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Abstract

Entity alignment which aims at linking entities with the
same meaning from different knowledge graphs (KGs) is a
vital step for knowledge fusion. Existing research focused
on learning embeddings of entities by utilizing structural
information of KGs for entity alignment. These methods
can aggregate information from neighboring nodes but may
also bring noise from neighbors. Most recently, several re-
searchers attempted to compare neighboring nodes in pairs to
enhance the entity alignment. However, they ignored the rela-
tions between entities which are also important for neighbor-
hood matching. In addition, existing methods paid less atten-
tion to the positive interactions between the entity alignment
and the relation alignment. To deal with these issues, we pro-
pose a novel Relation-aware Neighborhood Matching model
named RNM for entity alignment. Specifically, we propose
to utilize the neighborhood matching to enhance the entity
alignment. Besides comparing neighbor nodes when match-
ing neighborhood, we also try to explore useful information
from the connected relations. Moreover, an iterative frame-
work is designed to leverage the positive interactions between
the entity alignment and the relation alignment in a semi-
supervised manner. Experimental results on three real-world
datasets demonstrate that the proposed model RNM performs
better than state-of-the-art methods.

Introduction
In knowledge graphs (KGs), facts are presented as triples of
(h, r, t), indicating there is a relation r from the head en-
tity h to the tail entity t. Real-world KGs such as DBpe-
dia (Lehmann et al. 2015), YAGO (Suchanek, Kasneci, and
Weikum 2007), and Freebase (Bollacker et al. 2008), which
store a great deal of knowledge, have been employed in var-
ious applications like recommendation systems (Cao et al.
2019b), question answering (Huang et al. 2019), and search
engines (Xiong, Power, and Callan 2017).

However, each individual KG may be incomplete. Since
different KGs are constructed independently from different
data sources, they are usually complementary to each other.
Therefore, integrating heterogeneous knowledge from vari-
ous KGs has become an urgent issue. Entity alignment is a
vital step for knowledge fusion from different KGs, which
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aims at linking entities with the equivalent meaning from
different KGs. The facts can consequently be fused based
on the aligned entities.

Regarding the entity alignment task, most of the existing
research focused on constructing embedding-based mod-
els. These methods tried to embed the entities of KGs into
a latent space and calculated the distances between en-
tity vectors as the evidences for alignment. TransE (Bor-
des et al. 2013), as an effective KG embedding model, has
been widely adopted for entity alignment (Hao et al. 2016;
Chen et al. 2017; Zhu et al. 2017; Sun et al. 2018). To better
utilize the information from neighbors, graph convolutional
networks (GCNs) (Kipf and Welling 2017) were utilized to
improve the representation learning of entities (Wang et al.
2018; Wu et al. 2019a; Ye et al. 2019; Sun et al. 2020). How-
ever, these methods concentrated on learning comprehensive
embeddings for entities, meanwhile, may bring additional
noise from neighbors.

Recently, several studies tried to conduct subgraph match-
ing when comparing the candidate entity pairs to enhance
the alignment (Xu et al. 2019; Wu et al. 2020). How-
ever, these methods only compared the neighboring entities
but ignored the connected relations which also contain im-
portant information for neighborhood matching and entity
alignment. Moreover, existing methods paid less attention
to the positive interactions between the entity alignment task
and the relation alignment task. Our insights are described as
follows. First, neighborhood matching with relations can en-
hance the reliability of entity alignment. Figure 1 shows an
example of the entity alignment with neighborhood match-
ing. Assume the entities Rome, Renaissance, Florence
and Michelangelo in the two KGs have been aligned. If we
only consider the neighboring entities when matching sub-
graphs, the entity Italy (in Chinese) in KG1 is more likely to
be misaligned with the entity David Statue in KG2. How-
ever, if we compare the connected relations at the same time
and consider the 1-to-1 property of relation capital, the en-
tity Italy can be correctly aligned crossing two KGs. This
implies that relations play a significant role in neighborhood
matching not only for the semantic meaning but also for the
mapping property. Second, relation alignments can help to
find the alignments of entities, and on the other hand, en-
tity alignments can also assist the relation alignment task.
Specifically, the entity alignment can be inferred based on
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Figure 1: An example to illustrate the importance of re-
lations when matching neighborhood. The upper part of
the figure is a subgraph of KG1 (in Chinese), while the
lower parts are two subgraphs of KG2 (in English). As-
sume the entities Rome, Renaissance, Florence and
Michelangelo in the two KGs have been aligned. The entity
Italy in KG1 is more likely to be misaligned with the entity
David Statue in KG2 with consideration of the neighbor
entities while ignoring the connected relations. However, the
two Italy entities in different KGs can be correctly aligned
by matching both the relation (Capital) and the neighbor
(Rome).

the neighboring entities and the linking relations, while the
relation alignment can be inferred from the connected head
and tail entities. Thus, it is reasonable to implement both
entity alignment and relation alignment in a unified frame-
work.

Therefore, in this paper, we propose a novel Relation-
aware Neighborhood Matching model named RNM for
entity alignment. Besides comparing neighboring entities
when matching subgraphs, we also exploit the semantic in-
formation and mapping properties from linking relations
for entity alignment. The semantic information of relations
helps us with the relation matching in neighborhood, while
mapping properties of relations provide the probability of
alignment. Moreover, we design an iterative framework to
unify the entity alignment and the relation alignment, in
which the two tasks can reinforce each other in a semi-
supervised manner. Experimental results on three real-world
datasets show that RNM significantly outperforms several
state-of-the-art methods.

The remainder of this paper is organized as follows. First,
we discuss the related work and introduce the problem def-
inition in the following two sections. Then, we describe the
proposed model in detail. After that, experimental settings
and empirical evaluation results are presented. Finally, we
conclude the paper and point out some future work.

Related Work
Most of the existing entity alignment methods focused on
embedding entities from different KGs into the same la-

tent space and measured the alignment by calculating the
distance between entity embeddings. TransE (Bordes et al.
2013), as one of the most practical models for KG embed-
ding, has been adopted for entity alignment. MTransE (Chen
et al. 2017) utilized TransE model to learn entity embed-
dings for two KGs separately and designed a space transfor-
mation mechanism for the alignment. Instead of training em-
beddings separately for different KGs, IPTransE (Zhu et al.
2017) employed a path-based TransE model to train the joint
knowledge embeddings and proposed an iterative strategy
to expand seed alignments. After that, for better iteration,
BootEA (Sun et al. 2018) designed a bootstrapping align-
ment model based on translational embedding learning, and
used constraints to reduce the error accumulation when iter-
ating.

Since graph convolutional networks (GCNs) (Kipf and
Welling 2017) have achieved remarkable progress in graph
learning, some work tried to apply GCNs to entity align-
ment for better representation learning. Wang et al. (2018)
proposed a GCN-Align model for entity alignment which
trained GCNs to embed entities of each KG into a uni-
fied vector space. After that, relations were taken into ac-
count for entity alignment. HGCN (Wu et al. 2019b) jointly
learned both entity and relation representations via a GCN-
based framework and RDGCN (Wu et al. 2019a) constructed
a dual relation graph for embedding learning. Moreover,
AliNet (Sun et al. 2020) improved GCNs by aggregating
multi-hop neighborhood with gated strategy and attention
mechanism. These methods tried to make use of the struc-
tural and neighborhood information to learn better represen-
tations of entities. However, they may also bring in some
noise from neighbors, which could degrade the performance
of alignment.

More recently, some researchers attempted to employ
subgraph matching for better entity alignments. Xu et al.
(2019) formulated the KG-alignment task as a graph match-
ing problem by introducing a local sub-graph for each en-
tity. NMN (Wu et al. 2020) was a cross-graph neighborhood
matching model which jointly encoded the difference of
neighborhood for entity pairs. However, these methods only
took the neighboring entities for comparison but ignored the
connected relations which are also important for subgraph
matching. Thus, in this paper, we propose a novel relation-
aware neighborhood matching model which explores the
semantic information and mapping properties of relations
when conducting subgraph matching. Moreover, entities and
relations are iteratively aligned in our model to make these
two tasks reinforce each other.

Problem Definition
The entity alignment and the relation alignment are two re-
lated tasks for knowledge fusion.

Formally, a KG can be denoted as G = (E,R, T ), where
E, R, and T are the sets of entities, relations, and triples, re-
spectively. Given two heterogeneous KGs to be fused, which
are G1 = (E1, R1, T1) and G2 = (E2, R2, T2), we as-
sume there is a set of pre-aligned entity pairs between the
two KGs, which is defined as L = {(e1, e2)|e1 ∈ E1, e2 ∈
E2, e1 equals to e2}.
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Figure 2: Overall architecture of the proposed model RNM. Assume that there are m entities in KG1, n entities in KG2, p
relations in KG1, and q relations in KG2.

For the entity alignment task, our goal is to find out the
remaining equivalent entity pairs. For the relation alignment
task, our goal is to find out the relation pairs with the same
meaning from the two given KGs. Note that the relation
alignment is an unsupervised task in this paper.

Proposed Model
In this section, we will first give an overview of the proposed
model RNM. After that, components of the model will be
described in detail, which are embedding learning for enti-
ties and relations, relation-aware neighborhood matching for
entity pairs, and entity-aware matching for relation pairs. Fi-
nally, we will present the iterative strategy and some imple-
mentation details of RNM.

Overview of RNM
Figure 2 illustrates the overall architecture of the proposed
model RNM. First, given two KGs and a set of seed align-
ments of entities, we jointly learn the embeddings of enti-
ties and relations using GCNs with a TransE-like regular-
izer. After that, we iteratively align the entities and relations
in a semi-supervised manner. In each iteration, we utilize
the graph structure information to determine new matching
pairs of entities and relations by a relation-aware neighbor-
hood matching module and a entity-aware entity matching
module, respectively.

Embedding Learning for Entity and Relation
To align the entities of two KGs, we embed them into the
same latent space to make them comparable. Similarly, we
embed the relations of the two KGs into the same latent
space for relation alignment. To explore the interactions be-
tween entities and relations in the KG, we propose to jointly
learn the embeddings of entities and relations.

Entity Embedding Given two KGs and a set of seed
alignments of entities, we utilize GCNs to embed all the en-
tities of the two KGs into the same latent space with con-

sideration of the structure information of the two KGs. Fol-
lowing (Xu et al. 2019; Wu et al. 2020), we initialize the
entity representations with the pre-trained word embeddings
which can provide useful semantic information of entities.
Moreover, we adopt the highway strategy (Srivastava, Greff,
and Schmidhuber 2015) to control the noise in the propaga-
tion procedure of GCNs with multiple layers.

We take the outputs of GCN stated above as the embed-
dings of entities, and define the final representations of all
entities as X̃ = {x̃1, x̃2, · · · x̃n|x̃i ∈ Rd̃}, where d̃ denotes
the dimension of entity embeddings and n denotes the num-
ber of entities. For an entity pair (ei, e

′
j) where ei ∈ E1 and

e′j ∈ E2, we define the distance between them as

d(ei, e
′
j) = ||x̃ei − x̃e′j

||1, (1)

where ||·||1 denotes the 1-norm measure for vectors. Smaller
d(ei, e

′
j) indicates the higher probability of alignment be-

tween the two entities ei and e′j .
To embed the entities of two KGs into the same latent

space, we take the seed alignments as training data and de-
sign a margin-based loss function for entity alignment as fol-
lows,

LE =
∑

(p,q)∈L

∑
(p′,q′)∈L′

max{0, d(p, q)−d(p′, q′)+γ}, (2)

where L denotes the set of pre-aligned entity pairs, L′ is a
set of negative alignments upon nearest neighbor sampling
(Wu et al. 2020), and γ > 0 denotes the margin. The loss
function assumes that the distance between aligned entity
pairs should be close to zero, while the distance between
negative samples should be as far as possible.

Relation Embedding In the KG, facts are encoded as
triples, i.e., (h, r, t), where h denotes the head entity, t de-
notes the tail entity, and r denotes the relation from h to t.
Therefore, the meaning of a relation is associated with its
two connected entities. To leverage the information of con-
nected entities, we utilize the embeddings of head entities
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and tail entities learned from GCNs to represent relations in
the KG, which can be written as follows,

r = concat[gh
r , g

t
r], (3)

where r ∈ R2d̃ denotes the embedding of the relation r ∈
R1 ∪R2, concat means the operation of concatenation, and
gh
r and gt

r denote the average embeddings of all distinct head
entities and tail entities for r, respectively.

Moreover, to further explore the translational information
for relations based on triples, inspired by TransE (Bordes
et al. 2013), we design a regularizer as follows,

ΩR =
∑

(h,r,t)∈T1∪T2

||h + WRr − t||1, (4)

where T1 and T2 denote the sets of triples for two given KGs
G1 andG2, respectively. WR ∈ Rd̃×2d̃ denotes the transfor-
mation matrix from the latent relation space to latent entity
space, which is the model parameter to be learned.

Objective function To jointly learn the embeddings of en-
tities and relations, we formulate the objective function as
follows,

L = LE + λ · ΩR, (5)
where λ is a trade-off coefficient to balance the loss of en-
tity alignment and the loss of regularizer with consideration
of the embeddings of relations. Our goal is to minimize the
function above after the pre-training of entity embeddings.
In addition, we utilize Adam (Kingma and Ba 2015) for the
objective optimization.

Relation-Aware Neighborhood Matching
GCNs aim to aggregate information from neighboring nodes
but may also bring some additional noise from neighbors.
To reduce the impact of these noise, we propose a relation-
aware neighborhood matching model to compare entity
pairs. We assume that if two entities from different KGs have
been aligned, then with the relation of the same meaning,
the alignment probability of two pointing tail entities can be
inferred according to the mapping property of the relation.
For instance, 1-to-1 relation can provide the exact alignment
while 1-to-N relation can only show the probability of 1/N .

For each candidate entity pair (ei, e
′
j) where ei ∈ G1 and

e′j ∈ G2, besides comparing their one-hop neighbor entities
in pairs, we also consider the comparison between connected
relations. Specifically, letNei be the set of one-step neighbor
entities of ei in G1, and Ne′j

be the set of one-step neighbor
entities of e′j in G2. For neighborhood matching with re-
spect to ei and e′j , we compare all the entity pairs and the
connected relation pairs in Ce

ij = {(n1, n2), (r1, r2)|n1 ∈
Nei , n2 ∈ Ne′j

, (ei, r1, n1) ∈ T1, (e′j , r2, n2) ∈ T2}, where
T1 and T2 are the sets of triples for the two KGs, respec-
tively. After that, we focus on the matched neighbors with
matched relations which are vital for entity alignment. Thus,
the matched setMe

ij is defined as the subset of Ce
ij , in which

the elements satisfy (n1, n2) ∈ Le and (r1, r2) ∈ Lr, where
Le denotes the alignment set of entities and Lr denotes the
alignment set of relations.

Moreover, mapping properties of connected relations are
also important for entity alignment. Thus, for each matched
case in Me

ij , we will compute the alignment probability
based on r1, r2 and n1, n2, which can be written as follows,

P (r1, r2, n1, n2) = P (r1, n1) · P (r2, n2) (6)

where
P (r1, n1) =

1

|{e|(e, r1, n1) ∈ T1}|
(7)

and
P (r2, n2) =

1

|{e|(e, r2, n2) ∈ T2}|
. (8)

P (r1, n1) and P (r2, n2) denote the mapping probability
with respect to the corresponding relation and neighbor en-
tity, respectively. Thus, we can update the distance between
two entities as follows,

deij = ||x̃ei − x̃e′j
||1 − λe ·

∑
Me

ij
P (r1, r2, n1, n2)

|Nei |+ |Ne′j
|

, (9)

where λe is a hyper-parameter to control the tradeoff be-
tween the embedding distance and the matching score.
Greater matching score indicates the higher probability of
alignment for the candidate entity pair.

Entity-Aware Relation Matching
For two relations from different KGs, we assume that the
more alignments of head entities and tail entities are at the
same time in their associated triples, the more likely the two
relations are with the same meaning. For a relation r, we
define Sr = {(h, t)|(h, r, t) ∈ T} as the set of its related
entity pairs, where T denotes the set of triples in the given
KG. Thus, given a candidate relation pair (ri, r

′
j) where ri

from G1 and r′j from G2, we first form the corresponding
entity pair sets Sri and Sr′j

. Then, we compare all entity
pairs in Cr

ij = {(h1, h2), (t1, t2)|(h1, t1) ∈ Sri , (h2, t2) ∈
Sr′j
} and define the matching set Mr

ij as the subset of Cr
ij

where elements meet the conditions of (h1, h2) ∈ Le and
(t1, t2) ∈ Le. Therefore, the distance between the relation
pair (ri, r

′
j) can be updated as follows,

drij = ||ri − r′j ||1 − λr ·
|Mr

ij |
|Sri |+ |Sr′j

|
, (10)

where λr is a tradeoff coefficient. Similar as the distance
measure for the entity pairs, we consider both the embedding
distance and the matching score for relation pairs.

Iterative Strategy and Implementation Details
To make use of the positive interactions between the en-
tity alignment task and the relation alignment task, we de-
sign a semi-supervised framework in which the entity align-
ment and the relation alignment can enhance each other it-
eratively. Let De ∈ R|E1|×|E2| denote the distance matrix
for entity pairs from KG1 to KG2, and Dr ∈ R|R1|×|R2|

denote the distance matrix for relation pairs from KG1 to
KG2. Algorithm 1 presents the iterative strategy of RNM.
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Algorithm 1 Iterative Strategy of RNM

Input: Entity embeddings {x̃i}, relation embeddings {ri},
seed alignments of entities L, maximum number of iter-
ations T .

Output: De (distance matrix of entities) and Dr (distance
matrix of relations).

1: Initialize De using Eq. (11);
2: Initialize Dr using Eq. (12);
3: repeat
4: Update alignment sets according to Algorithm 2;
5: Update De using Eq. (9) with the consideration of

relation-aware neighborhood matching;
6: Update Dr using Eq. (10) with the consideration of

entity-aware matching;
7: until De, Dr are converged or the iteration reaches T
8: return De, Dr

Algorithm 2 Update Alignment Sets

Input: De (distance matrix of entities),Dr (distance matrix
of relations), distance threshold δe and δr

Output: Le (alignment set of entities), Lr (alignment set of
relations).

1: Initialize Le ← ∅, Lr ← ∅;
2: for each entity ei in KG1 do
3: j = arg minj d

e
ij // find the nearest entity in KG2

4: if deij < δe then
5: Le ← Le ∪ (ei, e

′
j)

6: end if
7: end for
8: for each relation ri in KG1 do
9: j = arg minj d

r
ij // find the nearest relation inKG2

10: if drij < δr then
11: Lr ← Lr ∪ (ri, r

′
j)

12: end if
13: end for
14: For the conflicts in Le or Lr, we will choose the pair

with smaller distance;
15: return Le, Lr

The initialization of De is defined as follows with the
learned embeddings of entities,

deij =


0 (ei, e

′
j) ∈ L

∞ (ei, e
′
k) ∈ L ∧ j 6= k

||x̃ei − x̃e′j
||1 otherwise

, (11)

and the initialization of Dr can be written as follows with
the learned embeddings of relations,

drij = ||ri − r′j ||1. (12)

De andDr can be utilized for alignment ranking or align-
ment set generation. The method for generating or updating
the alignment sets is shown in Algorithm 2.

In addition, we introduce the reverse relations to en-
rich the KGs. For instance, for the fact (Tokyo, Capi-
talOf, Japan), we will also build another triple (Japan, Cap-

Datasets Ent. Rel. Tri.

DBP15KZH−EN
Chinese 66,469 2,830 153,929
English 98,125 2,317 237,674

DBP15KJA−EN
Japanese 65,744 2,043 164,373
English 95,680 2,096 233,319

DBP15KFR−EN
French 66,858 1,379 192,191
English 105,889 2,209 278,590

Table 1: Statistics of datasets

italOf−1, Tokyo). Thus, the set of relations and the set of
triples of a given KG will be accordingly enlarged.

Experiments
Experimental Setup
Datasets To evaluate the performance of the proposed
model, we utilize three cross-lingual datasets from DBP15K
as the experimental data. These datasets are subsets of
the large-scale knowledge graph DBpedia (Lehmann et al.
2015) and are selected from different language versions
including English, Chinese, Japanese, and French. Each
dataset consists of two KGs of different languages and
15,000 aligned entity pairs. Recently, these three datasets
have been widely employed by researchers for entity align-
ment (Wu et al. 2019a; Sun et al. 2020; Wu et al. 2020). The
statistic details of the datasets are shown in Table 1.

Experimental Settings We employ a 2-layer GCN to
learn the entity embeddings. The dimension of hidden layer
in GCN is set as 300. The learning rate is set to 0.001. Fol-
lowing (Wu et al. 2020), we first translate non-English entity
names into English and then initialize the entity embeddings
with the pre-trained word vectors from Glove model, and the
proportion of seed alignments is set as 30%. Besides, we set
the margin γ as 1, threshold δe as 5, threshold δr as 3, λ as
0.001, λe as 10, and λr as 200. We select the nearest 100
entities and the nearest 20 relations as candidates for match-
ing. The number of negative samples for each positive one
is set as 125, the maximum number of iterations T is set as
4. We first optimize Eq. (2) for 50 epochs, and then jointly
train the embeddings using Eq. (5) for 10 epochs.

We utilize TensorFlow to implement the proposed model
RNM. The experiments are conducted on a server with two
Intel(R) Xeon(R) CPUs E5-2660 @ 2.20GHz, an NVIDIA
Tesla P100 GPU and 16 GB memory.

Evaluation Metrics and Baselines The same as in pre-
vious work (Sun et al. 2018; Yang et al. 2020), we adopt
Hits@k and mean reciprocal rank (MRR) as the evalua-
tion metrics. Hits@k measures the proportion of correctly
aligned entities ranked in the top k list. k is set as 1 and 10
as in previous work. MRR is calculated as the average of
the reciprocal ranks of the results. Higher Hits@k or MRR
indicates the better performance of the model.

For comparison, we choose several competitive entity
alignment methods as baselines and classify them into three
categories: (1) TransE-based models, including MTransE
(Chen et al. 2017), IPTransE (Zhu et al. 2017), BootEA
(Sun et al. 2018), AKE (Lin et al. 2019), and SEA (Pei
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Models ZH-EN JA-EN FR-EN
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

MTransE (Chen et al. 2017) 30.8 61.4 0.364 27.9 57.5 0.349 24.4 55.6 0.335
IPTransE (Zhu et al. 2017) 40.6 73.5 0.516 36.7 69.3 0.474 33.3 68.5 0.451
BootEA (Sun et al. 2018) 62.9 84.8 0.703 62.2 85.4 0.701 65.3 87.4 0.731

AKE (Lin et al. 2019) 32.5 70.3 0.449 25.9 66.3 0.390 28.7 68.1 0.416
SEA (Pei et al. 2019) 42.4 79.6 0.548 38.5 78.3 0.518 40.0 79.7 0.533

GCN-Align (Wang et al. 2018) 41.3 74.4 0.549 39.9 74.5 0.546 37.3 74.5 0.532
KECG (Li et al. 2019) 47.8 83.5 0.598 49.0 84.4 0.610 48.6 85.1 0.610

MuGNN (Cao et al. 2019a) 49.4 84.4 0.611 50.1 85.7 0.621 49.5 87.0 0.621
NAEA (Zhu et al. 2019) 65.0 86.7 0.720 64.1 87.3 0.718 67.3 89.4 0.752
AliNet (Sun et al. 2020) 53.9 82.6 0.628 54.9 83.1 0.645 55.2 85.2 0.657
GMNN (Xu et al. 2019) 67.9 78.5 0.694 74.0 87.2 0.789 89.4 95.2 0.913

RDGCN (Wu et al. 2019a) 70.8 84.6 0.746 76.7 89.5 0.812 88.6 95.7 0.911
HGCN (Wu et al. 2019b) 72.0 85.7 0.768 76.6 89.7 0.813 89.2 96.1 0.917

NMN (Wu et al. 2020) 73.3 86.9 0.781 78.5 91.2 0.827 90.2 96.7 0.924
RNM 84.0 91.9 0.870 87.2 94.4 0.899 93.8 98.1 0.954

Table 2: Performance of different entity alignment methods

Models ZH-EN JA-EN FR-EN
Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR

RNM 84.0 91.9 0.870 87.2 94.4 0.899 93.8 98.1 0.954
RNM (-AP) 81.8 91.6 0.856 85.7 94.4 0.890 93.0 98.0 0.945
RNM (-IS) 81.6 91.1 0.852 84.6 93.7 0.881 92.5 97.7 0.945

RNM (-RM) 78.5 90.6 0.830 83.3 93.6 0.871 91.3 97.1 0.935

Table 3: Ablation study of the proposed model

et al. 2019); (2) GCN-based models which only utilize struc-
tural information, including GCN-Align (Wang et al. 2018),
KECG (Li et al. 2019), MuGNN (Cao et al. 2019a), NAEA
(Zhu et al. 2019), and AliNet (Sun et al. 2020); (3) GCN-
based models which employ entity name initialization, in-
cluding GMNN (Xu et al. 2019), RDGCN (Wu et al. 2019a),
HGCN (Wu et al. 2019b), and NMN (Wu et al. 2020). Note
that GMNN and NMN are models with subgraph matching.

Experimental Results
Entity Alignment Table 2 shows the performance of dif-
ferent methods on the entity alignment task. The results of
Hits@1 and Hits@10 are in percentage (%). Numbers in
bold denote the best results among all models and the under-
lined ones denote the second best results. The experimental
results show that RNM significantly outperforms all base-
lines on the three datasets. And it can achieve that all the
values of Hits@1 higher than 80%, those of Hits@10 higher
than 90%, and those of MRR higher than 0.85. It is worth
noting that Hits@1 directly reflects the accuracy of align-
ment. Thus, the outstanding results in Hits@1 further con-
firms the effectiveness of the proposed model RNM.

Specifically, among all TransE-based models, BootEA
performs the best because it adopts a bootstrap strategy to it-
eratively expand the seed alignments. This indicates that the
iterative strategy can significantly improve the performance
of entity alignment. And for GCN-based models that only
consider the structural information, NAEA outperforms the
others probably because it considers both neighboring nodes
and relations when representing entities. This confirms that
the relation information is important for entity alignment.

Moreover, NMN performs the best among all baselines.
The improvements may come from its neighborhood match-
ing module. However, the proposed model RNM further out-
performs NMN by 10.7%, 8.7%, 3.6% in Hits@1. This con-
firms that neighborhood matching with relations can effec-
tively improve the performance of entity alignment.

Ablation Study To evaluate the effectiveness of our de-
signed modules, we construct several ablation studies on the
proposed model RNM and Table 3 shows the results. Specif-
ically, (1) RNM (-AP) denotes the model RNM without con-
sidering the alignment probability (Eq. (6)) in the relation-
aware neighborhood matching module; (2) RNM (-IS) de-
notes RNM without the iterative strategy; (3) RNM (-RM)
denotes RNM without considering relations when match-
ing neighborhood for entity pairs. From the experimental re-
sults, we can observe that the performance of RNM (-RM)
drops the most, which confirms that it is important to take
into account the connected relations when matching neigh-
borhood for entity pairs. It is noted that RNM (-IS) consis-
tently outperforms all baselines in Table 2, which confirms
the effectiveness of proposed relation-aware neighborhood
matching module. In addition, RNM (-AP) is 2.2%, 1.5%
and 0.8% lower than RNM in Hits@1 on three datasets,
which indicates that considering mapping properties of rela-
tions could further improve the accuracy of entity alignment.

Relation Alignment The proposed model RNM can not
only be used for entity alignment but also for relation align-
ment. Table 4 shows the comparison results of different
methods on the three datasets for relation alignment. Note
that the results of baselines are from the reported data in
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Figure 3: Results of entity alignment and relation alignment w.r.t the number of iterations.

(a) ZH-EN (b) JA-EN (c) FR-EN

Figure 4: Results of entity alignment w.r.t the proportion of seed alignments.

Models ZH-EN JA-EN FR-EN
Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

MTransE-R 3.0 8.9 2.7 10.2 3.3 14.6
MTransE-PR 32.8 57.6 31.0 56.1 18.9 44.3

BootEA-R 55.2 70.0 47.8 67.7 36.8 58.5
BootEA-PR 45.3 85.4 41.4 79.8 30.2 60.4

GCN-PR 66.2 82.8 60.9 81.5 38.2 52.8
GCN-JR 70.2 82.8 63.9 81.8 42.0 53.8

HGCN-PR 69.3 84.5 63.1 81.3 41.5 54.3
HGCN-JR 70.3 85.4 65.0 83.6 42.5 56.6

RNM 80.6 87.1 74.5 84.6 49.5 62.5

Table 4: Performance on relation alignment

(Wu et al. 2019b), where -R denotes the original model for
relation alignment, -PR denotes the model that approximates
the relation representations using entity embeddings as in
(Wu et al. 2019b), and -JR denotes the model that jointly
learns the embeddings of both entities and relations. From
the results we can observe that the proposed model RNM
performs better than all the baselines especially in Hits@1.
Among the baselines, BootEA achieves better results com-
pared with MTransE due to its bootstrapping strategy, while
GCN further improves the performance by incorporating the
semantic information. The proposed model RNM outper-
forms the best baseline model (HGCN-JR) by 10.3%, 9.5%,
and 7.0% in Hits@1 on the three datasets, respectively. The
reason may be that RNM aligns relations by matching the
head and the tail entities which can provide more evidence
for relation alignment. Moreover, these results confirm our
assumption that the entity alignment and the relation align-
ment can reinforce each other in our model.

Analysis Figure 3 shows the results of entity alignment
and relation alignment with different numbers of iterations
for the proposed model RNM. With the increase of itera-

tions, the performance of RNM on entity alignment and re-
lation alignment raise accordingly. This proves the effective-
ness of the iterative framework of RNM and the assumption
that the entity alignment task and the relation alignment task
can reinforce each other for better performance.

Since RNM can implement the alignments in a semi-
supervised manner, we conduct several experiments on the
entity alignment task with different proportions of seed
alignments, and results are shown in Figure 4. We choose
NMN, which performs the best among baselines, as the
comparison model. From the results, we can observe that
RNM outperforms NMN in all situations. Even RNM with
only 10% seed alignments performs better than the NMN
with 40% seed alignments on all the three datasets. This is
because RNM explores the useful information of relations
when matching neighborhood, and the iterative strategy help
to enhance the performance.

Conclusion and Future Work
In this paper, we propose a novel relation-aware neighbor-
hood matching model named RNM for entity alignment. In
the model, we jointly learn the embeddings of entities and
relations. Moreover, we propose to make use of the seman-
tic information and mapping properties of relations for bet-
ter entity alignment. In addition, we implement entity align-
ment and relation alignment iteratively to reinforce each
other in a semi-supervised manner. Finally, we evaluate the
proposed model on three cross-lingual KG datasets and em-
pirical results demonstrate the effectiveness of RNM.

In the future, we will study how to make use of the side in-
formation such as attributes (Zhang et al. 2019) and descrip-
tions (Yang et al. 2019) to improve the accuracy of entity
alignment.
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