
A Scalable Reasoning and Learning Approach
for Neural-Symbolic Stream Fusion

Danh Le-Phuoc,1 Thomas Eiter, 2 Anh Le-Tuan 1

1 Open Distributed Systems, Technical University Berlin, Germany
2 Institute of Logic and Computation, Vienna University of Technology (TU Wien), Austria

danh.lephuoc@tu-berlin.de, eiter@kr.tuwien.ac.at, anh.letuan@tu-berlin.de

Abstract

Driven by deep neural networks (DNN), the recent development
of computer vision makes vision sensors such as stereo cameras
and Lidars ubiquitous in autonomous cars, robotics and traffic
monitoring. However, a traditional DNN-based data fusion
pipeline like object tracking has to hard-wire an engineered
set of DNN models to a fixed processing logic, which makes it
difficult to infuse new models to that pipeline. To overcome
this, we propose a novel neural-symbolic stream reasoning ap-
proach realised by semantic stream reasoning programs which
specify DNN-based data fusion pipelines via logic rules with
learnable probabilistic degrees as weights. The reasoning task
over this program is governed by a novel incremental reasoning
algorithm, which lends itself also as a core building block for
a scalable and parallel algorithm to learn the weights for such
program. Extensive experiments with our first prototype on
multi-object tracking benchmarks for autonomous driving and
traffic monitoring show that our flexible approach can con-
siderably improve both accuracy and processing throughput
compared to the DNN-based counterparts.

Introduction
The recent development of computer vision (CV) driven by
deep neural networks (DNN) makes visual sensors such as
stereo cameras and Lidars ubiquitous in autonomous cars,
robotics and traffic monitoring. In particular, many DNN
models for object detection (Liu et al. 2019) and tracking (Cia-
parrone et al. 2019) are available. For instance, many object
tracking algorithms use the Hungarian method to heuristically
optimise the likelihood of accurately inferring object loca-
tions and trajectories. To achieve an expected performance
(accuracy and throughput), one has to manually test several
association hypotheses and tune many parameters to find the
right set of DNN models and wiring logics for a specific
application or dataset. In most of the cases, it is difficult to
explain the outputs of the final algorithms and to reuse some
association hypotheses that might deliver better results for
another parameter configuration or processing pipeline.

To overcome this, we propose a novel neural-symbolic
stream reasoning approach to specify general DNN-based
data fusion pipelines in a semantic stream reasoning program
via logic rules that have learnable probabilistic degrees as
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weights. In a nutshell, our approach is realized in an inte-
grated framework, Semantic Stream Reasoning (SSR), that
(a) can emulate common computer vision algorithms fusing
multiple deep learning models via imperative programming;
(b) allows one to translate heuristics, multiple hypotheses
(Kim et al. 2015; Rezatofighi et al. 2015) and domain-specific
observations (Ciaparrone et al. 2019) into rules; and (c) can
fit rules with/learn them from labeled data as weight rules
(clustering to if-then-else or classification logics with DNN
models).

Contributions and Novelty
The novelty and advance of our approach consists in the
interwoven combination of the following key contributions.

Integrated framework The first contribution of the paper
is a general integrated framework for semantic stream fusion
and reasoning on top that supports automated learning. The
framework is realized with a sophisticated prototype imple-
mentation. A first benefit of having these capabilities in one
framework is that the user is relieved from specifying rule
weights as required in other approaches such as the one in
(Suchan, Bhatt, and Varadarajan 2019). In particular, (Suchan,
Bhatt, and Varadarajan 2019) requires users to have a good
knowledge on ASP (Answer Set Programming) weak con-
straint rules and to know the right weights to specify the
association hypotheses corresponding to the application logic.
In contrast, our framework can learn such weights from la-
beled data automatically. This seems to be easy to achieve by
simply using an off-the-self ASP-based learning algorithm
like in (Lee and Wang 2018). However, aligning the semantics
of programs in (Suchan, Bhatt, and Varadarajan 2019) with
the one in (Lee and Wang 2018) is not trivial, and scalability is
an issue. Our unified, clear formalization of a data model, rea-
soning program and learning task for neural-symbolic stream
data reveals temporal and modularity properties allowing us
to design more efficient and scalable algorithms.

Incremental reasoning algorithm The second contribution
is a novel incremental reasoning algorithm that addresses
the shortcomings of previous works (Suchan, Bhatt, and
Varadarajan 2019; Aditya, Yang, and Baral 2019) which are
similar to ours in incorporating common sense and domain
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knowledge to exploit the semantic information of the data in
combination with DNNs to achieve better accuracy in object
tracking (Suchan, Bhatt, and Varadarajan 2019) and in image
understanding (Aditya, Yang, and Baral 2019), respectively.
However, they used canonical (one-shot) ASP solving and
other episodic evaluation methods, respectively. For streaming
cycles of 50-100ms, their solving mechanism has to restart and
finish each time anew, not to mention that such an ASP/ILP
solving program may easily fall into exponential complexity
if not carefully translated. Notably, Suchan et al. reported
for their system a drop from real-time speed (31 FPS) for
10 objects in one image frame (no. tracks) to only 2 FPS
for 50 objects; thus a 5-fold processing states/program size
caused a 15 times slower processing speed. To overcome this
shortcoming, our incremental reasoning algorithm builds on
multi-shot solving mechanism (Gebser et al. 2019). Moreover,
it exploits the temporal, succinct and volatile nature of the
stream data and the semantic stream reasoning program to
establish links to module theory (Oikarinen and Janhunen
2006) that allow us to boost performance, as shown in our
experiments.

Scalable learning Our third contribution is a parallel learn-
ing algorithm that uses the incremental reasoning algorithm as
a core building block, geared to overcome the grounding and
solving bottlenecks of ASP-learning algorithms such as (Lee
and Wang 2018), when dealing with large and repetitive pro-
grams, especially over stream data. In particular, the learning
algorithm of (Lee and Wang 2018) does not scale to stream
data with 100 times more samples than its evaluated scenar-
ios; the available implementation can only learn from dozens
of samples. Our parallel learning algorithm incorporates a
sophisticated use of module theory to split time-series data
into succinct partitions based on sliding window operations,
to exploit computation at previous timesteps via the incre-
mental computing capability powered by our incremental
reasoning algorithm; we believe this is not only a novel but
also a considerable advancement to (Lee and Wang 2018).

Our experiments with real data on traffic monitoring from
the AI City Challenge (Tang et al. 2019) and autonomous
driving from the KITTI dataset (Geiger, Lenz, and Urtasun
2012) show that our approach can deliver not only better
accuracy (5%-15%) but also higher processing throughput
than traditional DNN counterparts. Moreover, our learning
algorithm can cope with their training data, which induce
thousands of symbolic ground truths in facts and rules.

Overview of the Stream Fusion Framework
While this paper focuses on stream fusion in computer vision
with demonstrations around multi-object tracking scenarios,
our proposed semantic stream fusion framework is more
general. In an abstract view, it allows one to specify the flow
of uncertain data coming in streams from subsymbolic models
(DNNs) or sensors in a data fusion and reasoning pipeline,
which efficiently outputs a stream of current states of the
world that are regarded as most likely given the input.

The framework comprises several components, visible in
Figure 1. At the base is a neuro-symbolic stream model,
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Figure 1: The neural-symbolic stream fusion framework

which describes the elements of DNN models and sensors in
a semantic data model, resorting to a standard for sensors;
the SSR Processor component maps the data to the symbolic
representation. On top of this model is a semantic stream
reasoning program that specifies the fusion pipeline and
the decision logic for singling out the most likely state of
the world at each evaluation. It consists of reasoning rules,
with hard rules for background knowledge given by (non-
monotonic) common-sense and domain knowledge that is
regarded as "always true", and soft rules to express association
hypotheses with weights corresponding to probability degrees.
The SSR program is evaluated by the Reasoning component,
which employs an ASP solver. The weights of the rules are
determined by the Learning component using an ASP solver,
based on the symbolic training samples provided by the
Trainer component.

The workflow of the framework is as follows. For the
setup, the Trainer constructs symbolic training samples from
labeled data and feeds them to the Learning component, which
computes a vector of weights for the soft rules and passes it
to the Reasoning component, which sets the weights in the
SSR program; our realization uses the novel parallel learning
algorithm from above.

In operation, the SSR Processor produces a semantic stream
from the sensors and DNN data streams using a stream pro-
cessor, which it feeds into the Reasoning component. The
latter uses a translation of the SSR program and the stream
input into an ASP program that it evaluates on the ASP solver,
and outputs a stream of answer sets describing the most likely
world state at each evaluation. In our realization, the novel
incremental reasoning algorithm plays a central role here.

In the following sections, we first describe the model for
stream data from DNNs and sensors. We then present semantic
stream reasoning programs, which equip a restricted class of
temporal rules from (Beck, Dao-Tran, and Eiter 2018) with
a Markov logic semantics as in (Lee and Wang 2016), and
illustrate how association hypotheses can be expressed by
rules in SSR programs. Next, we present our incremental
reasoning and learning algorithms, which are followed by the
evaluation and addressing related work.

Neural-Symbolic Stream Data Model
To fuse sensor data with DNN models, we describe relations
between elements of sensor fusion models, e.g. the JDL data
fusion model proposed since the 1990s (Steinberg, Bowman,
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Figure 2: Ontology for Neural-Symbolic Stream Fusion

and White 1999), using a symbolic representation formalism.
To this end, we extend the standardised Semantic Sensor
Network Ontology (SSN) (Haller et al. 2019), which provides
vocabularies to specify the semantics of sensors, observa-
tions, and samplings as shown in Figure 2. Note that using
URI-based symbols from such vocabularies with the associ-
ated meaning will facilitate semantic interoperability across
distributed sensor sources and reasoners.

Semantically, a multi-sensor fusion data pipeline will con-
sume the data that is observed by a Sensor as a stream of
observations (represented as an Observation). The example
in Figure 3 illustrates this with six image frames observed by
a camera. These image frames are represented as instances
of the subclass 2DImage of the class Tensor that inherit from
the generic Result class of SSN. These observations will then
be fed into a probabilistic inference process such as a DNN
model or a CV algorithm (represented as a Procedure) to
provide derived stream elements which then are representing
Sampling instances. For instance, a detection model generates
an output as a fact det(b1, car, 0.8) consisting of bounding
box b1, object type car and confidence score 0.8. Similarly,
trk(b2, 5) represents an output of the tracking algorithm (a
Tracker that associates bounding box b2 with the tracklet 5; a
tracklet T consists of a series of predicted bounding boxes of
an object O that is represented as trklet(T,O)).

With this data representation, Figure 3 illustrates how our
approach can emulate a typical DNN-based algorithm for
multi-object tracking (MOT) via soft rules. For such algo-
rithms, the tracking-by-detection approach (Ciaparrone et al.
2019) is dominating, with the following key operations: 1)
detection of objects, 2) propagating object states (location, ve-
locity, ..) into future frames, 3) associating current detections
with existing objects, and 4) managing the lifespan of tracked
objects. For example, SORT (Bewley et al. 2016) is a simple
object tracking algorithm based on existing DNN detectors
such as SSD (Liu et al. 2016) or YOLO (Redmon and Farhadi
2017). To associate resultant detections with existing targets,
SORT uses a Kalman filter to predict the new locations of
targets in the current frame. Based on this, SORT computes
in an association cost matrix between detections and targets
based on the intersection-over-union (IOU) distance between
each detection and all predicted bounding boxes from the
existing targets. Then, the Hungarian algorithm is used to
compute the optimal association assignment.

In case a detection is associated with a target, its detected
bounding box is used to update the target state via the Kalman

filter. Otherwise, the target state is simply predicted without
correction using the linear velocity model. For example, in
Figure 3 there are no detections of the tracked white car
at time points 3-5 because it is occluded by another car;
thus, the bounding boxes b7 and b10 are wrong predictions
of tracklet 5. To emulate SORT, we later represent these
association hypotheses by soft rules that are translated into
an optimization problem solved by an ASP Solver.

As in practice the DNN detection models are noisy (e.g.
trained on the most popular dataset, COCO (Lin et al. 2014),
they have mean precision below 60%), approaches that use
association hypotheses with object trajectories akin to SORT
often create ID switches, i.e. an object is assigned to differ-
ent tracking numbers or different tracklets in situation when
detection is missing (e.g., by occlusion). For example, when
in Figure 3 the white car reappears in frame 6 after being
occluded in frames 3-5, a new tracklet 34 is created for it as
a new tracked object. To remedy this problem and improve
accuracy, one may build more sensitive DNN models. For
instance, DeepSORT (Wojke, Bewley, and Paulus 2017) re-
places such a trajectory-based association metric with a richer
metric that combines motion and appearance information. In
particular, DeepSORT extends SORT with a DNN providing
discriminative metrics that is trained on a re-identification
dataset to identify targeted objects based on visual appearance.
Notably, a semantic stream reasoning program makes it easy
to emulate DeepSORT with a DNN model or a traditional CV
algorithm by adding some rules.

Semantic Stream Reasoning Programs
To formalise the reasoning process with a semantic representa-
tion of stream data, we need a temporal model that allows us to
reason about the properties and features of objects. This model
must account for the laws of the physical world movement
and in particular enable to fill gaps of incomplete information
(e.g., if we do not see objects appearing in observations, or
camera reads are missing), based on commonsense princi-
ples. We start with formalizing semantic streams as above
following (Beck, Dao-Tran, and Eiter 2018).

We assume an underlying setA of propositional atoms and
timelines T , which are closed intervals T = [ts, te] ⊆ N of
the non-negative integers called time points.
Definition 1 A semantic streamS = (T, υ) consists of a time-
line T and an evaluation function υ : N 7→ 2A.

Intuitively, a semantic stream S associates with each time
point a set of symbolic atoms. The current time point (now )
is typically the end of T , which describes a window to the
(recent) past; however, now might be inside T , which then
describes a bounded horizon into the future. IfS = (T, υ) and
S′ = (T ′, υ′) are streams such that T ′⊆T and υ′(t′)⊆ υ(t′)
for all t′ ∈T ′, we write S′⊆S and call S′ a substream or
window of S. To achieve a certain processing throughput or
delay for an online stream fusion pipeline, we introduce a
window mechanism via functions that omit atoms.
Definition 2 (Window Function) Any (computable) func-
tion w that returns, given a stream S = (T, υ) and a time
point t ∈ T , a substream S′ ⊆ S of S such that S′ = w(S, t)
is called a window function.
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Figure 3: A Semantic Visual Stream Snapshot

In particular, we will use (sliding) time-based window func-
tions w = τ(k), where k ≥ 0, which select the atoms at time
t in S down to t− k.

To express properties over streams, we will borrow re-
stricted LARS formulas (Beck, Dao-Tran, and Eiter 2018)
that allow for window and temporal operators, more specifi-
cally formulas of the following form (a ∈ A and t ∈ N):

α ::= a | ¬α | α ∧ α | 3α | 2α | @tα | �wα (1)
Here 3α (2α) means that α is true somewhere (everywhere)
in the stream; @tα that α is true at time t; and �wα that α is
true in the substream obtained by the window function w.
Example 1 Suppose an atom inFoV (car1) states that car1

is in the "Field of View" of a camera. Then �32inFoV (car1)
holds at time t, if car1 has always been the field of view during
the time points t−3, t−2, t−1, t.

To define semantics formally, we consider structures
M = 〈S,W,B〉 where S = (T, υ) is a stream, W is a set
of window functions (which we fix to W = {τ(k) | k ≥ 0}),
andB ⊆ A is a set of atoms modeling static background data.
We now define when a ground formula holds in a structure.
Definition 3 (Entailment) Let M = 〈S?,W,B〉 be a struc-
ture, whereS? = (T ?, υ?), and letS = (T, υ) be a substream
of S?. Moreover, let t ∈ T ?. The entailment relation  be-
tween (M,S, t) and ground formulas is as follows:
M,S, t  a iff a ∈ υ(t) or a ∈ B, for atom a ∈ A
M,S, t  ¬α iff M,S, t 1 α,
M,S, t  α ∧ β iff M,S, t  α and M,S, t  β,
M, S, t  3α iff M,S, t′  α for some t′∈ T,
M, S, t  2α iff M,S, t′  α for all t′∈ T,
M, S, t  @t′α iff M,S, t′  α and t′ ∈ T,
M, S, t  �wα iff M,S′, t  α,where S′ = w(S, t)

Intuitively, M,S, t  α, in words (M,S, t) entails α, states
that α evaluates on S in the context of S? at time t to be
true. We say that M satisfies α (or is a model of α) at time t,
denoted M, t  α, if (M,S?, t) entails α. Satisfaction and
the notion of a model are extended to sets of formulas as usual.
For convenience, we abbreviate �τ(k) with �k.

We then define programs as follows. We call a formulaα an
extended atom, if it is of one of the forms α′, @tα

′, �w3α′,
�w2α′, where α′ ∈ A.

Definition 4 (Program) A semantic reasoning program Π
as finite sets of weighted rules r of the form

ω : α← β (2)

where α has the form a or @ta with a ∈ A, β = β1∧· · ·∧βn
is a conjunction of possibly negated extended atoms βi, and
ω ∈ R is an optional weight of the rule, denoted w(r); if ω
is missing, r is a hard rule, otherwise a soft rule. We call α
the head, denoted H (r), and β the body, denoted B(r), of r.

Example 2 The rules (3) and (4) trigger the events "a car
enters resp. leaves the FoV of a camera". We use here and in
other rules predicates with placeholders (variables), written in
upper case, that range over concrete values; "," is conjunction
and "not" negation. 1

30 : @T enters(O)←@T det(B, car, S), iSO(B,O),
not�5

3inFoV (O), S >= 0.8 (3)

10 : @T leaves(O)←@Tnot�
5
3det(B, car, S),

iSO(B,O), inFoV (O), S >= 0.8 (4)

Here det(B, car, S) and inFoV (O) are the detection-with-
score resp. in-Field-Of-View predicates from above, while
iSO(B,O) associates a detected bounding box B with an
object O. The trigger conditions are set via the time windows
which test whether detected bounding boxes associated with
the object exists within 5 time points.

Stable models We next define the semantics of Π over data
streams, which are streams D = (T, υD) where all atoms in
D are from a designated setAE ⊆ A of extensional atoms for
sensor data; the atoms in atI = at \ atE are intensional facts.
A stream I = (T, υ) such that D ⊆ I is an interpretation
stream for D, if at every time point t ∈ T no atom in υ(t) \
υD(t) is from AE , and the structure M = 〈I,W,B〉 is an
interpretation (for D).

Then M is model of Π for D and time point t, written
M, t  Π, if M, t  B(r) → H (r), where "→" is defined
by "¬" and "∧" as usual.

1User-friendly syntax for ASP and RDF/SPARQL developers is
provided in the supplementary material.
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To define stable models, we use a reduct red(Π,M, t) that
retains all rules r ∈ Π such thatM, t |= B(r) (intuitively, the
rule "fires") and, if r is a soft rule, in addition M, t |= H (r);
this amounts to treating soft rules as in LPMLN (Lee and
Wang 2016), where violated soft rules are dropped.

Definition 5 An interpretation M = 〈I,W,B〉 is a stable
model of a program Π for data streamD at time t, if (1)M, t 
red(Π,M, t) and (2) no interpretationM ′ = 〈I ′,W,B〉 such
that I ⊂ I ′ fulfills M ′, t  red(Π,M, t).

Intuitively, (2) ensures that the retained rules must logically
entail each intensional atom in I . By AS (Π, D, t) we denote
the set of all stable models M of Π for D at time t; we may
omit “for D” and/or “at t” if this is clear from the context.

Each stable modelM ∈ AS (Π, D, t) is assigned a probabil-
ity degreePΠ(M, t) as follows. Let v(Π,M, t) be the set of all
soft rules r in Π violated byM at t, i.e.,M, t |= B(r)∧¬H (r);
then the weight of M at t is

WΠ(M, t) = exp(−
∑
r∈v(Π,M,t) w(r)) (5)

and

PΠ(M, t) = WΠ(M, t) /
∑
M′,t∈AS(Π,D,t) WΠ(M

′, t) (6)

That is, the probability degree is the weight normalized by the
total weight of stable models. Among the stable models M ,
the most probables (with maximum PΠ(M, t)) are selected.

Rules with variables as in Example 2 are reduced to variable-
free (propositional) rules by grounding them over a (finite) set
C of constant symbols, as customary in ASP, i.e., r is replaced
by rθ for each mapping θ of the variables in r to C; for sorted
variables (e.g., for time), different sets C may be used. Rules
must be safe, i.e., every variable must occur in a non-negated
extended atom in the rule body. The most probable models of
a program Π for a data stream D and time t are then those of
the grounded version gr(Π, C) of all rules in Π over C.

Association Hypotheses as Reasoning Rules
Next, we will demonstrate how to construct association
hypotheses according to CV algorithms, i.e. MOT algo-
rithms (Ciaparrone et al. 2019), using the introduced semantic
reasoning programs. To associate a detected bounding box
B with an object O, we use soft rules that assert iSO(B,O)
based on explained spatial, temporal, and visual appearance
evidences. Such rules can be used to represent hypotheses on
temporal relations among detected objects in video frames fol-
lowing a tracking trajectory. When the object’s movement is
consistent with the constant velocity model, e.g., the Kalman
filter used in SORT, and there is a detection associated with
its trajectory, an iSO fact is generated by the following rule: 2

ω3 : iSO(B1, O)← @T trk(T1, B1),@T det(B2, OT, S),
trklet(T1, O), iou(B1, B2) (7)

Here, iou(B1 ,B2 ) states the IOU (intersection over union)
condition of the bounding boxes B1 and B2 satisfies. As
mentioned above, we can also emulate DeepSORT via soft
rules that can search for supporting evidence to link a newly
detected bounding box from an occluded tracklet using visual

2All rules of the program used are in the supplementary material.

appearance associations, e.g. frames 1 and 6 of Figure 3. For
this, we search for pairs of bounding boxes from recently
occluded tracklets w.r.t. visual appearance. As the search
space of possible matches is large, we limit it by filtering the
candidates based on their temporal and spatial properties. To
this end, we use rules with windows to reason about discon-
nected tracklets that have bounding boxes visually matched
within a window of δM time points that are aligned with
DeepSORT’s gallery of associated appearance descriptors
for each tracklet. Based on this gallery of previously tracked
boxes, the appearance-based discriminative metrics are com-
puted to recover the identities after long-term occlusions,
where the motion is less discriminative. Hence, to connect
a newly detected bounding box B1 that has a visual appear-
ance match with another bounding box B2 (represented by
vMatch(B1, B2)) of a discontinued tracklet T2 (represented
by @Te

ends(T2)) that ended 3 time points before, we use the
following rule:

ω4 : iSO(B1, O) ← @T trk(T1, B1), vMatch(B1, B2),
iSO(B2, O), trklet(T2, O),@Teends(T2),

T < Te+3,@Te �δM 3trk(T2, B2) (8)

To demonstrate how to leverage the available commonsense
knowledge for eliminating noisy data and unlikely hypotheses,
we employ axioms from the Event Calculus (EC) (Mueller
2015) to enforce consistent values of fluents F , i.e., change-
able facts and properties, in time by hard rules. Fluent value for-
mulas holdsAt(F, τ) in EC amount to @τF (where F = α).
Similarly, the event occurrence happens(E, τ) of an event
E in EC amounts to @τE. This makes employing EC axioms
for our common-sense reasoning rules fairly easy.

Recall that inFoV (O) asserts whether object O is in the
FOV of the camera. Without loss of generality, we may assume
that a time point τ corresponds to a synchronised video frame;
we then can enforce consistent states of inFoV via the law
of inertia. For example, the following rules set the conditions
to apply EC axioms to the fluent inFOV with two events
corresponding to objects entering and leaving a FOV:

initiates(enters(O), inFoV (O), T )← @T enters(O) (9)
terminates(leaves(O), inFoV (O), T )← @T leaves(O) (10)

When an object enters a FoV, its fluent states must be con-
sistent in terms of trajectory and spatial relations, which is
checked by further rules. Notably, the rules about occlusions
and reappearance after occlusions proposed in (Suchan, Bhatt,
and Varadarajan 2019) can be expressed by employing the tra-
jectory axioms of EC. Moreover, we use also the well-known
RCC-5 axioms (Skiadopoulos and Koubarakis 2004) in an
efficient ASP-encoding from (Izmirlioglu and Erdem 2018)
to put constraints on the object movements. The possibility to
plug in available ASP encodings for employing theories such
as EC and RCC-5 underlines the flexibility of our approach
in modifying the application logic of a data fusion pipeline.

Incremental Reasoning Algorithm
In the streaming setting, the reasoning task on the program Π
is to continuously compute at each timestep t the most proba-
ble model M for the data stream D at t, in a MAP (maximum
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Algorithm 1 Incremental Reasoning
Input: program Π = Πh ∪Πs with hard rules Πh, soft rules
Πs; data stream D; time point t
Output: optimal answer set M∗ of Π for D at t
1: Πsc ← ∅
2: for r ∈ Πs do
3: Πsc ← Πsc ∪ {v(r)← B(r), not H (r)} // guess for

∪{H (r)← B(r), not v(r)} // soft rule
∪{v(r)[ω(r)@0, ir, var(r)]} // sum up weights

4: end for
5: Πb ← rewrite_Base(Πh ∪Πsc)
6: R← {#external qα(X) | α(X) occurs in Πh ∪Πsc}
7: S ← createSolver(Πb, R)
8: S.ground(Πb)
9: while true do

10: for a ∈ E(R, t) do
11: S.set_external(a)
12: end for
13: M∗ ← S.solve()
14: end while

a posteriori) approach. To fulfill the subsecond delay require-
ment of stream processing, we introduce a novel incremental
stream reasoning algorithm described in Algorithm 1.

In lines(1)-(4), we rewrite the soft rules Πs to their weak
constraint counter-part (Lee, Talsania, and Wang 2017), where
ir is the index and var(r) are the variable of soft rule r, re-
spectively. Intuitively, lines (2)-(4) translate r into its weight
constraint version that allows to violate r, where v(r) accu-
mulates the number of violated ground instances under the
intermediate atom structure unsat(ir, ω(r), var(r)).

Now, the program Πl = Πh ∪ Πsc∪D (viewing the data
streamD as facts) must be translated into an ASP program that
is fed into an ASP solver to find an optimal answer set, from
which we obtain an optimal stable model of Π. To avoid the
notorious grounding bottleneck of ASP solvers in reasoning
tasks over stream data, we translate Πl to an evolving ASP
program for incremental evaluation similar as in (Beck, Eiter,
and Folie 2017), where rules are added resp. deleted at each
time point. However, different from Beck et al. we exploit
multi-shot solving (Gebser et al. 2019) to avoid the continuous
grounding overhead, as well as to reuse the solving effort and
state from previous time steps as in lines (5)-(14).

The key idea of multi-shot solving is to divide a big program
into smaller subprograms that can be joined by means of
module theory (Oikarinen and Janhunen 2006), which defines
a module as a triple P = (P, I,O) consisting of a ground
logic program P and sets I and O of ground input and output
atoms, respectively, such that I ∩O = ∅, A(P )⊆I∪O, and
H(P )⊆O where A(P ) (resp. H(P )) is the set of atoms
occurring in the rules (resp. rule heads) fromP ; we letP (P) =
P , I(P) = I and O(P) = O.

We thus construct a base program Πb and an extensive
program R from Πl as input for the ASP solver in line(7).
Specifically, in line(5) the method rewrite_Base constructs
Πb from Πh ∪Πsc by replacing every extended atom α(X)
that occurs in Πh ∪ Πsc and involves @, 3 or 2 with an

external atom qα(X) where X are the variables in α. Then,
line(6) builds R based on the #external directive. For each
atom qα(X), we then adopt the translation approach from
Ticker (Beck, Eiter, and Folie 2017) to rewrite it to continuous
sub-queries over the stream D of ground facts, where we
delegate grounding the external atoms to an efficient stream
processing engine such as CQELS (Le-Phuoc et al. 2011). This
underlying engine will emit external ground atoms at each
time step t via a shared bufferE(R, t), which the incremental
algorithm reads in lines (10)-(12) to set the values for the
external atoms at every time step t (line(11)).

Algorithm 1 issues successive grounding instructions that
result in modules to be joined with the modules of the previous
processing state to be solved at line(13). According to (Gebser
et al. 2019), such state is built progressively by

Pt+1 = Pt t Rt+1(I(Pt)∪O(Pt))

where "t" is the join of modules; the initial module is P0 =
(∅, ∅, ∅) and Rt+1(I(Pt)∪O(Pt)) represents the grounding
state of R at time t+1 relative to the current atom base
I(Pt)∪O(Pt). We adopt here the usual condition on module
joins (Oikarinen and Janhunen 2006), viz. that no cyclic
positive dependencies between Rt+1 and Pt exist.

Scalable Learning Algorithm
To free developers from specifying weights, the soft rules in
a program Π can be rewritten to create a template program Π̂
with parametric weights w = w1, . . . , wn for the soft rules
r1, . . . , rn such that concrete weights w induce a semantic
stream reasoning program Π̂(w). Following the approach
in (Lee and Wang 2018), a weight vector w can be learned
from a set of learning samples M generated from a labeled
data streamD. Formally, given a template program Π̂ and a set
of learning samples M , the learning task is to find an optimal
w using maximum likelihood estimation (MLE), captured by
the optimization problem

w = argmax
w

∏
t∈T

PΠ̂(w)(M, t).

To optimize the expression via the gradient ascent method,
we take the partial derivative of its base-e logarithm w.r.t. wi:

∂ ln
∏
t∈T PΠ̂(w)(M, t)

∂wi
=

∑
t∈T

−ni·(M∗, t) + Ei[M ] (11)

where for any stable modelM at t, ni(M, t) is the number of
violated ground instances of ri and M∗ is the most probable
at t; furthermore, Ei[M ] is the expected number of violated
ground instances of ri in all stable models w.r.t M , given by
Ei[M ] =

∑
t∈T

∑
M,t∈AS(Π̂(w),D,t)

PΠ̂(w)(M, t)ni(M, t).
From this equation, we develop Algorithm 2 our scalable

learning algorithm based on the one in (Lee and Wang 2018).
Similarly as in the latter, the optimisation loop in lines (2)-(12)
repeats until the weight vector fulfills the condition on line
(12), i.e. the change of every weight component is below a
threshold δ. The key difference is that our algorithm exploits
the incremental solving technique from Algorithm 1 to do
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Algorithm 2 Parallel Learning

Input: template program Π̂, learning samples M , number of
parallel threads N and learning rate λ
Output: weight vector w
1: initialize weight vector w0, j = 0
2: repeat
3: {Mk|k ∈ 1..N} ← split(M,N)
4: for k = 1..N do
5: {M∗, t|t ∈ T} ← incr_solve(Π̂(wj),Mk

)
6: end for
7: for wji ∈ w do
8: Ė ← par_approximate(Ei[M ])

9: wj+1
i ← wji + λ·(

∑
t∈T −ni(M∗, t) + Ė)

10: end for
11: j ← j + 1
12: until max|wji − w

j−1
i | < δ

line (5) faster and in parallel on N threads, to update then in
line (9) the weights in each iteration of the optimisation loop.

In more detail, line(3) splits M into N mini-batch sub-
streams M

1
, …, M

N
based on the splitting theorem for

LPMLN in (Wang et al. 2018). The mini-batches are then
fed in line (5) into parallel solving processes with the method
incr_solve using different ASP solver instances.

As regards computingEi[M ], our empirical studies showed
that there is a significant bottleneck in approximating Ei[M ]
via the MC-ASP algorithm (Lee and Wang 2018) which is
an ASP variant of MC-SAT for Markov Logic (Poon and
Domingos 2006) to sample stable models. For instance, it
might take nearly an hour to generate a small set of samples
from a small ground truth program with a few dozens of atoms
and rules. Our observation is in line with authors’ that the
serial sampling procedure via Xorro (Everardo et al. 2019)
is the main source for this bottleneck. To overcome this, we
develop the parallel sampling method par_approximate on
line (8) using similar XOR-parity constraints as in (Gomes,
Sabharwal, and Selman 2006) to modify the original MC-ASP
algorithm for approximating Ei[M ] in lines (7)-(10) in an
incremental and parallel fashion similar as in lines (3)-(6).
More details are given in the supplementary material.

The key improvement in terms of performance is the tight
integration with theory propagators (Gebser et al. 2016) for
parity-constraints which can directly access the processing
states of the concurrent solvers via Clingo’s API for C. This
also paves the way for further performance improvements us-
ing the novel technique to overcome the grounding bottleneck
due to the constraints in (Cuteri et al. 2020).

Experimental Evaluation
Implementation. We have implemented the reasoning and
learning algorithms in Java to exploit the code bases of CQELS
and Ticker, which are key elements in the open source proto-
type system SSR that has been realized based on the stream
fusion framework described in the Introduction. We use the
Java native interface to wrap C/C++ libraries of Clingo 5.4.0 as

Datasets no. labeled no. avg./max. no. ground learning
frames streams no. obj/fr truth atoms time

KITTI 6k 20 4/10 10k 35 hrs
AIC 7.5k 25 10/30 50k 54 hrs

Table 1: Evaluation datasets: KITTI and AIC

ASP Solver and NVidia CUDA 10.2 as DNN inference engine.
The solving and inference tasks are coordinated in an asyn-
chronous multi-threading fashion on multiple CPU&GPU
cores. We extended CQELS (Le-Phuoc et al. 2011) as the
underlying stream processing engine to enable DNN inference
on GPUs as built-in functions of its query language CQELS-
QL. Following (Gebser et al. 2019), the external atoms ofR in
Algorithm 1 are expressed as CQELS-QL queries to delegate
incremental grounding operations to CQELS’s incremental
evaluation algorithms. The built-in functions also generate the
symbolic counterparts of the outputs of DNN models resp. CV
algorithms. Adopting the idea of over-grounding (Calimeri
et al. 2019), which pre-grounds rules for later use, contin-
uous grounding overhead is avoided by using incremental
materialised views with efficient data structures and caching
mechanisms (Le-Phuoc 2017) for dynamic rule activation.
Empirical Evaluation. We evaluated SSR with MOT
pipelines for autonomous cars on the KITTI dataset (Geiger,
Lenz, and Urtasun 2012), which is a well-known benchmark
for autonomous cars, and for traffic surveillance on the AI
City Challenge (AIC) dataset (Tang et al. 2019), from which
we picked Scenario 4 that tracks vehicles in 25 cameras; we
used 13 of them for training and 12 for evaluation. Profile
information of the datasets is shown in Table 1.

We have conducted all experiments on a workstation with
2 Intel Xeon Silver 4114 processors having 10 physical cores
each, 1TB RAM, 2 NVIDIA Tesla V100 16GB running Centos
7.0. In weight learning, we used starting weights 1, δ = 0.001,
and learning rate λ = 0.01 for both learning pipelines.

With the weights learned, we compared SSR against SORT
and DeepSORT (DSORT) using different detectors, viz. Faster-
RCNN (Ren et al. 2015), Yolov3 (Redmon and Farhadi 2017),
and SSD (Liu et al. 2016) on the data sets w.r.t. three MOT met-
rics: IDF1 (the ratio of correctly identified detections), MOTA
(MOT Accuracy in %), and FPS (frames/sec throughput).

Results & Discussions. The last column of Table 1 reports
the learning time on each dataset; they amount to the learning
time of approximately 1000-2000 epochs with the Siamese
network (Koch, Zemel, and Salakhutdinov 2015) that provides
appearance-based discriminative metrics of DeepSORT.

The results in Table 2 show that SSR achieved consistently
better IDF1 and MOTA (10-15% more accurate) than SORT,
which serves as a baseline, and DSORT (5-7%). Regarding
the throughput, SSR can deliver real-time speed with 15-30
FPS, which is 4-6 times the throughput of DSORT and just a
little lower than that of SORT (80-90%); this is outweighed
by significantly higher detection and tracking accuracy.

To analyse the ASP solving overhead of Algorithm 1 com-
pared to the DNN inference counterpart, we report in Table 3
the average processing time for each batch of inputs of these
processes on the datasets. The results show that the time
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Detectors AIC KITTI
System IDF1 MOTA FPS IDF1 MOTA FPS

FRCNN
SORT 54 52 22 51 49 22

DSORT 61 59 4 60 55 5
SSR 70 67 19 68 65 20

YOLOV3
SORT 57 53 30 55 51 25

DSORT 63 60 5 63 59 6
SSR 71 69 27 69 67 22

SSD
SORT 51 48 32 49 45 37

DSORT 55 51 6 57 52 8
SSR 62 58 31 65 63 30

Table 2: MOT metrics and throughputs on AIC and KITTI

Overhead AIC KITTI
FRCNN YOLOV3 SSD FRCNN YOLOV3 SSD

DNN 95 ms 85 ms 70 ms 90 ms 82 ms 65 ms
ASP 45 ms 43 ms 39 ms 29 ms 30 ms 20 ms

Table 3: DNN Inference vs. ASP Solving Overhead

spent on the ASP solver is not a dominant overhead of the
processing pipeline, viz. 28-57% (avg. 41%) of the DNN coun-
terparts. Moreover, SSR uses multiple instances of Clingo
concurrently; hence, even if ASP solving takes 20-50 ms
per processing batch (approx. 60-120kB program size), by
using 40 parallel solving threads (2 threads per physical core)
SSR can produce 50-200 learning samples per second; this
outperforms the original algorithm in (Lee and Wang 2018)
by an order of magnitude.
Accessibility. All source code and experiments will be re-
leased at https://github.com/cqels/SSR/ as a part of the open
source project CQELS Framework (Le-Phuoc et al. 2011).3

Related Work
In Computer Vision, a DNN-based system heavily depends on
expert knowledge about the data distribution of the targeted
scenario for fitting it to the proper model. However, many
factors can seriously interfere with its performance, such
as occlusion, illumination, fuzziness, or noise interference
(cf. Figure 3). To jointly deal with those factors in the same
pipeline, one has to encode the joint distributions via cascading
DNN models and/or manually tuned lists of parameters based
on the association hypotheses that emerged from the data
and empirical analysis. In fact, like our method, traditional
ones such as the Joint Probabilistic Data Association Filter
(JPDAF) (Rezatofighi et al. 2015) and Hypothesis Tracking
(MHT) (Kim et al. 2015) use multiple hypotheses. These
methods perform data association on a frame-by-frame basis.
The JPDAF generates a single state hypothesis by weighting
individual measurements with their association likelihoods.
In MHT, all possible hypotheses are tracked, but pruning
schemes must be applied for tractability. Hence, considerable
domain knowledge is needed for translating them to a specific
optimization problem. Moreover, heuristic tricks and parame-
ters tuning that are only useful for a certain application and
dataset. To remedy the shortcomings of such a traditional

3CQELS Execution Framework, https://cqels.org/

programming approach, our reasoning programs offer not
only modularity and portability, but also provide a logical
basis for explaining the outputs they produce.

In the knowledge representation community, the closest
work to ours is (Suchan, Bhatt, and Varadarajan 2019), which
expresses the probability optimisation problems of MOT in
ASP using weak constraints. Apart from our highlighted ad-
vantages (i.e supporting weight learning and more efficient
with multi-shot solving) against this approach at the begin-
ning of the paper, our approach with semantic reasoning
rules is more compact and more flexible with window-based
search. For instance, it is easy for our approach to incorpo-
rate additional DNNs to the DeepSORT tracking logic with
just an additional rule in equation (8) which is not trivial to
do with (Suchan, Bhatt, and Varadarajan 2019). Moreover,
(Suchan, Bhatt, and Varadarajan 2019) and other approaches
surveyed in (Aditya, Yang, and Baral 2019) have aforemen-
tioned shortcomings in using ASP or ILP solvers with the
one-shot solving mechanism. On the nature of input data,
while the work in (Aditya, Yang, and Baral 2019) only con-
sidered still images, we aim at visual streams to exploit the
temporal relation and semantic information among a series of
visual data, e.g video frames to apply the multi-shot solving
mechanism. Similarly, DeepProbLog (Manhaeve et al. 2018)
and NeurASP (Yang, Ishay, and Lee 2020) also integrate
DNNs with rules; however, their focus is on static data while
ours is dealing with stream data processed by neural networks
to achieve performance and scalability via deriving incremen-
tal and parallel algorithms based on succinct natures of the
stream data. Investigating how the latter can be transferred
to these approaches remains for future work. For instance, a
tighter integration of our learning algorithm with the inner
DNN learning loops is the next foreseeable step in our devel-
opment of SSR. Along this line, extending our framework
with online learning and feedback of rules to the DNNs is
suggestive; the latter is conceptually straightforward under
temporal stratification.

Conclusion and Future Work
We have presented a novel semantic reasoning approach which
seamlessly marries reasoning based on Answer Set Program-
ming (ASP) with Deep Neural Network (DNN) inference
for building advanced data fusion pipelines. We have demon-
strated the flexibility and amenability of the approach for
reuse of existing solutions by emulating MOT algorithms that
constitute popular DNN-based stream fusion pipelines. Our
extensive experiments on reasoning and learning showed that
our prototype SSR can deliver higher processing throughput
and yield better accuracy than DNN counterparts, and that
SSR’s weight learning algorithm can scale to deal with re-
alistic benchmark datasets. We believe that the open source
platform for SSR will create a timely bridge to integrate
the strengths of ASP and DNN for building fast and scalable
stream fusion pipelines, where rules and semantic information
provide a valuable basis for addressing challenging issues like
explainability and verification in future work. Furthermore,
we plan to apply our work beyond computer vision to other
application domains such as traffic forecasting and streaming
perceptions for robotics.
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