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Abstract

Despite significant progress in the development of neural-
symbolic frameworks, the question of how to integrate a neu-
ral and a symbolic system in a compositional manner remains
open. Our work seeks to fill this gap by treating these two
systems as black boxes to be integrated as modules into a sin-
gle architecture, without making assumptions on their inter-
nal structure and semantics. Instead, we expect only that each
module exposes certain methods for accessing the functions
that the module implements: the symbolic module exposes
a deduction method for computing the function’s output on a
given input, and an abduction method for computing the func-
tion’s inputs for a given output; the neural module exposes a
deduction method for computing the function’s output on a
given input, and an induction method for updating the func-
tion given input-output training instances. We are, then, able
to show that a symbolic module — with any choice for syntax
and semantics, as long as the deduction and abduction meth-
ods are exposed — can be cleanly integrated with a neural
module, and facilitate the latter’s efficient training, achieving
empirical performance that exceeds that of previous work1.

Introduction
Neural-symbolic frameworks (d’Avila Garcez, Broda, and
Gabbay 2002; Rocktäschel and Riedel 2017; Wang et al.
2019) vow to bring a new computational paradigm in which
symbolic systems can tolerate noisy or unstructured data,
and neural systems can learn with fewer data and offer inter-
pretable outcomes. The potential of integrating a symbolic,
typically logic-based, module on top of a neural one has
been well-demonstrated in semi-supervised learning (Don-
adello, Serafini, and d’Avila Garcez 2017; Marra et al. 2019;
Serafini and d’Avila Garcez 2016; van Krieken, Acar, and
van Harmelen 2019), program induction (Kalyan et al. 2018;
Parisotto et al. 2017), and open question answering (Sun
et al. 2018) settings. In these cases, the training of the neu-
ral module is regulated by the logic theory (and its integrity
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constraints or other constructs), which is far from straight-
forward since logical inference cannot be, in general, cap-
tured via a differentiable function.

To accommodate the integration of neural modules with
logical theories, the majority of neural-symbolic frame-
works restrict the type of the theories (e.g., to non-recursive
or acyclic propositional ones), and they either translate them
into neural networks (d’Avila Garcez, Broda, and Gabbay
2002; Hölldobler, Störr, and Kalinke 1999; Towell and Shav-
lik 1994), or they replace logical computations by differen-
tiable functions (Bošnjak et al. 2017; Gaunt et al. 2017). A
second line of work abandons the use of classical logic al-
together and adopts theories whose interpretations take con-
tinuous values, such as fuzzy logic (Donadello, Serafini, and
d’Avila Garcez 2017; Marra et al. 2019; Serafini and d’Avila
Garcez 2016; Sourek et al. 2015; van Krieken, Acar, and
van Harmelen 2019), or probabilistic logic (Manhaeve et al.
2018), which can support the uniform application of back-
propagation on both the symbolic and the neural module.

We consider the problem of integrating a symbolic mod-
ule that computes a function s(·) on top of a neural module
that computes a function n(·), so that together the two mod-
ules implement the composition s ◦ n. We argue that this
integration can be done fully compositionally, without the
need to revamp the syntax or semantics of either module.

We borrow two well-known notions from mathematical
logic to establish the interface that should be provided by the
symbolic module to reach a transparent and “non-intrusive”
integration: deduction, or forward inference, and abduction,
through which one computes (i.e., abduces) the inputs to the
symbolic module that would deduce a given output.

While abduction has been used in the past as the means
to train a neural module feeding into a symbolic module
(Dai et al. 2019), there are two key differences between our
framework and prior art, over and above our high-level con-
tribution in setting the basis for compositionality. The first
difference is on the abduced inputs that are used to train the
neural module. Our basic framework makes use of all such
abduced inputs, while prior art restricts its attention on one
of them. As also supported by the empirical evidence that we
offer in this work, this restriction causes the learning process
to suffer: learning is led to fall into local minima since the
single abduced input offers lopsided feedback to the learn-
ing process, training faces weaker supervision signals due to
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the loss of the semantic constraints among the different ab-
duced inputs, and the learning process becomes vulnerable
to random supervision signals on those parts of the single
abuced input that are forced to take values when they should
have semantically been treated as irrelevant.

The second difference is on the training process itself.
Prior art uses an ad-hoc training procedure which requires
training of the neural module multiple times for the same
training sample. That training approach is not only com-
putationally expensive, but it is also difficult to customize
on different scenarios. Instead, our framework provides the
means to control the training process in a customized man-
ner by delegating to the symbolic module the encoding of
any domain-specific training choices. In particular, there ex-
ist cases where one would wish to have the neural predic-
tions guide the choice of abduced inputs — presumably the
problem that also motivates prior art. We show that such
neural-guided abduction can be done easily as an extension
of our basic framework, by encoding in the symbolic mod-
ule the knowledge of which abduced inputs are to be used
for training, using declarative or procedural techniques to
resolve any inconsistencies and to rank the abduced inputs
in terms of compatibility with the current neural predictions.

Beyond the plugging in of theories with any semantics
and syntax, and beyond the already-mentioned support for
neural-guided abduction, the clean take of our proposed
compositional architecture easily extends to support other
features found in past works, including program induction
and domain-wide constraints. To our knowledge, a uniform
handling of all these features is not present in past works.

We empirically evaluate — in what we believe to be a
more comprehensive manner than typically found in the
relevant literature — the performance of our framework
against three frameworks that share the same goals with
ours: DEEPPROBLOG (Manhaeve et al. 2018), NEURASP
(Yang, Ishay, and Lee 2020), and ABL (Dai et al. 2019).
We demonstrate the superior performance of our framework
both in terms of training efficiency and accuracy over a wide
range of scenarios showing the features described above.

Preliminaries
For concreteness of exposition, and without excluding other
syntax and semantics, we assume that the symbolic compo-
nent encodes a logic theory using the standard syntax found
in the abductive logic programming literature (Kakas 2017).

As typical in logic programming, the language comprises
a set of relational predicates that hold over variables or con-
stants. An atom is a predicate with its arguments. A for-
mula is defined as a logical expression over atoms, using the
logical connectors of Prolog, e.g., conjunction, disjunction,
negation. A theory is a collection of such formulas. Figure 1
shows a theory for determining the status of the game of a
certain variant of chess played on a 3 × 3 board with three
pieces: a black king, and two white pieces of different types.

As far as our proposed architecture is concerned, the pre-
cise syntax and semantics of the theory are inconsequential.
We will, therefore, not delve into a detailed analysis of the
aforementioned theory T , except as needed to highlight cer-
tain features. What is of only importance is that T is accom-
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safe :- placed(Z1), movable(Z1).
draw :- placed(Z1), \+attacked(Z1), \+movable(Z1).
mate :- placed(Z1), attacked(Z1), \+movable(Z1).

placed(Z1) :- pos(Z1), at(b(k),Z1), pos(Z2), pos(Z3), Z2\=Z3,
piece(w(P2)), at(w(P2),Z2), piece(w(P3)),
at(w(P3),Z3).

movable(Z1) :- pos(Z2), reached(Z2,k,Z1), \+attacked(Z2).
attacked(Z2) :- pos(Z3), piece(w(P)), at(w(P),Z3),

reached(Z2,P,Z3).

reached((X,Y),k,(PX,PY)) :- abs(X,PX,DX), 1>=DX, abs(Y,PY,DY),
1>=DY, sum(DX,DY,S), 0<S.

reached((X,Y),q,(PX,PY)) :- reached((X,Y),r,(PX,PY)).
reached((X,Y),q,(PX,PY)) :- reached((X,Y),b,(PX,PY)).
...

ic :- piece(P), at(P,Z1), at(P,Z2), Z1\=Z2.
ic :- piece(P1), piece(P2), at(P1,Z), at(P2,Z), P1\=P2.
ic :- at(b(k),Z1), at(w(k),Z2), reached(Z1,k,Z2).
ic :- piece(b(P1)), at(b(P1),Z1), piece(b(P2)), at(b(P2),Z2),

Z1\=Z2.
ic :- piece(w(P1)), at(w(P1),Z1), piece(w(P2)), at(w(P2),Z2),

piece(w(P3)), at(w(P3),Z3), Z1\=Z2, Z2\=Z3, Z3\=Z1.

Figure 1: Snippet of a theory for an example chess domain
being used to train a neural module through abduction.

panied by an entailment operator |= that allows exposing: a
deduction method deduce that takes as input a set of atoms
A and produces a set of atoms O = deduce(T,A) such
that T ∪ A |= O; an abduction method abduce that takes
as input a set of atoms O and produces a set (out of possibly
many) of atoms A ∈ abduce(T,O) such that T ∪A |= O.

As part of exposing a method one needs to define its input
and output spaces. We will assume that A ⊆ A and call A
the set of symbolic inputs or abducibles; and that O ⊆ O
and callO the set of symbolic outputs or outcomes. We will
also assume that atoms in A and O are grounded and dis-
joint. When convenient, we will represent a subset of atoms
as a formula: the conjunction of the subset’s members. An
abductive proof for a given outcome O ⊆ O is any formula
A ∈ abduce(T,O). Observe that for any fixed outcome
there might exist zero, one, or multiple abductive proofs.

Example 1 In our example chess domain, the set A of ab-
ducibles comprises all atoms of the form at(P, (X,Y )), cor-
responding to the concept of a chess piece of type P be-
ing on the chess board at coordinates (X,Y ); P takes one
of the values in {b(k),w(k),w(q),w(r),w(b),w(n),w(p)},
where w(·) and b(·) stand for white or black pieces, and
k, q, r, b, n, and p denote the king, queen, rook, bishop,
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knight and pawn, respectively; each of X and Y take one
of the values in {1, 2, 3}. The set O of outcomes is equal to
{safe, draw,mate}, corresponding to the concepts that the
black king has a valid move, is stalemated, or is mated.

Deduction receives as input a subset of A that describes
the state of the chess board, and produces as output a (sin-
gleton) subset of O on the status of the black king. Con-
versely, abduction receives as input a (singleton) subset of
O that describes the desired status of the black king, and
produces as output subsets of A, each describing a state of
the chess board where the black king has the desired status.

A theory may be extended with integrity constraints, spe-
cial formulas that restrict the possible inferences that can be
drawn when applying the methods of deduction and abduc-
tion, by constraining which subsets of A are considered ac-
ceptable. A subset A ⊆ A violates the integrity constraints
if and only if deduce(T,A) is a special symbol ⊥ 6∈ O.
Analogously, a subset A ⊆ A violates the integrity con-
straints if and only if A 6∈ abduce(T,O) for each subset
O ⊆ O. Thus, integrity constraints in a theory need to be re-
spected by every abductive proof for each outcome O ⊆ O.

Example 2 In our example chess domain, the integrity con-
straints are encoded as rules with an ic head. The five in-
tegrity constraints in Figure 1 capture, in order, the follow-
ing requirements: the same piece type is not at more than
one position; no two pieces are at the same position; the
black and white kings are not attacking each other; there is
at most one black piece on the chess board; there are at most
two white pieces on the chess board. The requirement for the
existence of at least one black king and at least two white
pieces is captured through the rule with the placed(Z1)
head. If the set A of abducibles is extended to include all
atoms of the form empty((X,Y )) to denote explicitly the co-
ordinates of the board cells that are empty, then additional
integrity constraints and rules can be added in the theory to
ensure that no piece can be placed at an empty cell, an that
every non-empty cell should hold some piece.

Framework
We consider a neural-symbolic system built by composing a
neural module feeding into a symbolic module.

Module Compositionality
We let X and Ω = [0, 1]k be, respectively, the space of pos-
sible inputs and the space of possible outputs of the neural
module. At any given training iteration t, the neural module
effectively implements a function nt : X → Ω. For nota-
tional simplicity, we will overload the use of the symbol nt

to denote both the function and the underlying neural net-
work itself. We assume that there is a translator function r
that maps each ω ∈ Ω to a set of abducibles r(ω) ∈ A.

Given a symbolic module with a theory T , the end-to-
end reasoning of the neural-symbolic system at iteration t
is the process that maps an input in X to an outcome subset
of O as follows: the system receives an input x ∈ X ; the
neural module computes the vector ω = nt(x); the translator
maps ω to the abducibles A = r(ω) ⊆ A; the symbolic
module computes the outcome O = deduce(T,A) ⊆ O ∪

{⊥}. Thus, inference in our framework proceeds by running
the inference mechanism of the symbolic module over the
inferences of the neural module on a given neural input. To
simplify our notation, and when there is no confusion, we
will write hT

t (x) to mean deduce(T, r(nt(x))) for x ∈ X .

Example 3 In our example chess domain, consider a neu-
ral module nt that receives as input x ∈ X a 3 × 3 grid of
images representing a chess board. The neural module out-
puts a vector ω = nt(x) ∈ Ωk that corresponds to what the
neural module predicts. One possible implementation is for
the neural module to have eight output nodes for each cell
at coordinates (X,Y ) of the chess board (hence, k = 8×9).
These eight output nodes represent, respectively, whether
their associated cell includes no piece, the black king, the
white king, the white queen, the white rook, the white bishop,
the white knight, or the white pawn. ω assigns, effectively,
confidence values on each of these predictions for each cell.

The translator function r could simply turn ω into a set
of abducibles A by considering for each cell the most confi-
dent prediction and including the corresponding atom in A.
Thus, if the first eight components of ω, which correspond to
predictions for cell (1, 1), were such the third value was the
maximum one, then A would include at(w(k), (1, 1)).

A is provided as input to the symbolic component, which
deduces whether the chess board is in a safe, draw, or mate
state (or in ⊥ in case A violates the integrity constraints).

In certain cases, the input x ∈ X to a neural-symbolic sys-
tem might be associated with explicit input-specific knowl-
edge provided in the form of a symbolic formula x. This
side-information does not go through the usual pipeline as x,
but can be readily accommodated by extending the theory T
to include it, and by computing deduce(T∪{x}, r(nt(x)))
instead. Our compositional perspective affords us to remain
agnostic, at the architecture level, on how side-information
will be dealt with by the symbolic module (e.g., as integrity
constraints or as weak preferences), and puts the burden on
the theory itself to make this domain-specific determination.

Neural-Module Learning
As in standard supervised learning, consider a set of labeled
samples of the form {〈xj , f(xj)〉}j , with f being the target
function that we wish to learn, xj corresponding to the fea-
tures of the sample, and f(xj) being the label of the sample.

In the context of our neural-symbolic architecture, learn-
ing seeks to identify, after t iterations over a training subset
of labeled samples, a hypothesis function hT

t (·) that suffi-
ciently approximates the target function f(·) on a testing
subset of labeled samples. Given a fixed theory T for the
symbolic module, the only part of the hypothesis function
hT
t (·) = deduce(T, r(nt(·))) that remains to be learned is

the function nt implemented by the neural module.
We put forward Algorithm 1 to achieve this goal. In line

with our compositional treatment, the algorithm does not
delve into the internals of the neural and the symbolic mod-
ule, but accesses them only through the methods that they
expose: inference and backpropagation for the neural mod-
ule; deduction and abduction for the symbolic module.
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Algorithm 1 TRAIN(x, f(x), nt)→ nt+1

1: ω ··= nt(x)
2: ϕ ··=

∨
abduce(T, f(x)) . basic form or

ϕ ··=
∨
abduce(T ∪ r(ω), f(x)) . NGA form

3: ` ··= loss(ϕ, r, ω) . using WMC
4: nt+1 ··= backpropagate(nt,5`)
5: return nt+1

The algorithm considers the label f(x) of a given sam-
ple, viewed as a (typically singleton) subset of O, and ab-
duces all abductive proofs A ∈ abduce(T, f(x)) ⊆ A.
Taking the disjunction of all abductive proofs, the algorithm
computes the abductive feedback formula ϕ that captures all
the acceptable outputs of the neural module that would lead,
through the theory T, the system to correctly infer f(x).

The abductive feedback acts as a supervision signal for
the neural module. Combining that signal with the actual
output ω of the neural module (through the use of the trans-
lator function r), we can compute the loss of the neural mod-
ule. Critically, the resulting loss function is differentiable,
even if the theory T of the symbolic module is not! By dif-
ferentiating the loss function we can use backpropagation to
update the neural module to implement function nt+1.

Rather than requiring for the theory to be differentiable, as
done in certain past works (Donadello, Serafini, and d’Avila
Garcez 2017; Marra et al. 2019; Serafini and d’Avila Garcez
2016; Sourek et al. 2015; van Krieken, Acar, and van Harme-
len 2019; Manhaeve et al. 2018), the use of abduction for
neural-symbolic integration poses no a priori constraints on
the form of the theory, but proceeds to extract its “essence”
in a differentiable form, albeit in an outcome-specific man-
ner. Fortuitously, the space of possible outcomes is usually
considerably restricted, which readily allows the caching of
the abductive proofs, or even their precomputation prior to
the training phase. Put differently, the use of abduction al-
lows replacing any arbitrary theory T by the set of its abduc-
tive feedbacks {ϕO | ϕO =

∨
abduce(T,O), O ⊆ O}.

Example 4 In our example chess domain, consider a train-
ing sample (x, f(x)), where x is a 3 × 3 grid of images
representing a chess board with a white queen at cell (1, 1),
a white bishop at cell (3, 1), and a black king at cell (2, 3),
and f(x) labels the chess board as being in a safe state.
Starting from the label, we compute the abductive feedback
. . .∨ [at(w(q), (1, 1))∧ at(w(b), (3, 1))∧ at(b(k), (2, 3))∧
. . . ∧ empty((3, 3))] ∨ [at(w(r), (1, 1))∧ at(w(n), (3, 1))∧
at(b(k), (2, 3)) ∧ . . . ∧ empty((3, 3))] ∨ [at(b(k), (1, 1)) ∧
at(w(p), (3, 1)) ∧ at(w(r), (2, 3)) ∧ . . . ∧ empty((3, 3))] ∨
[at(w(p), (1, 1))∧ at(w(n), (2, 2))∧ at(b(k), (2, 3))∧ . . .∧
empty((3, 3))] ∨ . . .. Among the shown disjuncts, the first
one represents the input chess board, the next two repre-
sent chess boards that are safe and have pieces only at cells
(1, 1), (3, 1) and (2, 3), and the last represents a chess board
that is safe, but has pieces at cells (1, 1), (2, 2) and (2, 3).

Neural-Guided Abduction
Although computing the entire abductive feedback is gener-
ally the appropriate choice of action, there might exist cir-

cumstances where it might be beneficial to prune some of
its parts. Caution should, however, be exercised, as pruning
might end up removing the part of the abductive feedback
that corresponds to the true state of affairs (cf. Example 4),
and might, thus or otherwise, misdirect the learning process.

One case worth considering is neural-guided abduction
(NGA), where the prediction of the neural module is used
as a focus point, and only abductive proofs that are proxi-
mal perturbations of that point find their way into the abduc-
tive feedback. What counts as a perturbation, how proximity
is determined, and other such considerations are ultimately
domain-specific, and are not specified by the framework.

Example 5 In our example chess domain, consider a neural
module that is highly confident in distinguishing empty from
non-empty cells, but less confident in determining the exact
types of the pieces in the non-empty cells. Consider, further,
a particular training sample 〈x, f(x)〉 on which the neu-
ral component identifies the non-empty cells as being (1, 1),
(3, 1), and (2, 3). It is then natural for the symbolic module
to attempt to utilize the predictions of the neural module to
prune and focus the abductive feedback that it will provide
for the further training of the neural module.

If, for example, f(x) labels the chess board as being in a
safe state, then the abductive feedback will exclude the last
disjunct from Example 4, since it represents a chess board
with pieces at cells other than (1, 1), (3, 1), and (2, 3), and
will maintain the first three disjuncts as they respect the neu-
ral predictions in terms of the positions of the three pieces.

To support neural-guided abduction, we must, first, estab-
lish a communication channel between the neural module
and the abduction mechanism, in order for the neural mod-
ule to provide its predictions to the abduction mechanism.

Our proposed architecture can seamlessly implement this
communication channel by treating the communicated in-
formation as input-specific knowledge. Given, therefore, a
training sample (x, f(x)), we can simply call the abduction
method not by providing only the theory T and the outcome
f(x) as inputs, but by first extending the theory T with the
neural predictions ω = nt(x) as translated by the translator
function r. Thus, the abductive feedback in Algorithm 1 is
now computed as ϕ ··=

∨
abduce(T ∪ r(ω), f(x)).

As we have already mentioned, the treatment of this side-
information is not determined by the framework, but is left
to the theory itself. Although the side-information might, in
some domains, provide confident predictions that could act
as hard constraints for the theory (cf. Example 5), our treat-
ment allows also the handling of domains where the side-
information might be noisy, incorrect, or even in direct vio-
lation of the existing integrity constraints of the theory.

Such neural predictions might still offer some useful guid-
ance to the abduction process. Depending on the syntactic
and semantic expressivity of the symbolic module, the the-
ory can provide a declarative or a procedural way to resolve
the inconsistencies that arise in a domain-specific manner.

Example 6 In our example chess domain, consider a par-
ticular training sample 〈x, f(x)〉 on which the prediction
of the neural module, as translated by the translator into
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symbolic inputs, corresponds to the subset {at(w(q), (1, 1)),
at(w(b), (3, 1)), at(b(k), (2, 3)), . . ., empty((3, 3))}.

Assume, first, that f(x) labels the chess board as being in
a safe state. Then, there exists exactly one abductive proof
that matches the neural prediction perfectly. As this corre-
sponds to a zero-cost perturbation of the neural prediction,
only it ends up in the abductive feedback. As a result, the
neural module ends up reinforcing exactly what it predicted.

Assume, now, that f(x) labels the chess board as being in
a draw state. Then, there is no abductive proof that matches
the neural prediction perfectly. Rather, there is an abductive
proof [at(w(q), (1, 1))∧at(w(r), (3, 1))∧at(b(k), (2, 3))∧
. . . ∧ empty((3, 3))] that differs from the neural prediction
only in changing the type of an already predicted white
piece, while maintaining its position, and also maintaining
the types and positions of the other two pieces. This abduc-
tive proof could be evaluated to have a minimal-cost among
the perturbations of the neural prediction, and only it ends
up in the abductive feedback. As a result, the neural mod-
ule ends up reinforcing parts of what it sees, while helping
revise locally one of its mistakes (perhaps because it is still
unable to fully differentiate between rooks and bishops).

Assume, finally, that f(x) labels the chess board as be-
ing in a mate state. Then, there is no abductive proof that
matches the neural prediction perfectly. In fact, there are no
abductive proofs that respect the positions of the pieces as
predicted by the neural module. Abduction will then seek to
identify perturbations that, if possible, move a single piece
with respect to the predicted ones, or move and change the
type of a single piece, etc., that would respect the label f(x).
Depending on how one costs the various perturbations, one
or more abductive proofs can be evaluated to have minimal-
cost, and all those will end up in the abductive proof.

Evaluation
We have empirically assessed the training time and test ac-
curacy of our proposed compositional framework, hereafter
abbreviated as NEUROLOG, against three prior approaches
that share the same goals with us: DEEPPROBLOG (Man-
haeve et al. 2018), NEURASP (Yang, Ishay, and Lee 2020)
and ABL (Dai et al. 2019). Comparing with other architec-
tures, such as (Gaunt et al. 2017), which are concerned not
only with neural-module learning, but also with symbolic-
module learning, is beyond the scope of the current paper.

The code and data to reproduce the experiments are avail-
able at: https://bitbucket.org/tsamoura/neurolog/src/master/.

Implementation
Abductive feedback in NEUROLOG was computed using the
A-system (Nuffelen and Kakas 2001) running over SICStus
Prolog 4.5.1. Each abductive feedback ϕ was grounded (and,
hence, effectively propositional) by construction, which fa-
cilitated the use of semantic loss (Xu et al. 2018) for training
the neural module. The semantic loss of ϕ was computed by
treating each atom in ϕ as a Boolean variable, weighted by
the activation value of the corresponding output neuron of
the neural module, and by taking the negative logarithm of
its weighted model count (WMC) (Chavira and Darwiche

2008). For the purposes of computing WMC, ϕ was first
compiled into an arithmetic circuit (Darwiche 2011).

In order to avoid recomputing the same models or the
same abductive feedbacks during training, we used caching
across all the systems that we evaluated. Furthermore, we
encoded the theories of the symbolic modules with an eye
towards minimizing the time to perform abduction, ground-
ing, or inference. Experiments were ran on an Ubuntu 16.04
Linux PC with Intel i7 64-bit CPU and 94.1 GiB RAM.

Scenarios
Benchmark datasets have been used to provide inputs to the
neural module as follows: MNIST (LeCun et al. 1998) for
images of digits; HASY (Thoma 2017) for images of math
operators; GTSRB (Stallkamp et al. 2011) for images of
road signs. Below we describe each experimental scenario:

ADD2x2 (Gaunt et al. 2017): The input is a 2× 2 grid of
images of digits. The output is the four sums of the pairs
of digits in each row / column. The symbolic module com-
putes the sum of pairs of digits.

OPERATOR2x2 (new; ADD2x2 with program induction):
The input is a 2× 2 grid of images of digits. The output
is the four results of applying the math operator op on the
pairs of digits in each row / column. The math operator op
in {+,−,×} is fixed for each row / column but unknown.
The symbolic module computes the sum, difference, and
product of pairs of digits. The neural module seeks to in-
duce the unknown operator and to recognize the digits.

APPLY2x2 (Gaunt et al. 2017): The input is three digits
d1, d2, d3 and a 2× 2 grid of images of math operators
opi,j . The output is the four results of applying the math
operators in each row / column on the three digits (e.g.,
d1 op11 d2 op12 d3). The symbolic module computes re-
sults of applying pairs of math operators on three digits.

DBA(n) (Dai et al. 2019): The input is a mathematical ex-
pression comprising n images of {0,1} digits and math
operators (including the equality operator). The output is
a truth value indicating whether the mathematical expres-
sion is a valid equation. The symbolic module evaluates
the validity of an equation. Our DBA scenario extends that
from (Dai et al. 2019) by allowing math operators to ap-
pear on both sides of the equality sign.

MATH(n) (Gaunt et al. 2017): The input is a mathematical
expression comprising n images of digits and math oper-
ators. The output is the result of evaluating the mathemat-
ical expression. The symbolic module computes results of
math operators on integers.

PATH(n) (Gaunt et al. 2017): The input is an n× n grid of
images of road signs and two symbolically-represented
grid coordinates. The output is a truth value indicating
whether there exists a path from the first to the second
coordinate. The symbolic module determines valid paths
between coordinates given as facts.

MEMBER(n) (new): The input is a set of n images of digits
and a single symbolically-represented digit. The output is
a truth value indicating whether the single digit appears
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ADD2x2 OPERATOR2x2 APPLY2x2 DBA(5) MATH(3) MATH(5)
NLOG 91.7± 0.7 90.8± 0.8 100± 0 95.0± 0.2 95.0± 1.2 92.2± 0.9
DLOG 88.4± 2.5 86.9± 1.0 100± 0 95.6± 1.8 93.4± 1.4 timeout

ABL 75.5± 34 timeout 88.9± 13.1 79± 12.8 69.7± 6.2 6.1± 2.8
NASP 89.5± 1.8 timeout 76.5± 0.1 94.8± 1.8 27.5± 34 18.2± 33.5
NLOG 531± 12 565± 36 228± 11 307± 51 472± 15 900± 71
DLOG 1035± 71 8982± 69 586± 9 4203± 8 1649± 301 timeout

ABL 1524± 100 timeout 1668± 30 1904± 92 1903± 17 2440± 13
NASP 356± 4 timeout 454± 652 193± 2 125± 6 217± 3

PATH(4) PATH(6) MEMBER(3) MEMBER(5) CHESS-BSV(3) CHESS-ISK(3) CHESS-NGA(3)
NLOG 97.4± 1.4 97.2± 1.1 96.9± 0.4 95.4± 1.2 94.1± 0.8 93.9± 1.0 92.7± 1.6
DLOG timeout timeout 96.3± 0.3 timeout n/a n/a n/a

ABL timeout timeout 55.3± 3.9 49.0± 0.1 0.3± 0.2 44.3± 7.1 n/a
NASP timeout timeout 94.8± 1.3 timeout timeout 19.7± 6.3 n/a
NLOG 958± 89 2576± 14 333± 23 408± 18 3576± 28 964± 15 2189± 86
DLOG timeout timeout 2218± 211 timeout n/a n/a n/a

ABL timeout timeout 1392± 8 1862± 28 9436± 169 7527± 322 n/a
NASP timeout timeout 325± 3 timeout timeout 787± 307 n/a

Table 1: Empirical results. NLOG stands for NEUROLOG, DLOG for DEEPPROBLOG and NASP for NEURASP. The first four
rows in each table show the % testing accuracy, while the last four rows show the total training time in seconds.

in the set of digits. The symbolic module determines set
membership of an element given as a fact.

We have also used the chess domain from our running ex-
ample to highlight certain (new) features of our framework:
a richer class of theories, non-declarative theories, and
neural-guided abduction. We denote by CHESS-BSV(n)
and CHESS-NGA(n), the scenarios corresponding, respec-
tively, to Example 4 and Example 6: in the former sce-
nario, the full abductive feedback is used to train the neu-
ral module, and in the latter scenario a non-declarative the-
ory is used to enumerate and evaluate, against the neural
predictions, the various abductive proofs to select which
parts of the abductive feedback to retain. We also con-
sider a third variant that sits between the former two,
called CHESS-ISK(n), which roughly corresponds to Ex-
ample 5, but rather than receiving the positions of the three
pieces from a confident neural module, it receives them as
externally-provided (and noiseless) information. In all sce-
narios, the chess pieces are represented by images of digits.

Results and Analysis
Results of our empirical evaluation are shown in Table 1, and
in Figures 2, 3, and 4. Each system was trained on a training
set of 3000 samples, and was ran independently 10 times
per scenario to account for the random initialization of the
neural module or other system stochasticity. Training was
performed over 3 epochs for NEUROLOG, DEEPPROBLOG
and NEURASP, while the training loop of ABL was invoked
3000 times. Note that there is no one-to-one correspondence
between the training loop of ABL and that of the other three
systems: in each iteration, ABL considers multiple training
samples and based on them it trains the neural component
multiple times. In all systems, the neural module was trained
using the Adam algorithm with a learning rate of 0.001.

Results on running DEEPPROBLOG on the CHESS-?(n)

suite of scenarios are not available, since DEEPPROBLOG’s
syntax does not readily support the integrity constraints (nor
the procedural constructs for the CHESS-NGA(n) scenario)
in the symbolic module. Since neural-guided abduction is
not supported by any of the other three systems, we report
results on CHESS-NGA only for NEUROLOG.

The results offer support for the following conclusions:
(C1) The average accuracy of NEUROLOG is comparable

to, or better than, that of the other systems. NEUROLOG per-
forms similarly to DEEPPROBLOG on those scenarios that
are supported by the latter and in which DEEPPROBLOG
does not time out, while it may perform considerably bet-
ter than NEURASP and ABL. For example, the average
accuracy of NEUROLOG is up to 70% higher than that of
NEURASP in the MATH scenarios, and up to 40% higher
than that of NEURASP in the MEMBER scenarios.

NEURASP and ABL are vulnerable to weak supervision
signals, as their performance decreases when the number
of abductive proofs per training sample increases. For ex-
ample, the average accuracy of ABL drops from 69.7% in
MATH(3) to 6.1% in MATH(5), while it drops from 44%
in CHESS-ISK(n), where each training sample is provided
with the coordinates of the non-empty cells, to less than 1%
in CHESS-BSV(n) where no such information is provided.

With regards to ABL, this phenomenon may be attributed
to the consideration of a single abductive proof per train-
ing sample instead of considering all the relevant abductive
proofs as NEUROLOG does. Considering a single abductive
proof may result in excluding the correct one; i.e., the one
corresponding to the true state of the sample input. Notice
that when the number of abductive proofs per training sam-
ple increases, the probability of excluding the right abduc-
tive proof from consideration increases as well, resulting in
very weak supervision signals, as seen in CHESS-BSV.

(C2) Compared to NEURASP and ABL, NEUROLOG is
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Figure 2: Empirical results for NEUROLOG, DEEPPROBLOG, and NEURASP. Solid lines and lightly-colored areas show,
respectively, the average behavior and the variability of the behavior across different repetitions.

less sensitive to the initialization of the neural module. For
example, the accuracy of NEURASP spans 15%–94% in
MATH(3), and that of ABL spans 57%–94% in APPLY2x2.

With regards to ABL, this sensitivity may be, again, at-
tributed to the consideration of a single abductive proof per
training sample. The learning process of ABL obscures and
abduces part of the neural predictions, so that the modified
predictions are consistent with the theory and also lead to the
entailment of the sample label (see the “Related Work” sec-
tion). Considering a single abductive proof has high chances
of missing the right one, and hence the training process ends
up being biased on the obscuring process, which, in turn,
depends upon the initial weights of the neural module.

(C3) The average training time of NEUROLOG may be
significantly less than that of the other systems. For example,
the average total training time is: 16m47s for NEUROLOG
in MATH(5) versus 22m48s for DEEPPROBLOG in the
simpler MATH(3) scenario; 42m93s for NEUROLOG in
PATH(6) versus DEEPPROBLOG and NEURASP timing out
in the simpler PATH(4) scenario; 16m for NEUROLOG in
CHESS-ISK(3) versus 125m for ABL in the same scenario.

With regards to ABL, its high training time may be at-
tributed to its trial-and-error use of abduction. At each train-
ing iteration, an optimization process obscures and performs
abduction multiple times over different subsets of the train-
ing samples. It holds, in particular, that although ABL com-
putes a single abductive proof per training sample, it may
perform abduction multiple times for the same sample.

With regards to NEURASP, its high training time may
be attributed to the grounding that NEURASP applies on
the theory; i.e., computing all the consequences that are se-
mantically entailed. Instead of computing all such forward-
reasoning consequences, abduction is driven by the sample
label, and evaluates (and grounds) only the relevant part
of the theory. It is worth noting, however, that NEURASP

achieves comparable accuracy to NEUROLOG in less train-
ing time in the ADD2x2 and DBA scenarios. Its training time
is also lower than that of NEUROLOG in the two MATH(n)
scenarios, however, for these cases its accuracy is very poor.

(C4) When compared to CHESS-BSV(3), the use of side-
information in CHESS-ISK(3) and CHESS-NGA(3) leads to
asymptotically faster training. The higher training time dur-
ing the earlier iterations, which is particularly pronounced in
the CHESS-NGA(3) scenario (see Figure 4), corresponds to
the phase where new abductive proofs are still being com-
puted. Recall that in CHESS-BSV(3) an abductive proof is
distinct for each label (i.e., mate, draw, safe), whereas in
CHESS-ISK(3) and CHESS-NGA(3) an abductive proof is
distinct for each combination of label and side-information.
Once the bulk of the distinct abductive proofs is computed
and cached, the training time per iteration drops. Unsurpris-
ingly, this initial phase is longer for the CHESS-NGA(3) sce-
nario, where the distinct abductive proofs are more, as they
depend on a more variable space of side-information.

The average end accuracy for the CHESS-?(3) scenarios
is comparable; see Table 1. The average interim accuracy
of CHESS-NGA(3) is, however, relatively lower during early
training, where the neural module predictions are still highly
noisy / random. Specifically, the average accuracy at 1000
iterations is: 73.9± 1.5 for CHESS-BSV(3), 73.4± 5.2 for
CHESS-ISK(3), 51.1± 7.9 for CHESS-NGA(3).

Scalability: Computing abductive proofs is intractable
(NP-hard to decide their existence; #P-hard to enumer-
ate/count them). Neural-guided abduction reduces this cost
in practice by excluding irrelevant proofs, but the problem
remains worst-case hard. However, since abductive proofs
are a function of only the sample label and side-information,
NEUROLOG can cache and reuse them across different train-
ing samples, showing that in practice our approach can be
more computationally efficient than prior art, e.g., ABL.
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Figure 3: Empirical results for ABL. Solid lines and lightly-colored areas show, respectively, the average behavior and the vari-
ability of the behavior across different repetitions. Dashed lines show the final average accuracy of NEUROLOG as reported in
Figure 2. Due to the different training regimes of ABL and NEUROLOG, an iteration-by-iteration comparison is not meaningful.

Figure 4: Test accuracy percentage (left) and training time in
minutes (right) versus number of iterations for CHESS-?(n).

Related Work
Although ABL shares with NEUROLOG the high-level idea
of using abduction, it does so by employing an ad hoc op-
timization procedure. In each training iteration over a given
set {〈xj , f(xj)〉}j of training samples, ABL first consid-
ers different subsets St of the training set and performs the
following steps: (i) it gets the neural predictions for each
element in St, (ii) it obscures a subset of the neural pre-
dictions (both within the same and across different training
samples), and (iii) it abduces the obscured predictions so that
the resulting predictions are consistent with the background
knowledge. Let S∗ be the largest St satisfying the theory af-
ter obscuring and abducing. For each si ∈ S∗, ABL trains
multiple times the neural component using obscured and ab-
duced neural predictions. As our empirical results show, the
optimization procedure applied to obscure and abduce the
neural predictions may be time-consuming and ineffective,
even though a single abductive proof is computed each time.

The second system which shares NEUROLOG’s objectives
is DEEPPROBLOG (Manhaeve et al. 2018), which works
by reducing the problem of learning and inference of a

neural-symbolic system to the problem of learning and in-
ference over a probabilistic logic program. The reduction
works by treating the outputs of the neural module as prob-
abilistic facts. The accuracy of DEEPPROBLOG is compa-
rable to that of NEUROLOG, but it supports fewer semantic
constructs (e.g., integrity constraints) and it requires signifi-
cantly more training time. NEURASP shares the same high-
level approach with DEEPPROBLOG, but reduces, instead,
to the more expressive probabilistic answer set programs
(ASP) (Yang, Ishay, and Lee 2020). As supported by our
empirical evidence, its performance may be lower than that
of NEUROLOG. Furthermore, using an ASP solver may be
computationally expensive, since it involves computing all
the consequences that are semantically entailed by the the-
ory. Instead, our training approach is goal-driven, since the
computation of the abductive feedback involves evaluating
only the part of the theory that relates to the training label.

Our work can be seen as an extension to (Xu et al. 2018),
where a given fixed propositional formula is used to define
a loss function based on weighted model counting, and this
loss function is used, in turn, to regulate the training of the
neural module. In contrast to (Xu et al. 2018), our work com-
putes a sample-specific formula to regulate the training of
the neural component based on the label of each sample.

Broader area of neural-symbolic integration: The work
in (Parisotto et al. 2017; Kalyan et al. 2018; Balog et al.
2017) uses ML to help perform faster and more data efficient
program induction, while saving from designing heuristics.
To tackle rule induction in the presence of noisy examples,
the work in (Evans and Grefenstette 2018) reduces induc-
tive logic programming to a problem of minimizing a dif-
ferentiable loss. Other frameworks that deal with rule induc-
tion under noisy data are Neural Logic Programming (Yang,
Yang, and Cohen 2017) and DRUM (Sadeghian et al. 2019).
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Neural Theorem Prover (Rocktäschel and Riedel 2017) is
an alternative to Prolog’s QA engine to support noisy theo-
ries. It proceeds by embedding predicates and constants into
a vector space and uses vector distance measures to com-
pare them. Neural Logic Machines (Dong et al. 2019) im-
plements rules inside a tensor network providing thus the
ability to reason uniformly over neural modules and logi-
cal theories. However, its semantics is not connected to any
logic semantics (e.g., Tarski, Sato, or fuzzy) and no soft or
hard constraints are imposed at inference time.

Conclusion
We have introduced a compositional framework for neural-
symbolic integration that utilizes abduction to support a uni-
form treatment of symbolic modules with theories beyond
any specific logic, or a declarative representation altogether.
Our empirical results have demonstrated not only the prac-
tical feasibility of this perspective, but also its superior per-
formance over state-of-the-art approaches in terms of cross-
domain applicability, testing accuracy, and training speed.

Two are the key directions for future work: (i) further con-
sideration of the use of non-logic or non-declarative theories
for the symbolic module; (ii) explicit treatment of symbolic-
module learning, which, unlike program induction, will not
delegate the burden of learning to the neural module. With
respect to the latter direction, in particular, the considera-
tion of human-in-the-loop learning paradigms (such as the
Machine Coaching paradigm (Michael 2019), for example)
would present an interesting challenge for neural-symbolic
integration systems, bringing into focus the issue of learning
in a manner that is cognitively-compatible with humans.

Acknowledgements
This work was supported by funding from the EU’s Hori-
zon 2020 Research and Innovation Programme under grant
agreements no. 739578 and no. 823783, and from the Gov-
ernment of the Republic of Cyprus through the Directorate
General for European Programmes, Coordination, and De-
velopment. The authors would like to thank Antonis Kakas
for help with the abduction system used in this work.

References
Balog, M.; Gaunt, A. L.; Brockschmidt, M.; Nowozin, S.;
and Tarlow, D. 2017. DeepCoder: Learning to Write Pro-
grams. In ICLR.
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