggregation, which, however, may smooth
unique node features in previous tasks. GIN is mediocre on
Cora and Citeseer but performs well on Reddit. The reason

for that is because GIN may suffer from overfitting issues on
relatively small datasets, as observed in (Wu et al. 2019a). In
contrast, GAT performs well in terms of both PM and FM,
which suggests that the attention mechanism is beneficial
for both learning a new task and to a certain extent resisting
catastrophic forgetting in continual graph-related task learn-
ing.
Performance of ER-GNN. Next, we compare our frame-
work ER-GNN against other graph learning baselines. In
addition to the three proposed node selection strategies, we
also implement a random node selection scheme, called
ER-GAT-Random, which randomly selects the experience
nodes. Note that we report the average results of 10 runs.
Table 2 shows the results of 3 different experience selec-
tion strategies. Our framework successfully decreases the
FM values by a significant margin without losing the abil-
ity to learn new tasks. The IM strategy performs favor-
ably, which proves our motivation to exploit influence func-
tion for experience replay. Another expected finding is that
ER-GAT-MF? and ER-GAT-CM? consistently outperform
ER-GAT-MF and ER-GAT-CM, which indicates the more
discriminative representations in the embedding space than
the attribute space.

An important observation is that our ER-GAT performs
comparably with vanilla GAT in terms of PM, and in some
cases, our ER-GAT even outperforms the original GAT. This
result implies that our approach does not sacrifice the plas-
ticity since we expand the training set by augmenting the
experience buffer nodes from previous tasks. This property
is appealing as it resembles our human intelligence, i.e., we
humans can not only remember previous tasks but also ex-
ploit the knowledge from preceding tasks to facilitate learn-
ing future tasks.

To provide further insight into our approach, we plot the
performance evolution of the models along with the in-
creased tasks on three benchmarks in Figure 2. For clar-
ity, we only plot GAT’s results as it performs best among
baselines, with the same reason for omitting ER-GAT-MF
and ER-GAT-CM. From Figure 2, we can observe that our
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Figure 2: Performance of PM evolved with the tasks.

1 5 10 20
e

0.00

0.05

0.10

0.15

0.20

FM

ER-GAT-MF⋆
ER-GAT-CM⋆

ER-GAT-IM

(a) Cora

1 5 10 20
e

0.00

0.05

0.10

0.15

0.20

FM

ER-GAT-MF⋆
ER-GAT-CM⋆

ER-GAT-IM

(b) Citeseer

1 2 3 4 5
e

0.18

0.20

0.22

0.24

FM

ER-GAT-MF⋆
ER-GAT-CM⋆

ER-GAT-IM

(c) Reddit

Figure 3: The influence of e.

framework alleviates forgetting by a large margin compared
with the original GAT.

Influence of e. The number of nodes stored in the buffer
from each class is among the most crucial hyperparameters.
We investigate its effect and present the results in Figure 3.
As expected, the more nodes stored in the buffer, the better
the performance on alleviating the catastrophic forgetting.
Furthermore, we can see that our model would not forget
if we keep all training nodes in previous tasks – note that
there are 20 training nodes in each class on Cora and Cite-
seer dataset.

Model
Datasets Cora Citeseer Reddit

ER-SGC-MF 25.00% 20.34% 27.62%
ER-SGC-CM 25.46% 19.38% 26.27%
ER-SGC-IM 26.11% 17.16% 25.04%
ER-GIN-MF 27.98% 21.01% 25.36%
ER-GIN-CM 27.38% 20.72% 24.23%
ER-GIN-IM 26.74% 20.68% 23.75%

Table 3: Forgetting mean of ER-SGC and ER-GIN.

Applicability of ER-GNN. To demonstrate the applicabil-
ity of our method in other GNNs, we instantiate our experi-
ence selection schemes with SGC and GIN, forming several
variants of ER-SGC and ER-GIN. As shown in Table 3, ER-
SGC and ER-GIN reduce the degree of forgetting in SGC
and GIN by a large margin, which demonstrates the appli-
cability of our approaches. Besides, we also observe that the
IM-based models usually achieves the lowest FM results.

Conclusion
In this work, we formulated a novel practical graph-based
continual learning problem, where the GNN model is ex-
pected to learn a sequence of node classification tasks with-
out catastrophic forgetting. We presented a general frame-
work called ER-GNN that exploits experience replay based
methods to mitigate the impacts of forgetting. We also dis-
cussed three experience selection schemes, including a novel
one – IM (Influence Maximization), which utilizes influence
function to select experience nodes. The extensive exper-
iments demonstrated the effectiveness and applicability of
our ER-GNN. As part of our future, we plan to extend the
continual learning to different graph-related tasks, such as
graph alignment and cascade/diffusion prediction of contin-
uously evolving graphs.

Acknowledgments
This work was supported by National Natural Science Foun-
dation of China (Grant No.62072077 and No.61602097).

Broader Impact
The methods described in this paper can potentially be har-
nessed to improve accuracy in any application of graph neu-
ral networks where it is more expensive or difficult to re-
train the models frequently. For example, the graph-based
recommender systems should make recommendations to a
large number of new users. However, it is often prohibitive to
continually update the online model to provide the most up-
to-date recommendations. Our method offers a cost-efficient
solution for such incremental recommender systems. In this
spirit, this work may be beneficial to a range of applications
requiring stable model performance but subjecting to limited
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computational resources. Although we anticipate a positive
impact for applications where model predictions’ robustness
and stability are essential, e.g., in E-commerce and intelli-
gent traffic systems, we also recognize possible malicious
applications such as unauthorized surveillance and privacy
intrusion.
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