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Abstract

Peer reviewing is a central process in modern research and
essential for ensuring high quality and reliability of pub-
lished work. At the same time, it is a time-consuming process
and increasing interest in emerging fields often results in a
high review workload, especially for senior researchers in this
area. How to cope with this problem is an open question and
it is vividly discussed across all major conferences. In this
work, we propose an Argument Mining based approach for
the assistance of editors, meta-reviewers, and reviewers. We
demonstrate that the decision process in the field of scientific
publications is driven by arguments and automatic argument
identification is helpful in various use-cases. One of our find-
ings is that arguments used in the peer-review process differ
from arguments in other domains making the transfer of pre-
trained models difficult. Therefore, we provide the commu-
nity with a new peer-review dataset from different computer
science conferences with annotated arguments. In our exten-
sive empirical evaluation, we show that Argument Mining can
be used to efficiently extract the most relevant parts from re-
views, which are paramount for the publication decision. The
process remains interpretable since the extracted arguments
can be highlighted in a review without detaching them from
their context.

Introduction
Argumentation is a process of bringing together and orga-
nizing reasons to convince a reasonable critic to accept or
refuse a certain standpoint (Van Eemeren, Grootendorst, and
van Eemeren 2004). It is an essential part of each rational
decision-making process and after the decision is made, ar-
gumentation is important for its explanation and justification
(Amgoud and Prade 2009). An important step in the argu-
mentation process is the identification of arguments. Gener-
ally speaking, there is a difference between argumentative
and informative content: Argumentative content expresses
evidence or reasoning used to either oppose or support a
given point. Informative parts often contain background in-
formation and describe how entities appear and act in the
world.

In the last years, Argument Mining (AM) approaches have
been applied in many fields and for different types of texts,
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such as encyclopedic articles (Aharoni et al. 2014), student
essays (Stab and Gurevych 2014b), web discourse (Haber-
nal and Gurevych 2016) or political speeches (Haddadan,
Cabrio, and Villata 2019). AM techniques build the back-
bone of an IBM AI system Project Debater, which has
the ambitious goal to debate humans on complex topics.
This work aims to further extend the application of AM to
the novel domain of scientific peer reviews. Peer review-
ing is a cornerstone of today’s academic editorial decision-
making process in nearly all scientific disciplines. The peer-
reviewers, who are usually not part of the editorial team, are
experts in the corresponding research field and their task is
the critical evaluation of the work proposed for publication.
We argue that peer-reviewing can also be seen as an argu-
mentation process, where the reviewers make up their minds
about the examined publications and try to convince the edi-
torial team by providing arguments in favor of or against ac-
ceptance. While the evaluation or review usually comprises
different parts, such as a summary of the work or additional
background information about the topic, the reviewers’ pro
and contra arguments are often the most relevant for making
the final decision. Consequently, we envision that the auto-
matic identification of argumentative content can improve
and simplify different peer-review process phases. One pos-
sible use-case is to provide editors or meta-reviewers, co-
responsible for the final decision, with an overview of argu-
ments from all reviews and let them focus on the most rel-
evant ones. For instance, after reading only the highlighted
arguments in Figure 1, it is possible to get a good idea about
the paper’s strong and weak points. Another possible use-
case is to support the reviewers by providing information
about (missing) argumentation. For example, the author of
the review in Figure 1 provides a detailed description of the
empirical evaluation, but it is not completely clear from the
text whether the reviewer is satisfied with the proposed eval-
uation criteria.

In this paper, we propose the application of AM to the do-
main of peer-reviewing. To this end, we collect a new dataset
containing peer-reviews from different computer science
conferences. We define a suitable AM annotation schema
and annotate the dataset. We investigate the applicability
of state-of-the-art AM techniques in an extensive empiri-
cal evaluation. Among others, we study the transferability
of models trained on data from different domains to our task
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Example Review
Summary: As the title suggests the paper focusses mostly on a
negative result: Mutual information (MI) estimators obtained by
variational methods have severe limitations that make them po-
tentially not useful for down stream tasks. Besides highlighting
the problems with variational MI estimators the authors suggest
a modification to slightly improve the performance of MI estima-
tors based on partition functions by reducing their variance when
MI is high. The authors give a good overview / introduction of
various approaches to variational MI estimation by discrimina-
tive and generative methods. Generally, MI estimation involves
the estimation of the KL divergence between the joint distribution
and the product of the marginals. The authors present a unifying
view on the different approaches that optimizes the log density ra-
tio required for the KL divergence over the space of log density
ratios. Discriminative approaches model the density ratio directly
(through e.g. neural network models) and generative approaches
model the separate densities (as generative models where it is pos-
sible to evaluate the (conditional) probabilities / likelihoods of the
data generating process). The authors prove that discriminative ap-
proaches that are based on the partition function approach suffer
from high variance where mutual information is high (Theorem 2).
The estimator based on a finite sample has high variance even if
the density ratio approximation is correct. (The partition function
approach is a way of staying constrained to the log density ratio
function space.) This high variance problem is something that has
previously been observed empirically and is the main theoretical
point that is being made about limitations of MI estimators. In or-
der to slightly alleviate the problem of high variance the authors
suggest a way of biasing MI estimators by clipping the density ra-
tio estimates through a constant chosen as a hyper-parameter. They
prove that their clipping approach reduces variance and therefore
introduces a bias variance tradeoff. In their later experiments the
clipped version of the discriminative approach performs much bet-
ter in terms of variance than without clipping and also better than a
generative approach. In order to empirically evaluate the quality of
MI estimators the authors suggest three criteria that they call self-
consistency: (i) independence, (ii) data processing, (iii) additivity
Self-consistency is evaluated experimentally on images where mu-
tual information is computed between original image and image
with part covered. The authors claim and experimentally show that
discriminative approaches fail in (iii) and generative approaches
fail in (i), (ii). Overall, variational MI approaches do not satisfy
self-consistency. Evaluation: I suggest to accept the paper. The the-
oretical contribution of showing the variance limitation of dis-
criminative approaches seems significant. That insight leads to
the idea that clipping can be a useful bias that significantly reduces
variance without making the already biased anyways results much
worst in the experiments. However, I also feel like - the paper is
not yet as focused as it could be. It contains many concepts that
could need a little bit more space.
- Suggestions:
- Page 2: Nitpick, but in the definition of pseudo-formula using
pseudo-formula twice is not super readable on the first read
- Page 2: In the definition of pseudo-formula clearify whether
pseudo-formula is a marginal or a joint density (as pseudo-formula
is the cumulative joint)

Figure 1: Example review for an ICLR’20 submission with
labeling: Arguments in favor of acceptance are shown in
green; red denotes arguments against it.

and the generalization across different conferences. Further-
more, we empirically validate our assumption about the im-
portance of arguments for the decision-making process in
academic publishing.

Related Work
Argument Mining
Argument Mining (AM) is the task of recognizing argu-
ment components (Palau and Moens 2009; Habernal and
Gurevych 2016; Stab and Gurevych 2017; Hua and Wang
2017; Nguyen and Litman 2015) and their relations (Stab
and Gurevych 2017; Nguyen and Litman 2016). The ba-
sis of AM are argumentation schemes that define the struc-
ture of the argument components and the relations between
them. There is no universally accepted theory of argu-
mentation (Van Eemeren, Grootendorst, and Kruiger 2019),
and over time, argumentation schemes of varying complex-
ity have been suggested in the literature (Toulmin 1958;
Walton 2012; Freeman 2011; Stab and Gurevych 2014b).
The original model by Toulmin (1958) comprises claims
as an assertion for general acceptance, data (also often
called premises) as the source of evidence to establish the
claim, a warrant to justify the inference from a premise
to a claim, backing (facts behind the warrant), a qualifier
(degree of certainty for the inference) and rebuttals. The
model has often been adopted in literature and most of
the time, only premises and claims are used as argument
components. However, it was observed that arguments in
many text types have a more straightforward structure, e.g.,
models trained on a single dataset to identify claims do
not generalize well to other document types (Daxenberger
et al. 2017). Furthermore, annotating a dataset crawled
from heterogeneous text sources leads to a low agreement
among annotators (Habernal and Gurevych 2016; Miller,
Sukhareva, and Gurevych 2019). Also, specific argument
components (backing, warrant) appearing in the Toulmin-
Scheme (Toulmin 1958) are often stated implicitly (van
Eemeren et al. 2003; Habernal and Gurevych 2016). An ar-
gumentative scheme recently proposed by Stab, Miller, and
Gurevych (2018) omits these components and simply distin-
guishes between (supporting/opposing) arguments and non-
argumentative text parts. Its reasonableness is confirmed on
the one hand by relatively high agreement among reviewers,
and on the other hand by the model performance on texts
from heterogeneous sources, see e.g. (Fromm, Faerman, and
Seidl 2019). Furthermore, it was observed that the distinc-
tion between supporting and opposing arguments is more
challenging than the distinction between argumentative and
non-argumentative parts (Trautmann et al. 2020b,a; Fromm,
Faerman, and Seidl 2019).

The development of models for the identification of ar-
gument components according to an argumentative scheme
is similar to other NLP disciplines. Previous approaches
rely on feature engineering (Habernal and Gurevych 2016;
Lawrence and Reed 2015; Stab and Gurevych 2014a), more
recent methods apply neural networks models. Guggilla,
Miller, and Gurevych (2016) were the first to apply recurrent
neural networks for AM. The state-of-the-art performance
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in AM is achieved with pre-trained transformer-based archi-
tectures (Fromm, Faerman, and Seidl 2019; Trautmann et al.
2020a; Reimers et al. 2019).

A popular real-life application of AM techniques are ar-
gument search engines such as argumenText1 (Stab et al.
2018) and args2 (Wachsmuth et al. 2017) which allow ar-
gument retrieval according to a user-defined topic. AM is
applied in the preprocessing step, where arguments are ex-
tracted from documents before they are indexed by a search
engine.

Application of NLP for Peer-reviewing Process
So far, AM for scientific peer-reviews has received little at-
tention. Hua et al. (2019) introduce a dataset with propo-
sitions in scientific reviews. The annotation schema is com-
prised of components that often appear in reviews such as re-
quests, facts, evaluations or quotes. The dataset is annotated
on a sentence level and the main focus is to study the usage
of different propositions across venues. In our application,
we are interested in arguments directly affecting the decision
process, and therefore, the stance of the argument bears es-
sential information. Since this information is missing in Hua
et al. (2019), this annotation schema is not suitable for our
application. Closely related is Xiao et al. (2020) work, where
the goal is to automatically detect the problem description
in peer-reviews. However, although the problems can also
be considered opposing arguments, it is crucial to consider
both positive and negative arguments for our application.

Other related works deal with different aspects of the
peer-reviewing process. In Plank and van Dalen (2019), the
authors introduce a dataset with scientific reviews and ana-
lyze it based on the title, abstract, and review text on how
well the citation impact of a paper can be predicted. Gao
et al. (2019) study the effect of author replies in the rebut-
tal phase. Argumentative zoning (Teufel, Siddharthan, and
Batchelor 2009) analyzes the rhetorical and argumentative
structure of scientific papers with intending to convince re-
viewers that the knowledge claim of the paper is valid.

Dataset
We use the OpenReview3 platform and the OpenReview-
Crawler4 to retrieve peer-reviews. We collect all reviews
from six computer-science conferences listed in Table 1. The
annotated dataset 5 and the code 6 is available.

There, we additionally provide basic statistics about con-
ferences and collected reviews.

Preprocessing
In a first preprocessing step, we replace URLs, es-
cape sequences, encapsulated mathematical formulas, Uni-
code symbols and markdown with a corresponding type

1www.argumentsearch.com
2www.args.me
3https://openreview.net/
4https://openreview-py.readthedocs.io/en/latest/getting_data.

html
5https://zenodo.org/record/4314390
6https://github.com/fromm-m/aaai2021-am-peer-reviews

placeholder token respectively, e.g. <URL> for URLs.
Furthermore, we remove multiple consecutive whites-
paces and split review texts into sentences using the
PunktSentenceTokenizer from NLTK.7 To further
improve the sentence splitting results, we provide the to-
kenizer with a set of idioms and abbreviations commonly
used in scientific texts to avoid sentence splitting in the mid-
dle or after them.8 Finally, we remove all sentences with less
than three tokens and go through the dataset manually and
remove non-interpretable sentences.

From 12,135 collected reviews, we sample 77 for the an-
notation. To this end, we first sample a conference uniformly
at random and then a review from the conference.9 We use
stratified sampling to ensure that sampled reviews reflect the
following three characteristics of original review distribution
for each conference: Review-Rating (1-4), Paper-Decision
(acceptance / rejection), and Review-Length.

Annotation
Scheme We use a simple argumentation scheme proposed
in Stab, Miller, and Gurevych (2018), which distinguishes
between non-arguments, supporting arguments and attack-
ing arguments, which we denote as NON/PRO/CON accord-
ingly. While this simple scheme grasps argumentative con-
text, the annotation is easier since annotators are not re-
quired to consider complex relationships between argumen-
tative components. Furthermore, it is also flexible enough to
capture argumentative parts that are not attributable to the
single argument type. For instance, in our dataset, we often
observe rhetorical questions that criticize the paper’s vague-
ness under review. The annotation scheme can also be inter-
preted as a flat version of the claim-premise model: There is
a single claim, "The paper should be accepted", and argu-
ments are premises that either attack or support the claim.

Annotation Process In total, we have seven annotators,
all of whom are graduate-level computer science students.
The annotation is made token-wise and when presented a
review, an annotator chooses argumentative text spans and
assigns labels with the argument type to it. The document
parts which are not explicitly annotated are considered to be
non-argumentative. We refer to this annotation as token-level
annotation.

Each review is randomly assigned to three different anno-
tators. We resolve situations when a token is assigned with
different labels by different annotators with a majority vote.
In case a token is assigned with three different labels, we
ask a independent fourth annotator who did not previously
annotate the review to make the final annotation decision.

To obtain sentence-level annotations from annotated to-
kens, we mainly follow the procedure described in Traut-
mann et al. (2020a). Sentences without argumentative to-
kens are annotated with the label NON. For sentences con-

7https://www.nltk.org/
8The manually defined set contains e.g. "e.g", "i.e.", "et al.",

"Fig.", etc.
9We end up with 15 reviews for iclr20, 14 reviews for iclr19

and 12 per each other conference
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Conference Number of Papers Number of Reviews Acceptance rate avg words
ICLR’19 1,419 4,332 35 % 403
ICLR’20 2,213 6,722 27 % 409
MIDL’19 59 178 80 % 362
MIDL’20 144 544 55 % 255
NeuroAI’19 62 174 68 % 305
GI’20 65 174 82 % 507
Total 3,962 12,135 - 368

Table 1: Dataset statistics

PRO CON NON Total
number of tokens 3,259 (12%) 10,559 (34%) 14,684 (54%) 28,502
number of sentences 203 (14%) 640 (46%) 558 (40%) 1,401

Table 2: The table shows the distribution of the classes in the datasets. The distribution of the labels in the token-level dataset
is skewed towards NON, and in the sentence-level dataset towards CON.

taining argumentative tokens, we count the number of argu-
mentative segments, which overlap with it. An argumenta-
tive segment is comprised of a sequence of tokens with the
same argumentative label without interruption. The sentence
is assigned with the label of the majority of segments. If the
number of segments with both labels is the same, we count
the number of tokens with argumentative labels and assign
the most frequent token label. As a result, we get 28,502
annotated tokens and 1,401 sentences. Table 2 presents the
resulting class distribution.

Agreement
The agreement among annotators is an important criterion
for the reliability of the annotation. Since our annotations
are done on a token level and we have more than two anno-
tators per review, we use the Krippendorff’s alpha (Krippen-
dorff et al. 2016) family of measures to assess the annotation
quality. Each annotation can be seen as a set of annotated
segments (start, stop, label), where start and stop denote
the segment’s bounds and label its class. We include all three
classes for the computation of agreement.10 Krippendorff’s
alpha now considers all pairs of overlapping segments and
compares the expected and the observed disagreements in
the annotations. For better comparability we follow recent
related work (Trautmann et al. 2020a) and compute the fol-
lowing two variants: cuα only considers the agreement in
the label, while uα additionally takes the length of the over-
lap into account. For both variants, the perfect agreement
corresponds to the value of 1, the score for a random agree-
ment is zero and negative values are possible if the agree-
ment is worse than random. For our annotation, we obtain
uα = 0.568 and cuα = 0.861, which is comparable to re-
lated work (Trautmann et al. 2020a).

Another possibility to assess the agreement is to compute
the Macro F1 metric for individual annotators. In terms of
the Macro F1 score, the quality of our annotations is bet-
ter than of comparable datasets (Trautmann et al. 2020a;

10The score also accounts for imbalanced classes, see e.g. (Art-
stein and Poesio 2008).

Reimers et al. 2019), see Human Performance in Table 3.
Thus, we conclude that our annotation is reliable for further
experiments.

Experimental Setup
In the following, we discuss our experimental setup. The
description applies for both token-level and sentence-level
evaluation unless noted otherwise.

Problem Setting Our goal is to identify supporting and
opposing arguments in scientific peer-reviews and separate
them from non-argumentative text. To get a detailed analy-
sis of the models’ performance and possible bottlenecks, we
first decouple the problem of argument identification from
stance detection and solve them separately. Afterward, we
jointly solve both problems by a single model and obtain a
model performance for our desired application. Therefore,
we define the following tasks:

1. Argumentation Detection: A binary classification of
whether a text span is an argument. The classes are de-
noted by ARG and NON, where ARG is the union of PRO
and CON classes.

2. Stance Detection: A binary classification whether an ar-
gumentative text span is supporting or opposing the paper
acceptance. The model is trained and evaluated only on
argumentative PRO and CON text spans.

3. Joint Detection: A multi-class classification between the
classes PRO, CON and NON, i.e. the combination of argu-
mentation and stance detection.

Evaluation
We split our dataset sentence-wise 7:1:2 into training, vali-
dation and test sets stratified by class, i.e. keeping the same
ratio among classes in all three subsets. The validation set
is used for hyperparameter optimization and early stopping,
whereas the test set is only used to evaluate the final model
performance reported in the result section. We report the
macro F1 score. The F1 is defined as the harmonic mean of
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precision and recall and Macro F1 is the mean over the class-
individual scores. Since Macro F1 weights classes equally
independently of class’ size, it is insensitive to the class im-
balance problem. We train each model ten times with dif-
ferent random seeds and report the mean performance.11 To
check the significance of our results, we use a two-sided t-
test with a significance level 1%.

Methods
Since transfer learning achieves state-of-the-art results for
AM on different datasets (Reimers et al. 2019; Fromm, Faer-
man, and Seidl 2019; Trautmann et al. 2020a) we also ap-
ply it for our task. We employ a transformer (Vaswani et al.
2017) based BERT model (Devlin et al. 2019) with fine-
tuning on different datasets. We include the following model
variants in our evaluation:

Majority Baseline The majority baseline labels the in-
stances with the most frequent class.

ArgBERT To assess the new dataset necessity, we evalu-
ate the zero-shot learning performance of a BERT model
fine-tuned on another AM dataset annotated on token and
sentence level with the same scheme (Trautmann et al.
2020a). The other dataset comprises heterogeneous data
found on the internet, and therefore, the resulting model
is supposed to be universally applicable.

PeerBERT-ArgInit We initialize the model with the
weights of ArgBERT and additionally fine-tune it on our
new dataset. We hypothesize that the model can take ad-
vantage of the argumentative structure learned on another
dataset.

PeerBERT Smaller BERT model with 110M pa-
rameters fine-tuned on our dataset (based on
bert-base-cased).

PeerBERT-L Larger BERT model with 340M pa-
rameters fine-tuned on our dataset (based on
bert-large-cased).

Human Performance An interesting experiment for as-
sessing the applicability of the proposed solution is the
comparison with the human performance on the task. To
compute the human performance, we treat each annotator
analogously to the model. Therefore, we compare labels
produced by each annotator to the final annotations and
compute the Macro F1 score. The reported score is the
mean among scores of all annotators.12

Training
We use a weighted cross-entropy loss to tackle the class
imbalance problem, where the weight is given as the re-
ciprocal of the number of samples of this class. The class
weights are defined individually for each task and dataset.
The models are trained using either bert-base-cased

11To avoid the clutter, we provide the variance across the differ-
ent runs in the appendix

12The resulting score should be seen as the upper bound for hu-
man performance since we use the same annotations for ground-
truth.

or bert-large-cased, with training batch size 100 for
bert-base and 32 for bert-large. We use the AdamW opti-
mizer with a learning rate of 10−5 for all models and early
stopping with a patience of 3.

Results
In this section, we present the results of our experiments,
which we have designed to answer the following research
questions:

1. How well does the automatic mining of arguments work
for peer-reviews?

2. Can we transfer knowledge from pre-existing annotated
argumentation datasets?

3. How well does the approach generalize across different
conferences?

4. How relevant are arguments in the decision making pro-
cess for scientific publications?

Automatic Mining of Arguments
The results for the three AM tasks and all methods are sum-
marized in Table 3. Our most important observation is that
automatic argument extraction performs close to human per-
formance and can be relied upon in the peer-review do-
main. Surprisingly, the detection of the stance in the peer-
review domain appears to be considerably easier than identi-
fying arguments. For other datasets annotated with the same
scheme, we observe an inverse effect, see Table 4. Although
there is no explicit stance detection experiment in the other
works, we can infer it from the inferior results of joint de-
tection compared against the argument detection results.

When comparing our results to other datasets on the to-
ken level, we observe that our results are substantially better,
with a difference of about 10 % points. A reason might be
that we operate on a single domain while other datasets con-
tain heterogeneous documents covering multiple domains.
However, we observe a significant performance difference
when comparing our results on sentence and token level. To
identify the reasons, we analyze the label ambiguity within
sentences in our dataset. We found out that 22% of sentences
for the argumentation detection task and 23% of those for
the stance detection task contain tokens annotated with both
classes. Therefore, we conclude that while it is still possible
to achieve acceptable performance on the sentence level, the
difference to the token level is more evident in our dataset.

Finally, the experiment regarding knowledge transfer
from another AM dataset reveals transfer difficulties. The
zero-shot performance is better than the majority vote only
on the simpler stance detection task, but it is clearly outper-
formed by the models directly trained on our dataset. The
additional intermediate fine-tuning step on the other AM
dataset does not bring significant improvement either com-
pared to directly fine-tuning on our dataset, cf. PeerBERT.

Training Set Size Figure 2 presents the model perfor-
mance for different training set sizes. We can observe that
pretraining on the other AM dataset does not help, even if the
training set is small. The performance saturates when about
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Detection Argument Stance Joint
Level Sentence Token Sentence Token Sentence Token

Majority Baseline 0.351 0.350 0.423 0.434 0.234 0.233

ArgBERT 0.316 0.353 0.719 0.644 0.203 0.241
PeerBERT-ArgInit 0.718 0.877 0.852 0.862 0.734 0.796
PeerBERT 0.789 0.896 0.893 0.849 0.728 0.808
PeerBERT-L 0.763 0.900 0.936 0.930 0.757 0.839
Human Performance 0.885 0.873 0.978 0.980 0.881 0.860

Table 3: Overview of the results for different Argument Mining tasks on token and sentence level. We show results in terms of
Macro F1 for different BERT model variants, as well as the majority baseline and human performance estimate. In bold font,
we highlight the best performance of our models per task and level.

Detection Argument Joint
Level Sentence Token Sentence Token

UKP 0.810 - 0.690 -
AURC - 0.782 0.725 0.743
Ours 0.789 0.900 0.757 0.839

Table 4: Comparison of maximum Macro F1 values ob-
tained for different datasets from literature, UKP (Stab,
Miller, and Gurevych 2018; Fromm, Faerman, and Seidl
2019) and AURC (Trautmann et al. 2020a).

Figure 2: The Macro-F1 evaluated on the task of joint pre-
diction on the token level. The shaded areas indicate confi-
dence intervals across ten runs with different random seeds.

Detection Argument Joint

ALL 0.891 0.823
NO-GI 0.873 0.791

Table 5: Comparison of Macro F1 values for sentences from
GI-20 reviews, when training with/without sentences from
reviews from GI-20. All tasks are done on token-level.

60% of the training set is used. Therefore, we conclude that
we have collected enough annotations. Similar behavior has
been observed for the other tasks at both sentence and token
level.

Generalization Across Conferences

In this section, we study the model’s generalization to peer-
reviews for papers from other (sub)domains. To this end, we
reduce the test set to only contain reviews from the GI’20
conference. The focus of the GI’20 conference is Computer
Graphics and Human-Computer Interaction, while the other
conferences are focused on Representation Learning, AI and
Medical Imaging. We consider the GI’20 as a subdomain
since all conferences are from the domain of computer sci-
ence. As a model, we choose our PeerBERT-L model and
train on two different training sets:

NO-GI The original training dataset with all sentences from
reviews of GI’20 removed.

ALL A resampling of the original training dataset of the
same size as NO-GI, with sentences from all conferences.

Table 5 presents the experimental results. We observe a
small performance decrease on both tasks, about two points
on argument detection and three on joint detection tasks. At
the same time, we also observe similar behavior when com-
paring results obtained on the whole test set (Table 3) and
only on GI’20 reviews by the ALL model. Therefore the
more considerable drop is not necessary due to the worse
generalization and can be explained by the more challenging
task. Overall, the drops are relatively small, and we conclude
that the model generalizes well across subdomains.
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Figure 3: Evaluation of acceptance classification perfor-
mance in F1-measure based on different sentence selection
methods. Using the top k% sentences according to argumen-
tativeness likelihood results in superior performance com-
pared to random selection. With 50% of the text, almost the
same performance is reached as with the full review.

Relevance for Decision-making
In previous experiments, we have shown that peer-reviews
contain arguments and these arguments can be identified au-
tomatically. In this section, we want to verify the useful-
ness of the extracted arguments for the decision making pro-
cess. As a proxy to evaluate the usefulness, we design an
experiment where the acceptance/rejection decisions made
solely by considering arguments are compared to the deci-
sions supported by taking full reviews into account. There-
fore, we use the unannotated rest of our dataset and assign a
probability to be an argument to each sentence with our best
performing PeerBERT-L model. Now, we can compare three
different settings for the decision-making process:

Full The decision-makers are allowed to see all reviews
completely. This particularly includes decision sugges-
tions often encountered in reviews that are not annotated
as arguments in our dataset.

Top-K Arguments The decision-makers are only allowed
to see the k% sentences with the highest probability to be
arguments from each review. Note that the high probabil-
ity to be identified as an argument does not necessarily
correlate with the strength of the argument.

Random-K Decision-makers are only allowed to see k%
randomly selected sentences from each review. We do not
exclude explicit decision suggestions here.

We consider sentence level in this experiment despite the
better performance of our model on the token-level. The
main reason is a fair comparison with the Random-k set-
ting, random sampling of words would result in large gaps
and meaningless texts, especially for small k.

To avoid manual expenditure, we decide to apply a lan-
guage model as a decision-maker. Since we also have a de-
cision for each paper in our dataset, we train models to make
an acceptance/rejection decision for the different settings de-

scribed above. The standard BERT model is not directly
applicable for this task since combining the reviews for a
single paper often exceeds the input length restriction of at
most 512 tokens. Therefore, we employ ToBERT (Pappa-
gari et al. 2019), a model proposed for the classification of
the long texts. It splits texts into multiple segments and indi-
vidual segments are first used for the finetuning of the BERT
model. In a second step, a second transformer model on the
top combines representations of the segments and makes the
final decision.

The results in terms of F1-measure are given in Figure 3.
We observe that selecting according to argumentativeness
likelihood improves classification performance consistently
in terms of F1, compared to the random selection baseline,
if at least a third of the review text is taken into consider-
ation. The fraction of argumentative sentences in the anno-
tated part of our dataset is 60%, cf. Table 2. We can achieve
almost the same performance as the classifier trained on the
full reviews while only considering 50% of the review. This
is particularly impressive considering that reviews often al-
ready contain decision suggestions. Therefore, we conclude
that arguments, which can be automatically extracted from
reviews, are essential for the decision making process.

Conclusion
In this work, we have presented a new Argument Mining
based approach for the assistance of different actors in the
peer-review process. We have demonstrated that arguments
are present in peer-reviews and that their identification with
different stances can be made automatically. We have also
shown that the peer-review domain is different from other
previous Argument Mining applications, and therefore, there
is a need for a new dataset. We have presented a new
dataset that we make available for the community and have
performed an extensive evaluation. We have also analyzed
the editorial decision-making process and have empirically
demonstrated that it is driven by argumentation.

In future work, we plan to address the problem of au-
tomatic determination of argument strength. Ranking argu-
ments, according to their strength, is an undoubtedly useful
feature for the potential application. For this purpose, we in-
tend to extend our decision-making model and analyze sin-
gle arguments’ influence on the final decision.

Another useful feature, especially for the editorial team,
would be identifying similar arguments in different reviews
of the same paper.
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