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Abstract

Potential crowd flow prediction for new planned transporta-
tionsites is a fundamental task for urban planners and admin-
istrators. Intuitively, the potential crowd flow of the new com-
ingsite can be implied by exploring the nearby sites. How-
ever, the transportation modes of nearby sites (e.g. bus sta-
tions,bicycle stations) might be different from the target site
(e.g. subway station), which results in severe data scarcity is-
sues. To this end, we propose a data-driven approach, named
MOHER, to predict the potential crowd flow in a certain
mode for a new planned site. Specifically, we first identify
the neighbor regions of the target site by examining the ge-
ographical proximity as well as the urban function similar-
ity. Then, to aggregate these heterogeneous relations, we de-
vise a cross-mode relational GCN, a novel relation-specific
transformation model, which can learn not only the correla-
tions but also the differences between different transportation
modes. Afterward, we design an aggregator for inductive po-
tential flow representation. Finally, an LTSM module is used
for sequential flow prediction. Extensive experiments on real-
world data sets demonstrate the superiority of the MOHER
framework comparedwith the state-of-the-art algorithms.

Introduction
Public transportation site selection acts as a pivotal part in
urban planning. For example, is it appropriate to build a
subway station in the target site/region when promoting ur-
ban infrastructure construction. To answer this question, ex-
isting methods, like (Lin, Huang, and Xu 2020; Jelokhani-
Niaraki and Malczewski 2015), mainly focus on how to bal-
ance the trade-offs between efficiency and cost, only a few
studies (Chen et al. 2015; Gong et al. 2020) focus on site se-
lection through predicting future demands. How to fulfil the
traffic demands in the future is the key to assess the quality
of a site selection, especially for a transportation site. There-
fore, potential crowd flow prediction of new planned sites is
one of the most fundamental and important tasks for the city
planners and administrators.
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Figure 1: (a): An example of the subway station placement
problem. (b): From the same origin, the outgoing crowd
flows in different modes are different and similar: 1) dif-
ferent travel distances and destinations; and 2) similar traffic
volume distributions depicted in the pie charts.

In general, the potential crowd flow of a new planned site
can be estimated by examining nearby sites in a collective
way. For example, (Gong et al. 2020) studies the potential
flow prediction of a new subway station with neighbor sub-
way stations. However, as the transportation sites in the same
mode often locate far from each other, the transportation
modes of nearby sites might be different from the planned
target site as illustrated in Fig. 1(a), which leads to severe
data scarcity issues.

Recently, advanced matrix/tensor completion approaches,
e.g. (Babu, Sure, and Bhuma 2020; Mutinda et al. 2019;
Takeuchi, Kashima, and Ueda 2017), have been proposed
to solve the Kriging problems of unrecorded samples. Some
researchers (Li et al. 2017; Xie et al. 2019; Chen, Yang, and
Sun 2020) have also put many efforts to solve the data spar-
sity problem in traffic completion and prediction. However,
these methods are essentially transductive and could hardly
be applied for new sites/nodes directly using trained models.
Besides, it is not worthy to retrain the model from scratch
only for a single site.
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In this paper, we study the problem of potential crowd
flow prediction for new planned transportation sites. Specif-
ically, we propose a data-driven approach to MOdeling HEt-
erogeneous Relations across multiple transportation modes
for potential crowd flow prediction, named MOHER. We de-
tail the MOHER framework in the following three aspects.

First, the relations between nearby sites in different trans-
portation modes are highly dependent, dynamic and hetero-
geneous. As graph convolutional network (GCN) has shown
its capability in characterizing complex dynamic spatio-
temporal dependencies and the generalization potential to
unseen nodes (Hamilton, Ying, and Leskovec 2017; Zhang
and Chen 2019; Yuan et al. 2020), we devise a cross-mode
message passing network to model the cross-mode heteroge-
neous relations. We then leverage a neighbor aggregator to
learn the inductive representations for each new site and fur-
ther predict the potential crowd flows instead of retraining at
every turn.

Second, the diversion phenomenon cannot be neglected
when predicting the future crowd flow for a new planned site
through the nearby sites. For instance, the new subway sta-
tion will absorb a bulk of passengers who used to take buses.
Besides, the new subway station will definitely attract more
urban functions, which will compensate for the crowd flows
of buses and bicycles. Along this line, we construct localized
graphs centered by the target site/region to measure the ge-
ographical proximity and the functional similarity (charac-
terized using surrounding Points Of Interest (POIs) for each
category) simultaneously. Such that, the flow diversion and
potential crowd flows can be captured automatically.

Third, apart from the diversion effect on the neighbor
sites/regions, the planned new site will also have the di-
version effect on other traffic modes (Liu et al. 2020),
where similarities and differences co-exist as illustrated
in Fig. 1(b). Intuitively, contiguous sites should share simi-
lar travel patterns in terms of time and volume. On the other
hand, due to the intrinsic characteristics (e.g. price and travel
distance) of different transportation modes, the difference
between crowd flows in different modes could be very large.
Thus, we introduce a novel relation-specific transformation
model that can extract the similarity and difference of het-
erogeneous relations simultaneously.

To sum up, our contributions in this paper are as follows:
• We propose the inductive potential crowd flow prediction

framework MOHER, which can naturally generalize to
future new planning sites after training with only the his-
torical flow data of the existing sites.

• To capture the flow diversion and potential crowd flows of
a new site, we respectively encode the geographical prox-
imity and functional similarity among the nearby sites in
different transportation modes.

• We deeply explore the correlations and differences be-
tween cross-mode crowd flows and propose the Cross-
Mode Relational GCN (CMR-GCN) to explicitly model
each type of relations.

• We conduct extensive experiments on real-world datasets,
which demonstrate the effectiveness of MOHER for po-
tential crowd flow prediction.

Notations Description
p ∈ P The transportation mode and its set.

vp ∈ Vp
The site/region belonging to the mode
p and its set.

p0, v0
The target transportation mode,
the newly planned target site/region.

vRe, vUn The region with/without historical
crowd flow records.

X (t)
p = {x(t)vp }

The historical flow data of region vp
at time t.

rGEO, rPOI
The cross-mode edge type computed
by the Geo-proximity/POI-similarity.

ε : (vi, r, vj)
The edge attribute between node
(region/site) i & j with edge type r.
r can be rGEO or rPOI.

Table 1: Notations of symbols used in this work.

Preliminaries
We first introduce some important definitions and then for-
malize our problem. For brevity, we show notations and cor-
responding descriptions in Table 1.

Definition 1 Cross-mode Flow Relation Graph (CFRG).
A cross-mode flow relation graph centered by v0 at time
t is a heterogeneous undirected weighted graph G

(t)
v0 =

(V, ε,R), where V = {Vp, p ∈ P} is a set of heteroge-
neous nodes (regions/sites) from all available transportation
modes, ε is the set of edge attributes of multiple relations,
R = {rGEO} ∪ {rPOI} is the set of heterogeneous edge
types. Hence, there may be more than one relations between
two cross-mode nodes.

Definition 2 Flow Prediction of New Planned Sites. As-
suming our new planned target region/site is v0 with no data
records belonging to the crowd flow p0, we aimed at predict-
ing the potential future flows x(t+1)

v0 of the target v0 with p0.
Therefore, the crowd flow prediction of new planned sites
is formulated as a spatio-temporal prediction given a fixed
temporal length t′:

{(X , Gv0)
(t−t′+1)

,(X , Gv0)
(t−t′+2)

,

· · · , (X , Gv0)
(t)} f(·)−−→ x(t+1)

v0 ,
(1)

where X = {Xp, p ∈ P} is the set of all cross-mode his-
torical flow data. Eq. 1 is to learn a function f(·) that maps
the t′ historical target-related cross-mode flow features to
the target region flows in the next timestamp. To the best
of our knowledge, we provide the first attempt on inductive
potential crowd flow prediction of new planned sites with
cross-mode flow data.

Methodology
In this section, we introduce our framework for inductive
potential crowd flow prediction of new planned sites/regions
by modeling heterogeneous relations across multiple trans-
portation modes. The overview of MOHER framework is
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Figure 2: An overview of the framework.

shown in Fig. 2, which consists of four major parts. (1)
Pre-processing: collect a large number of multi-mode flow
records and construct the input X . (2) Cross-mode Local-
ized Graphs Construction: explore the potential crowd flows
from nearby sites/regions via encoding both intra- and inter-
mode relations according to the Geo-proximity and the POI-
similarity, and construct localized graphs with the target
node as the input. (3) Inductive Target Representation Learn-
ing: develop the cross-mode relational GCN for extract-
ing the correlations and differences simultaneously between
modes, then learn the inductive target node representation.
(4) Sequential Flow Prediction: build an LSTM module to
conduct sequential flow prediction of the target site/region.

Cross-mode Localized Graphs Construction
Multiple pair-wise relations encoding Potential crowd
flows are hidden in neighbor sites/regions of multiple trans-
portation modes. However, aggregating inadequate informa-
tion with only geographical distance could hardly character-
ize the flow features of new sites. The new construction of
transportation sites can inspire the local functionality, which
may cause incremental crowd flows of the new urban func-
tional zone. Therefore, we encode two types of relations
among sites/regions:

• Geographical proximity. Two sites/regions of multiple
transportation modes near each other are affected by the
same varying of travel demands. We choose geographic
centers or station coordinates as the representatives of re-
gions or sites, and then treat the normalized distance d̃isij
between arbitrary two regions i and j as inputs. The Geo-
proximity is encoded as Eq. 2.

εij,rGEO
=

{
exp(−d̃is

2

ij), disij ≤ γ
0, disij > γ

(2)

in which γ is a threshold for tuning the sparsity of εrGEO
.

Inter-mode
Geo-proximity

Intra-mode
Geo-proximity

Inter-mode
POI-similarity

Intra-mode
POI-similarity

Taxi service regions Subway sites Sharing bike sites

Figure 3: The diagrammatic sketch of establishing multiple
heterogeneous relations for one region.

• POI similarity. Since POIs can indicate the region func-
tionality, it is well instructive to refer to other regions with
similar POI distribution for capturing the potential incre-
mental crowd flows of new planned sites. In order to deal
with the varying shapes and sizes of cross-mode nodes,
we normalize the POI vectors F of nodes and calculate
the cosine distance between them using Eq. 3.

εij,rPOI =

{
N (Cos(F̃i, F̃j)), Cos(F̃i, F̃j) ≥ β

0, Cos(F̃i, F̃j) < β
(3)

in which β is a threshold for controlling the sparsity of
εrPOI

. After that, the results greater than zero are renor-
malized by N (·) for more uniform values.

Inter-mode relations encoding Potential crowd flows of
new planned sites are not only involved in the target trans-
portation mode, but we need to explore crowd flows from
related sites/regions of multiple modes comprehensively.
Therefore, we also encode the inter-mode relations by re-
sorting to both Geo-proximity and POI-similarity.

An example is shown in Fig. 3. We establish multiple re-
lations for one site/region with both intra-mode (e.g. sub-
way stations) and inter-mode (e.g. bike stations/taxi service
regions) sites/regions. Due to the diversities of cross-mode
flow patterns, we consider each different relation across mul-
tiple transportation modes is heterogeneous.
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Algorithm 1 Breadth-first search based localized graph
construction for the target node
1: Input: M , the target node v0, the historical recorded

nodes vRe, the timeslot t
2: Output: the (M + 1)-nodes localized graph G(t)

v0

3: Init size = 0, seq = {v0};
4: while size< M + 1 and seq!={} do
5: vi = seq.dequeue();
6: add vi into G(t)

v0 , add relations of vi into G(t)
v0 ;

7: size = size + 1;
8: for vj in vRe do
9: calculate εij,rGEO with Eq.2;
10: end for
11: enqueue vj into seq by the descending order

of εij,rGEO with εij,rGEO > 0, vj /∈ G(t)
v0 ∪ seq;

12: for vj in vRe do
13: calculate εij,rPOI

with Eq.3;
14: end for
15: enqueue vj into seq by the descending order

of εij,rPOI
with εij,rPOI

> 0, vj /∈ G(t)
v0 ∪ seq;

16:end while
17:return G(t)

v0 ;

Generally, we can model more types of relations with an
extension of the above method. In this case, assuming we
model ρ (ρ = 2 in this work) types of relations among |P|
transportation modes, there will be total |P|×(|P|+1)×ρ

2 types
of heterogeneous edges. For cross-mode relations, the εrGEO

and εrPOI
are larger as the overlapping area is larger, so that

MOHER can deal with the complex compositions of multi-
ple transportation modes like Fig. 1(a).

Breadth-first search based localized graphs construction
Due to the continuous developments of urban infrastructure
(e.g., new planned sites), the urban regional composition
and functionality is evolving. Therefore, a static graph could
hardly meet the demand of potential crowd flow prediction
of new planned sites. In this paper, we extract M neighbor
nodes of the target region v0 to construct localized graphs
{G(t−t′+1)

v0 , · · · , G(t)
v0 } given timeslots {t − t′ + 1, · · · , t}

via breadth-first search. Particularly, the hyperparameter M
should be approximately equal to the size of the first and
second-order neighborhood of target regions for involv-
ing most of the related information (Hamilton, Ying, and
Leskovec 2017). As a result, our method can focus on the
localized information and apply to the evolving graph struc-
ture for inductive regional flow prediction.

Inductive Target Representation Learning
Cross-mode dependencies extraction Given heteroge-
neous graphs constructed by Algorithm 1, we should explic-
itly model each kind of the heterogeneous cross-mode rela-
tions to extract flow embeddings and then map the localized
graphs information into the potential flow patterns of the
new planned site. Accordingly, we propose the Cross-Mode
Relational Graph Convolutional Network (CMR-GCN) as

the message passing module for modeling correlations and
differences of heterogeneous relations simultaneously.

Specifically, for each node vi, 1 ≤ i ≤ M in a localized
graph except the planned target node, we extract the regional
correlations {Cl+1

i,r |r ∈ R} at layer l + 1 of each kind of
heterogeneous relations via (4):

Cl+1
i,r =

∑
j∈Nr(i)

σ(
εr,ij
|Nr(i)|

xljW
l
r,c + blr,c), (4)

where xlj denotes the features of node j, 1 ≤ j ≤M at layer
l, {W l

r,c|r ∈ R} and {blr,c|r ∈ R} are learnable parameters,
Nr(i) denotes the set of i’s neighbors that connect to i with
relation category r. σ denotes the ReLU activation function.

In addition to the correlations, there are definite differ-
ences between cross-mode regional flow features. If the in-
formation of differences is ignored, there may even produce
a negative transfer effect. Hence, we also model the differ-
ences {Dl+1

i,r |r ∈ R} between cross-mode node features:

Dl+1
i,r =

∑
j∈Nr(i)

ω(
εr,ij
|Nr(i)|

|xlj − xli|W l
r,d + blr,d), (5)

where |xlj − xli| represents the natural gap between node
i and neighbor node j, and ω is set as tanh. An intuitive
explanation of Eq. 5 is that we construct a shadow rela-
tion rs for each kind of relation r to indicate the differences
between two original nodes connected by r. Consequently,
we aggregate the shadow node js’s information which is D-
value between node features into Dl+1

i,r via rs. The correla-
tions and differences of each kind of heterogeneous relations
are accumulated on the transformed self-features, then the
forward-pass-update formula of xl+1

i is given by:

xl+1
i = σ(xliW

l
p +

∑
r∈R

(Cl+1
i,r +Dl+1

i,r )). (6)

Finally, assuming there are L message passing layers
CMR-GCNs, the final node representation gi of node vi is
concatenated by the outputs of layer 1 to layer L:

gi = concat(x1
i ,x

2
i , · · · ,xLi ) (7)

Regularization for modeling heterogeneous relations
With both correlations and differences modeling, the total
types of heterogeneous relations will be double to |P| ×
(|P| + 1) × ρ plus the number of shadow relations {rs|r ∈
R}, which will lead to a surge in the number of parameters
at the same time. To reduce the complexity of our model in
case of overfitting, we apply matrix reconstruction to each
of the learnable parameters:

W l
r,c =

Q∑
q=1

alWr,c,qB
l
W ,q, W

l
r,d =

Q∑
q=1

alWr,d,q
BlW ,q

blr,c =

Q∑
q=1

albr,c,qB
l
b,q, b

l
r,d =

Q∑
q=1

albr,d,q
Blb,q

(8)
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Figure 4: The network structure of our MOHER, where d(0)
and d′ are the dimensions of origin and final flow represen-
tations. The shared network across different timeslots in the
dotted box is applied to learn inductive cross-mode target
representation.

Accordingly, each learnable parameter is reconstructed by
basis B and corresponding coefficients a. Along such a re-
construction process, all the parameters that model the cor-
relations and differences share the same basis matrices re-
spectively, which can also mitigate overfitting when some
kinds of relations are uncommon in the training set.

Graph representation summarizing After the L layers
of regularized CMR-GCNs, each node vi except the target
v0 gets its flow embedding gi. Inspired by max-pooling op-
eration, we propose a nearest neighbor pooling aggregator
that selects the most related nodes connected to target v0 by
each existing type of relations, which can directly reduce the
redundancy of features. Thus, the representation of target v0
is constructed as:

h = concat(εv0,r · gr|r ∈ Rv0), (9)
whereRv0 is a subset ofRwhich contains the relations con-
nected to v0, gr is the nearest neighbor of v0 connected by
relation r, and εv0,r is the value of the edge. Here h is the
flow representation of the target node v0. Finally, we adopt
LSTM networks to extract temporal dependencies for pre-
dicting the t + 1 target regional or station-level flows. The
network structure is shown in Fig. 4. Note that our proposed
MOHER is inductive, it can generalize to future planned
sites along with the development of the city.

Model Training
In the training phase, our model is optimized by minimizing
the loss of mean square error (MSE) using Adam optimizer.

It is difficult to retrieve the historical data before the con-
struction of existed sites. Therefore, we propose a simula-
tion strategy to approximate real historical flows. Specifi-
cally, we randomly select existed sites to simulate planned

sites, and we distribute the historical flow of them to the first-
order Geo-proximate neighbors according to the product of
the flow proportions and the connected edge weights. These
selected sites are used as training targets.

Experiments
Experiment Settings
Datasets We construct a benchmark with three real-world
flow datasets collected from NYC OpenData. Two of them
contain the trip records of the taxi and bike in NYC. The
other contains the turnstile usage condition of each subway
station in NYC. All of them are generated in the time period
from January 1st, 2018 to December 1st, 2019 (700 days).

• NYC Turnstile Usage of Subway Stations: NYC
Metropolitan Transportation Authority provides the turn-
stile usage counts of NYC subway stations. There are
about 5042 turnstiles used as entry/exit registers at 425
subway stations. The value records per 4 hours consist
of following information: station-ID, turnstile-ID, record
time, Entries value, Exits value, etc.

• NYC Citi Bike: NYC Bike Sharing System generates the
Citi Bike orders including 38 million and 100 thousand
transaction records of 647 stations in the selected time
period. This data set contains following information: bike
pick-up station, bike drop-off station, bike pick-up time,
bike drop-off time, trip duration.

• NYC Taxi: NYC Taxi consists of about 187 million taxi-
cab trip records. On average, there are about 267 thousand
records in 262 regions every day. The records consist of
following information: pick-up time, drop-off time, pick-
up region, drop-off region, trip distance, etc.

Baselines We compare our framework with the following
methods:

• NA-HA: Neighbor Average and Historical Average (Ka-
marianakis and Prastacos 2003). We model the spatial
similarity and use the average of neighbor sites of the
same transportation modes as the historical flows. Then,
we predict the target crowd flow using the mean value
over time slots.

• MGCN-MLP: From Multiple Graph Convolutional Net-
work (Geng et al. 2019), we aggregate information for
modeling spatial dependency by multiple graphs. Then, a
Multi-Layer Perceptron is used for mapping graph repre-
sentation to the prediction result.

• NA-LSTM: The feature representation of historical flows
is similar to NA-HA, then the Long-Short-term-Memory
method (Hochreiter and Schmidhuber 1997) is introduced
for temporal dependency modeling.

• LP-GLP: We use Label Propagation to complete the his-
torical flows and construct a semi-supervised learning
problem on graphs. Generalized Label Propagation (Li
et al. 2019a) is a semi-supervised learning method that
produces flow representations of different times by ex-
ploring graph relations. Then, a Feedforward Neural Net-
work (FNN) is used for prediction.
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• STMGCN: STMGCN leverages complete convolutional
structures to model both temporal and multiple spatial de-
pendencies. MGCN is applied in the ST-Conv blocks (Yu,
Yin, and Zhu 2018) for modeling multiple relations.

• MLC-PPF: The Multi-view Localized Correlation learn-
ing model(Gong et al. 2020) for subway Potential Pas-
senger Flow uses the economic statistics as cross-domain
knowledge, which just uses one mode flow.

Metrics We evaluate performances based on two popular
metrics, which are Root Mean Square Error (RMSE) and
Mean Absolute Percentage Error (MAPE) (Geng et al. 2019;
Yu, Yin, and Zhu 2018; Ye et al. 2019; Deng et al. 2016).

Implementations We aggregate crowd flows into 4 hours
windows and apply Z-score normalization. We randomly se-
lected 20% sites for validation and 10% for testing. They are
deleted from the existing sites, and we construct the train
set based on the remained 70% site with flow data of the
previous 60% time (420 days). The validation and test set
are constructed based on the respectively selected sites with
flow data of the following 40% time (280 days). We tune
the hyperparameters using grid search based on the perfor-
mance on the validation set, and report the average perfor-
mances on the test set over 10 runs. Due to the unimode flow,
NA-HA, LP-GLP, and MLC-PPF use the data just from the
target mode. And we use 1 layer of MGCN and 2 layers
of MLP with 64 hidden units and a dropout rate of 0.2 for
MGCN-MLP. The modules in STMGCN is the same with
MGCN-MLP but it is extended with Gated Linear Units of
Kt = t′/2 and Kt = t′/2 + 1. The statistics used in MLC-
PPF are the number of various kinds of commercial POIs.
Other hyperparameters of baselines are the same as the grid
searched hyperparameters of our method. All experiments
are run on a PC with an NVIDIA GeForce RTX 2080Ti
GPU, and 64 GB RAM running the 64-bit Ubuntu 16.04 sys-
tem, python3.6, TensorFlow 2.0.

Experimental Results
Table 2 shows the test errors comparison of different meth-
ods for potential crowd flow prediction of new planned sites.

Results summary We can observe: (1) the models which
can synthesis both spatial and temporal dependencies (e.g.,
LP-GLP, STMGCN, and proposed MOHER) achieve bet-
ter performances. The proposed MOHER which can suffi-
ciently model each type of cross-mode relations outperforms
other baselines. Compared with the second-best result, MO-
HER decreases the errors by (9.1%, 6.8%) under RMSE
and (37.0%, 13.3%) under MAPE. (2) The methods which
model the multiple relations perform better than NA-HA or
NA-LSTM. Meanwhile, the methods which especially con-
sider the temporal dependency achieve better performances
than NA-HA or MGCN-MLP, especially on the NYC Citi
Bike Dataset. (3) MLC-PPF performs worse than our MO-
HER for the prediction of the long-term evolving targets
due to the lack of cross-mode information and spatial de-
pendency modeling. As the sharing bike is often used as an
alternative transportation mode, the influence of cross-mode
crowd flows on bikes is much more important than that on

Methods Subway Bike
RMSE MAPE RMSE MAPE

NA-HA 2182.2 3.942 20.967 1.828
MGCN-MLP 2060.6 3.185 23.020 1.528
NA-LSTM 1947.1 1.955 18.177 1.015

LP-GLP 1986.0 1.799 19.021 0.826
STMGCN 1821.2 1.784 19.230 0.988
MLC-PPF 1757.5 1.931 22.612 1.532
MOHER 1597.3 1.124 16.767 0.716

Table 2: Potential Crowd flow forecasting error of new
planned sites given by RMSE and MAPE on NYC Subway
Turnstile Usage Dataset and NYC Citi Bike Dataset.
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Figure 5: (a) ‘Penn’ subway station. (b) ‘21th St-49th Ave’
bike station. (c) ‘40 Street - Lowery St’ subway station. (d)
‘24th St-41st Ave’ bike station.

the subway, which may result in the worse performances of
MLC-PPF on the bike dataset.

Case Study We display result insights of four sampled sta-
tions. The selected timeslots are evenly distributed among
the testing set. We can observe from Fig. 5: (1) ‘Penn’ sub-
way station is downtown of Manhattan and is around with
abundant multi-mode crowd flows. Our method fits the curve
well but may overestimate the potential flows. (2) In con-
trast, the bike station in (b) is sited just next to a large rail-
way area without adequate crowd flows and POIs nearby.
Our method tends to underestimate the potential flows. (3)
the stations of (c)(d) are located in ordinary residential ar-
eas with regular crowd travel demands, and our method can
model the diversion effects well. To summarise, even in the
two extremes in (a)(b), our method can generate stable pre-
dictions of potential crowd flows for unseen new planned
sites of different time slots in the long-range test sets.
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Component RMSE(×103) MAPE
w/o cross-mode relations 1.776 1.499
w/o functional similarity 1.689 1.247
w/o differences modeling 1.861 1.346

w/o regularization 1.676 1.471
MOHER 1.597 1.124

Table 3: Effect of our method without each component on
NYC Subway Turnstile Usage Data. Removing any compo-
nent will result in a statistically significant error increase.
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Figure 6: The Effect of Model Parameters

Ablation Study
To verify the contribution of different components in MO-
HER to the performance gain, we further implement three
simplified versions of our model to conduct ablation tests.
The results of the degraded versions of MOHER on NYC
Subway Turnstile Usage Dataset are shown in Table 3. We
summarize the effects of three different components:

Effect of cross-mode flow data To investigate the effect
of cross-mode dependency, we construct the graph with the
geographical proximity and POI similarity only on the target
mode (i.e., the subway). With the synthesis of the two met-
rics in Table 3, we can find that removing the cross-mode
relations increases the error which justifies the importance
of exploring the cross-mode flow data. Thus, the potential
crowd flows of target new sites are implied in the various
nearby transportation modes.

Effect of modeling functional similarity The regions
with similar urban functions are considered to share simi-
lar flow patterns, so that we can infer the potential flow in-
crements of new planned sites. The increased error demon-
strates the importance of prior knowledge in functional sim-
ilarity relations.

Effect of modeling differences among multi-mode Here
we only model the correlations for cross-mode spatial de-
pendencies extraction. The insufficient modeling of cross-
mode relations results in a significant increase in error,
which validates our intuition and observation.

Effect of matrix reconstruction regularization To eval-
uate the importance of parameter regularization, we directly
leverage the original FNN to model heterogeneous relations.
Because the high model complexity leads to overfitting, the
degraded framework performs worse than MOHER.

Effect of Model Parameters
To study the effects of hyperparameters in our proposed
framework, we present the performance on the Subway
Dataset of two main hyperparameters for spatiotemporal
prediction in Fig. 6, i.e., the number of neighbor nodes in
CFRGs M and the length of time intervals t′. M is the hy-
perparameter to control the boundary of modeling spatial
dependency, and t′ controls the range of modeling temporal
dependency. We observe that both the errors first decrease
and then increase with the increase of M and t′, because too
small M or t′ will both cause the lack of essential informa-
tion for prediction. Meanwhile, larger M will bring some
unnecessary noise, and larger t′ may exceed the knowledge
capacity of the hidden state in LSTM.

Related Work
How to mine the spatiotemporal information has become a
long-standing problem for flow prediction (Lin et al. 2019;
Yao et al. 2019). Some early works (Pan et al. 2019; Wang
et al. 2019) used geographical distance to model the re-
lationship. Recently, there have been some researches (Li
et al. 2018; Zheng et al. 2020) on mining the complex re-
lations of traffic flows. In particular, multiple heterogeneous
relations have been explored as prior-knowledge for predic-
tion (Chai, Wang, and Yang 2018; Geng et al. 2019; Sun
et al. 2020; Zhou et al. 2020). (Li et al. 2019b) leveraged the
graph embedding on heterogeneous spatial-temporal graphs
for station-level demand prediction. (Ye et al. 2019) com-
bined the bike and taxi data for demand co-prediction. How-
ever, there are only a few works towards unrecorded or po-
tential flow prediction. Most of them are based on trans-
ductive tensor completion (Li et al. 2019c) to predict the
historical missing data. In (Wu et al. 2020), the authors
learned an inductive GNN for flows, which indicates the
effect of GNN for unrecorded flow prediction. Moreover,
(Gong et al. 2020) intends to predict the potential passenger
flows of planned subway stations based on the flow comple-
tion problem. Nevertheless, this method ignores the cross-
mode crowd flows, thus having a diversion effect.

Conclusion
In this paper, we proposed MOHER, an inductive potential
crowd flow prediction framework which can naturally gener-
alize to future new planned sites. We encoded the heteroge-
neous relations among the target and its cross-mode neigh-
bor sites/regions by measuring the geographical proximity
and the functional similarity to capture the flow diversion
and potential crowd flows. For explicitly modeling cross-
mode heterogeneous relations, we developed a novel cross-
mode relational GCN to learn the correlations and the differ-
ences between multiple transportation modes. Experimen-
tal results on real-world datasets demonstrated that the pro-
posed MOHER framework outperforms the compared state-
of-the-art methods with satisfactory margins.
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