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Abstract

We study a coordination game motivated by the formation
of Internet Exchange Points (IXPs), in which agents choose
which facilities to join. Joining the same facility as other
agents you communicate with has benefits, but different fa-
cilities have different costs for each agent. Thus, the players
wish to join the same facilities as their “friends”, but this is
balanced by them not wanting to pay the cost of joining a fa-
cility. We first show that the Price of Stability (PoS) of this
game is at most 2, and more generally there always exists
an α-approximate equilibrium with cost at most 2

α
of opti-

mum. We then focus on how better stable solutions can be
formed. If we allow agents to pay their neighbors to prevent
them from deviating (i.e., a player i voluntarily pays another
player j so that j joins the same facility), then we provide a
payment scheme which stabilizes the solution with minimum
social cost s∗, i.e. PoS is 1. In our main technical result, we
consider how much a central coordinator would have to pay
the players in order to form good stable solutions. Let ∆ de-
note the total amount of payments needed to be paid to the
players in order to stabilize s∗, i.e., these are payments that a
player would lose if they changed their strategy from the one
in s∗. We prove that there is a tradeoff between ∆ and the
Price of Stability: ∆

cost(s∗)
≤ 1− 2

5
PoS. Thus when there are

no good stable solutions, only a small amount of extra pay-
ment is needed to stabilize s∗; and when good stable solutions
already exist (i.e., PoS is small), then we should be happy
with those solutions instead. Finally, we consider the compu-
tational complexity of finding the optimum solution s∗, and
design a polynomial time O(log n) approximation algorithm
for this problem.

Introduction
We study a coordination game motivated by the formation of
Internet Exchange Points (IXPs). In this game, there are m
facilities available, and the players (modeling ISPs, or more
generally entities which wish to exchange traffic with each
other) choose which facilities to join. Joining a facility fk
has a cost for player i, which we call the “connection cost”
and denote by w(i, fk); this cost can be different for differ-
ent players and facilities. The reason why players are willing
to pay such costs is because joining the same facility as other
players is beneficial: a pair of players i and j which do not
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connect to the same facility must pay a cost w(i, j), but if
they share a facility then this cost disappears. Finally, the fa-
cilities themselves have costs c(fk) which must be paid for
by the players using these facilities. In summary, the players
wish to join the same facilities as their “friends” in order to
avoid paying the costsw(i, j), but this is counterbalanced by
them not wanting to pay the cost of joining a facility.

While our game is quite general, and models general
group formation (e.g., facilities are clubs or groups peo-
ple can join, and they wish to join the same clubs as their
friends), this game is specifically inspired by the formation
of IXPs in the Internet. IXPs are facilities where Internet
Service Providers (ISPs) can exchange Internet traffic with
high speed; a large fraction of total Internet traffic flows
through such hubs (Ager et al. 2012). If two ISPs join the
same IXP (and pay their cost for joining, which can depend
on many factors including the pricing scheme and the physi-
cal location(s) of the IXP), then they gain the benefit of mu-
tual high speed communication. If, however, two ISPs do not
use the same IXP, they must use alternate means of exchang-
ing traffic with each other (e.g., through their providers or
private peering), which we model by them incurring an ex-
tra cost w(i, j).

Coordination games have been widely studied in various
situations where agents gain utility by forming coalitions
with other agents. Even with the large amount of existing
work on both coordination games and group formation, the
questions we consider in this paper have not been studied
before for our game (see Related Work). Like many such
games, ours can be represented by a graph, in which each
node stands for a player and the edges between them have
weights representing the disconnection cost for them not be-
longing to the same facility. One major difference between
our game and much (although certainly not all) of existing
work is that the facilities (i.e., groups that players can join)
are not identical: their quality for a player i depends not
only on who else has joined the same group (as in hedo-
nic games (Aziz and Savani 2016)), but also on the specific
facility being joined, as quantified by the cost w(i, fk). This
immediately changes a lot about equilibrium structure: it is
no longer the case that everyone being in the same group is
an equilibrium solution which minimizes social cost; instead
equilibrium solutions involve players balancing their cost for
joining facilities with their cost of being separated from their
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friends. Other coordination games look at cases where only
a limited number of facilities can be open, or when players
have both “friends” and “enemies” (i.e.,w(i, j) can be nega-
tive); for the types of settings we consider, however, all facil-
ities can open as long as players are able to pay for them, and
there is never any additional cost from two players joining
the same facility (i.e., w(i, j) ≥ 0). Moreover, unlike most
other coordination games, we assume that facilities have a
cost which must be shared among the players using it, which
adds a significant layer of complexity to our results (for ex-
ample, our game is no longer a potential game (Monderer
and Shapley 1996)). For more details and comparison with
existing work, see the Related Work section.

Our Contributions
In this paper, we study a coordination game where a strategy
of an agent i is to choose a facility fk to join, by paying a
connection cost w(i, fk) (or to not join any facility). If two
agents i, j do not use the same facility, then both of them are
charged a disconnection cost w(i, j). In addition, there is a
fixed facility cost c(fk) for each open facility, which is split
among all agents using fk according to an arbitrary pricing
rule. An agent’s total social cost is the sum of its connection
cost, disconnection cost, and its share of the facility cost. An
assignment with a pricing rule is stable if it is budget bal-
anced (each c(fk) is fully paid by all agents using fk), and
no agent wants to switch facilities, i.e., it is a Nash equilib-
rium.

We study the quality of equilibrium solutions for this
game, as well as ways to create new stable solutions. We
first show that while the Price of Anarchy can be arbitrar-
ily high, the Price of Stability (PoS) is at most 2, and more
generally there always exists an α-approximate equilibrium
with cost at most 2

α of optimum. While we use potential ar-
guments to prove this (Tardos and Wexler 2007), note that
this game is not a potential game due to facility costs, and
thus new proof techniques are needed beyond simply defin-
ing a potential function. We then focus on how better sta-
ble solutions can be formed. If we allow agents to pay their
neighbors to prevent them from deviating (i.e., a player i
voluntarily pays another player j so that j joins the same
facility), then we provide a payment scheme which stabi-
lizes the solution with minimum social cost s∗, i.e. PoS is 1.
This is essentially what occurs, for example, in paid peering
(Shrimali and Kumar 2006), where two ISPs have different
incentives, and so one ISP pays the other in order to form
a peering connection. Finally, for our main result, we con-
sider how much a central coordinator would have to pay the
players in order to form good stable solutions, similarly to
(Anshelevich and Sekar 2014; Bachrach et al. 2009). Let ∆
denote the total amount of payments needed to be paid to the
players in order to stabilize s∗, i.e., these are payments that a
player would lose if they changed their strategy from the one
in s∗. We prove that there is a tradeoff between ∆ and the
Price of Stability: ∆

cost(s∗) ≤ 1 − 2
5PoS. Thus when there

are no good stable solutions, only a small amount of extra
payment is needed to stabilize s∗; and when good stable so-
lutions already exist (i.e., PoS is small), then we should be
happy with those solutions instead! This result is proven by

forming several solutions where specific subsets of players
perform their best responses, and then showing that when a
small amount of payment is not enough to stabilize s∗, then
at least one of these solutions is guaranteed to be better than
s∗, giving a contradiction. The difficulty here results from
the fact that letting any single player move to their best re-
sponse strategy from s∗ could still result in solutions worse
than s∗; to get a contradiction and form a solution strictly
better than s∗ requires changing the strategy of many play-
ers simultaneously.

The results above are for the setting where each agent can
join at most one facility at a time. In Section , we study the
setting where each agent is allowed to use multiple facilities
simultaneously. Many of the results above still hold for this
general mode, but only under the assumption that a player
can only switch their strategy by leaving one facility at a
time (although it is allowed to join multiple new facilities at
once).

Finally, we consider the computational complexity of
finding the optimum solution s∗. We prove that comput-
ing it is NP-Hard (and in fact inapproximable to better than
Ω(log n) unless P=NP), and design a polynomial time ap-
proximation algorithm that gives a min{m + 1, O(log n)}-
approximation to the optimal solution (with n being the
number of players, and m the number of facilities). We also
provide a simple 2-approximation algorithm when all facil-
ity costs are zero.

Related Work
There is a very large amount of work on both group for-
mation and coordination games, which is too large to sur-
vey here. Hedonic games (Aziz and Savani 2016; Dreze and
Greenberg 1980) is an important class of games related to
coordination games, in which the agents form groups, and
each agent’s utility only depends on the other agents in its
own group, but is not affected by how agents are arranged in
other groups. The objectives are usually maximizing social
welfare (Apt et al. 2014; Aziz et al. 2019; Aziz, Brandt, and
Seedig 2013; Brânzei and Larson 2009; Feldman, Lewin-
Eytan, and Naor 2015; Gairing and Savani 2010) or mini-
mizing social cost (Feldman, Lewin-Eytan, and Naor 2015).
Often, although not always, all players in a group have the
same cost or utility. In much of the work, the number of
groups is fixed (Bhalgat, Chakraborty, and Khanna 2010;
Feldman, Lewin-Eytan, and Naor 2015; Gourvès and Mon-
not 2010; Hoefer 2007). There are also various utility/cost
functions which have been studied, with the most common
one being that an agent’s utility is the total utility gained
from being with all other agents in its group. In fractional
hedonic games (Aziz et al. 2019; Bilò et al. 2014, 2015),
an agent’s utility is the average value of its presence to ev-
ery other agent in the group. More generally, there are also
other types of related group formation games, e.g., conges-
tion games (Christodoulou and Koutsoupias 2005; Rosen-
thal 1973) and profit sharing games (see (Augustine et al.
2011) and references therein), where an agent’s utility only
depends on the size of the group.

While coordination games can be considered a special
case of general hedonic games, usually coordination games
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involve players with some sort of graph structure, where for
a pair of players, being in the same group gives them both
a benefit if they are “friends” (or a penalty if they are “ene-
mies”). This is in contrast to many hedonic games, where all
players in a group have the same utility, or the total util-
ity of a group is somehow shared among its participants.
In most related work, either the objective functions of the
players are very different from ours (e.g., they depend on
the number of players in their group) (Apt et al. 2014; Aziz
et al. 2019; Brânzei and Larson 2011), or there are players
who specifically don’t want to be in the same group (“ene-
mies”, negative-weight edges) (Auletta et al. 2016b; Bhal-
gat, Chakraborty, and Khanna 2010; Feldman and Friedler
2015), or all groups are identical and the optimum solution
would correspond to either everyone joining the same group
or everyone forming a group on their own (Apt et al. 2014;
Aziz, Brandt, and Seedig 2013; Bhalgat, Chakraborty, and
Khanna 2010; Brânzei and Larson 2009; Feldman, Lewin-
Eytan, and Naor 2015; Feldman and Friedler 2015). In con-
trast, our work is motivated by settings where everyone
would like to form one group together to reduce the dis-
connection cost, but the complexity in the solution structure
comes from the players trading this desire off with their in-
dividual connection costs to (non-identical) facilities.

As discussed in the Introduction, general coordination
games include other settings in which an agent’s utility or
cost also depends on which group it joins (i.e., the groups
are not identical). Our work is more closely related to this
type of game. Using a graph representation, one can think
of such games as either Max-Uncut (maximize the weight
of edges to friends in your group) or Min-Cut (minimize the
weight of edges to friends not in your group) objectives, but
with additional utility or cost depending on which group a
player joins (which can be modeled using additional “an-
chor nodes” which must belong to a specific group, see e.g.,
(Anshelevich and Sekar 2014)). Work on such coordination
games with non-identical groups or facilities includes (An-
shelevich and Sekar 2014; Auletta et al. 2017; Chierichetti,
Kleinberg, and Oren 2013). In k-Coloring games (Carosi and
Monaco 2019) each agent gains utility by choosing a certain
color/facility, and loses utility by choosing the same color as
other adjacent agents, i.e., they are anti-coordination games
in which all agents want to be in different groups if possi-
ble (see references in (Carosi and Monaco 2019) for more
discussion of such games). In generalized Discrete Prefer-
ence Games (Auletta et al. 2016b), there are exactly two
groups, and the players could be friends or enemies. Similar
to hedonic games, the research in this area usually focused
on properties of stable solutions, e.g., (Auletta et al. 2016a)
studies how a single agent could affect the Nash Equilib-
ria converged from best responses, and (Auletta et al. 2017)
compares the prices of anarchy and stability under different
objective functions.

Perhaps the most related work to ours is (Chierichetti,
Kleinberg, and Oren 2013), as it is also a Min-Cut game
with non-identical groups. The main differences between
our work and (Chierichetti, Kleinberg, and Oren 2013) are:
it is assumed in (Chierichetti, Kleinberg, and Oren 2013)
that every agent has a favorite group, and an agent’s cost

depends on the distance between its current group and fa-
vorite group, and the distances to its neighbors. We do not
bind each agent’s cost with a group in our setting. Suppose
two agents have the same “favorite group” fk, which is the
group with the lowest connection cost to them; in our model
their cost to any other group f ′k could be very different.
(Chierichetti, Kleinberg, and Oren 2013) also focuses on the
setting where the group locations form a general metric or
tree metric, while we do not have such assumptions. Last but
not least, unlike in the works mentioned above, we assume
there is a facility cost to open each facility, with different fa-
cilities having different costs. We study stable states where
the facility cost is split among the agents using it, so each
facility is paid for, and each agent is stable with three types
of costs: connection cost to facility, its own share of facility
cost, and disconnection cost to its neighbors that use differ-
ent facilities. We also study the case that each agent can join
multiple groups. Finally, parts of our work are also closely
related to (Anshelevich and Sekar 2014), which shows that
an optimal solution could be stabilized by providing a rea-
sonable amount of payments to the agents, just as we do.
Their model, however, involves maximizing utility instead
of minimizing costs (which changes the equilibrium struc-
ture and all approximation factors like PoS and cost of sta-
bilization entirely), and does not include any facility costs.

Model and Preliminaries
We are given a set of m facilities F = {f1, f2, . . . , fm}
and a set of n agents (which we will also call “players”)
A = {1, 2, . . . , n}. An agent i can use any facility fk by
paying a connection costw(i, fk). A pair of agents (i, j) can
form connections through facility fk if they are both using
fk. However, if i and j do not use the same facility, then both
of them are charged a disconnection cost w(i, j). A facility
fk is open if and only if there exists an agent using it. There
is a fixed facility cost of c(fk) ≥ 0 for any open facility fk.

In much of this paper, we assume each agent uses at
most one facility, so the strategy set of an agent consists
of F together with the empty set. A facility assignment
s = {s1, s2, . . . , sn} denotes the facilities that each agent
uses: si denotes the facility that agent i uses in assignment
s. In the case that agent i does not use any facility, let si = ∅
and w(i, si) = 0. A pricing strategy γ = {γ1, γ2, . . . , γn}
assigns the price for using each facility fk to every agent i.
γi(fk) is a non-negative number that denotes agent i’s share
of the facility cost for using fk. (s, γ) is a state with assign-
ment s and pricing strategy γ. Note that agent i only pays its
share of the facility cost to fk if i uses fk, i.e., γi(fk) > 0
only if si = fk.

To summarize, the total cost of agent i in a state (s, γ) is
the sum of the following three parts:

1. If i uses facility fk, then there is a connection cost
w(i, fk) to i.

2. For each agent j that do not use si, i.e., si 6= sj , there is a
disconnection cost w(i, j) to both i and j. A special case
is when both i and j are not using any facility: although
si = ∅ and sj = ∅, we still say that si 6= sj in this case
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to make it consistent that the disconnection cost w(i, j) is
charged to both i and j if si 6= sj .

3. If i uses facility fk, then there is a facility cost γi(fk) to
i.

We denote the total cost of agent i as ci(s, γ). Summing
up the three types of cost mentioned above:

ci(s, γ) = w(i, si) +
∑

j|si 6=sj

w(i, j) + γi(si)

For convenience, we denote the cost of agent i without
facility cost as c̃i(s):

c̃i(s) = w(i, si) +
∑

j|si 6=sj

w(i, j)

In this paper, we are interested in the social cost of stable
states. The total social cost of a state (s, γ) equals the sum
of ci(s, γ), plus the total cost of all open facilities. For each
facility fk, the cost is c(fk) minus the sum of γi(fk) of each
agent using fk, i.e., c(fk)−

∑
i|si=fk γi(fk). In other words,

one can think of each facility as an agent with cost c(fk),
and with other agents paying it the prices γi(fk) for using
it. The sum of γi(fk) cancels out, and the total social cost
is actually the sum of c̃i(s) plus the sum of c(fk) of open
facilities:

c(s) =
∑

fk∈F ,fk is open

c(fk) +
∑
i∈A

(w(i, si) +
∑

j|si 6=sj

w(i, j))

=
∑

fk∈F ,fk is open

c(fk) +
∑
i∈A

w(i, si) +
∑
i∈A

∑
j|si 6=sj

w(i, j)

=
∑

fk∈F ,fk is open

c(fk) +
∑
i∈A

w(i, si) + 2
∑

(i,j)|si 6=sj

w(i, j)

We consider (i, j) as an unordered pair, therefore in∑
i∈A

∑
j|si 6=sj w(i, j), each unordered pair (i, j) that si 6=

sj is counted twice.
In this paper, we study the game in which each agent’s

goal is to minimize its total social cost, and the central co-
ordinator’s goal is to find a budget balanced and stable state
(s, γ) that (approximately) minimizes the total social cost. A
state is budget balanced if each facility fk is fully paid with
the facility cost c(fk), formally:

Definition 1. A state (s, γ) is budget balanced if for each
facility fk,

∑
i|si=fk γi(fk) = c(fk).

Before defining the stability of a state, we first define an
agent’s best response. Consider an agent i with current strat-
egy si = fk, and price γi(fk) for using this facility. The
agent may consider switching to a different facility f`, but
to correctly evaluate their cost after this switch, the agent
needs to know exactly how much they will pay after such
a switch. We assume that the agents know their connec-
tion costs w(i, f`) and their disconnection costs from other
agents, as well as which agents are using each facility. What
price γi(f`), however, should they anticipate after switching

to their new facility? If the prices depend on the set of agents
(or the number of agents) at the facility, then the price might
change from the current one being offered. But how reason-
able is it for agents to know the exact details of the pricing
schemes used by the facilities (which are modeling IXP’s or
other private enterprises which do not want to reveal their
pricing structures)?

To address these issues, in this paper, every agent assumes
it will be charged 0 facility cost for joining a new facility.
This allows us to not worry about what an agent may know
and what price they may anticipate after switching a facil-
ity. At the same time, this assumption does not limit our
results on stable solutions. This is because no matter what
price γi(f`) an agent may anticipate after switching to fa-
cility f`, anticipating a price of 0 instead will make it only
more likely to switch. Thus, no matter what the agents’ be-
liefs for prices after switching make sense for a particular
setting, a stable solution in our model will still be stable
no matter what beliefs about prices γi(f`) the agents hold,
or what price they will actually be charged after switching.
Thus our results about stable solutions are stronger: they
state that even if the agents are extremely optimistic and
believe they can switch to any facility without paying fa-
cility cost, then there still exist good stable solutions. If
they assumed costs higher than 0, then the set of stable so-
lutions would only increase. In other words, if an agent is
stable when assuming it will be charged 0 for joining other
facilities, then it would also be stable with a higher cost as
well.
Definition 2. Given a state (s, γ), s′i is agent i’s best re-
sponse if ∀s′′i 6= s′i, c̃i(s

′
i, s−i)+γ̂i(s

′
i) ≤ c̃i(s′′i , s−i), where

γ̂i(s
′
i) = γi(si) if s′i = si, and γ̂i(s′i) = 0 otherwise. We de-

note i’s best response at state (s, γ) as BRi(s, γ).
In the definition above, γ̂i is the pricing strategy that agent

i assumes would happen after its deviation. If agent i stays at
its current facility, then its share of the facility cost does not
change. But if i leaves its current facility and joins another
one, then it believes that it will be charged 0 facility cost for
joining the new facility.
Definition 3. Agent i is stable at state (s, γ) if for any strat-
egy s′i 6= si :

ci(s, γ) ≤ c̃i(s′i, s−i).
In other words, agent i is stable at (s, γ) if si is i’s best

response at (s, γ).
We define a state (s, γ) to be stable if it is budget bal-

anced, and every agent is stable. Intuitively, if a state is not
budget balanced, then a facility would not cover its operating
cost c(fk), and thus would not choose to remain open.
Definition 4. A state (s, γ) is stable if it is budget balanced,
and for each agent i, for any strategy s′i 6= si :

ci(s, γ) ≤ c̃i(s′i, s−i).
Denote an assignment with the minimum total social cost

as s∗. Our goal is to find stable states (s, γ) to approxi-
mate the minimum total social cost. We use Price of Stability
(PoS) to quantify the quality of a stable state. Given an in-
stance, suppose (ŝ, γ) is the stable state with the smallest to-
tal social cost, then PoS is the worst case ratio between c(ŝ)
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and c(s∗) for any instance. A related concept, Price of An-
archy (PoA) is defined as: suppose (ŝ, γ) is the stable state
with the largest total social cost, then PoA is the worst case
ratio between c(ŝ) and c(s∗) for any instance. So PoS shows
the quality of the best stable state, while PoA shows the qual-
ity of the worst stable state.

Pricing Strategies and Stability
Recall a state (s, γ) is stable if it is budget balanced, and
every agent i is stable. Suppose there is no other constraint
on the pricing strategy, then we ask the following question
in order to find a budget balanced state: in an assignment s,
how much facility cost can we charge an agent while keep-
ing it stable? To answer this question, we first define a spe-
cial type of best response: with an assignment s, let BRi(s)
denote i’s best response, given i is forced to stop using si.
In other words, it is the strategy s′i 6= si with the small-
est c̃i(s′i, s−i). Note that if BRi(s, γ) 6= si, i.e., if i wants
to switch from the state (s, γ), then BRi(s, γ) = BRi(s).
But in the case when i’s best response is to stay at its cur-
rent strategy, BRi(s) would denote the “next best choice”
if i is forced to stop using its current facility. Intuitively,
the “value” of facility si to agent i is how much i’s cost
would increase if i is forced to leave si and join the next
best choice BRi(s). If there are multiple strategies that all
satisfy the definition ofBRi(s), then we choose an arbitrary
one except in one case: we never choose a facility that is
closed in s as BRi(s). We can always do this because if
there exists such strategy s′i, such that s′i is a closed facility
in s, then compare c̃i(∅, s−i) with c̃i(s′i, s−i). The connec-
tion cost in c̃i(∅, s−i) is 0, and the disconnection cost is the
same as in c̃i(s′i, s−i), because i would be the only agent us-
ing s′i. So it must be c̃i(∅, s−i) ≤ c̃i(s

′
i, s−i), and we define

BRi(s) = ∅ in this case. For every agent i in assignment s,
defineQi(s) = c̃i(BRi(s), s−i)− c̃i(s); it is not hard to see
that agents would be willing to pay this price in order to use
facility si.

Note that some agents might be unstable even with 0 fa-
cility cost, so we also consider the case that agents need to
receive payments to be stable. Let ∆i denote a payment that
agent i receives if it does not deviate at state (s, γ), and de-
note the total payments as ∆ =

∑
i ∆i. In this paper, the de-

fault setting is that agents do not receive payments (∆i = 0),
but we do consider the cases that agents are allowed to be
paid by a central coordinator in Section or paid by their
neighbors in Section . Then we define the stability with pay-
ments as follows: a state (s, γ) with payments ∆ is stable if
it is budget balanced, and for each agent i, for any strategy
s′i 6= si :

ci(s, γ)−∆i ≤ c̃i(s′i, s−i)
The following lemma shows that agent i is sta-

ble if γi(si) − ∆i ≤ Qi(s). Proofs for all our re-
sults can be found in the full version of this paper at
https://arxiv.org/abs/2008.12235.
Lemma 1. Given any assignment s, pricing strategy γ, and
payments to agents ∆, agent i is stable if γi(si) − ∆i ≤
Qi(s).

Single Facility per Agent: Price of Stability
In the first part of this paper, we show our results in the set-
ting that each agent uses at most one facility.

Facility Cost c(fk) = 0 for Every fk
In this section, we provide simple baseline results for the
case that there is no facility cost. Set the pricing strategy to
be γi(fk) = 0 for any agent i and facility fk, so all solutions
are budget balanced. In this special case, for any agent i in
assignment s, we have ci(s, γ) = c̃i(s). A state s is stable if
for each agent i and strategy s′i, c̃i(s) ≤ c̃i(s′i, s−i).

Define potential function Φ̃(s) as:

Φ̃(s) =
∑
i∈A

w(i, si) +
∑

(i,j)|si 6=sj

w(i, j)

When an agent i switches its strategy from si to s′i, it is
easy to see that the change of i’s cost is captured exactly by
the change of Φ̃(s), so Φ̃(s) is an exact potential function.
We can prove the following theorem using standard potential
methods (Tardos and Wexler 2007).
Theorem 1. If ∀k, c(fk) = 0, then price of stability is at
most 2 and this bound is tight.
Theorem 2. The price of anarchy is unbounded in our set-
ting.

See the full version on arXiv for the proofs.

Price of Stability for Arbitrary Facility Costs
In this section, we consider the case that for each fk, the fa-
cility cost c(fk) is a fixed constant when fk is open, regard-
less of how many agents/connections are using fk. We sup-
pose there is a central coordinator to determine the pricing
strategy γ that is budget balanced, with no other constraint
on γ.

Note that Φ̃(s) is not a potential function in this setting
anymore, because agent i also considers the facility cost
γi(si) when it deviates to decrease ci(s). Thus, Φ̃(s) does
not always decrease when i deviates. We define another po-
tential function Φ(s):

Φ(s) =
∑

fk|fk is open

c(fk) +
∑
i∈A

w(i, si) +
∑

(i,j)|si 6=sj

w(i, j)

=
∑

fk|fk is open

c(fk) + Φ̃(s)

We cannot use the potential method (Tardos and Wexler
2007) to analyze the price of stability in our game directly;
in fact our game is not a potential game. For this new po-
tential function Φ(s), a player could still deviate to lower
its cost, while the potential increases. The following lemma,
however, shows that when a player deviates and decreases its
cost c̃i(s) (but not necessarily decreases cost ci(s, γ)), then
Φ(s) does in fact decrease.
Lemma 2. In an assignment s, if any agent i switches its
strategy to s′i such that c̃i(s′i, s−i) < c̃i(s) and s′i does not
contain any closed facility in s, then Φ(s′i, s−i) < Φ(s).
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Now we use the above potential to prove bounds on the
price of stability. While a single player changing its strat-
egy to decrease its cost might actually increase the value of
the potential Φ(s), we give a series of coalitional deviations
(i.e., groups of players switching strategies simultaneously)
so that the potential is guaranteed to decrease after each such
deviation, and so that the cost of the resulting stable solution
is not too large.

Theorem 3. The price of stability is at most 2, and this
bound is tight. In other words, there exists a stable state
(s, γ) with cost at most twice that of optimum.

Proof Sketch. We define a coalitional deviation process that
converges to a stable state, with Φ(s) decreasing in each step
of the process. Start with the optimal assignment s∗. If there
exists an agent i such that when i switches to a strategy s′i,
in which s′i does not contain any closed facility in s∗, then
c̃i(s

′
i, s
∗
−i) < c̃i(s

∗), then let agent i switch to s′i. Repeat
this process until no such agent exists. In other words, each
agent is now stable if they assume they are not charged any
facility cost. By Lemma 2, Φ(s) decreases during each step
in this process. Let s be the current state.

For each facility fk, consider the following two cases:
Case 1, c(fk) >

∑
i|si=fk Qi(s). In this case, we close fk

and let each agent i using fk in s switch its strategyBRi(s).
We can show that Φ(s) decreases after fk is closed (see the
full version).

Repeat the above two steps: let agents switch strategies
to reach a “stable” state s. Then if there exist a facility fk
that satisfies the condition in Case 1, we close fk and let
every agent i using it switch its strategy to BRi(s). Φ(s)
decreases in each step, so this process always converges to
such an assignment s. Then each open facility must satisfy
the following Case 2:

Case 2, c(fk) ≤
∑
i|si=fk Qi(s). In this case, we set

γi(fk) = Qi(s) for each agent i. We show that this state
(s, γ) is stable in the full version.

Because Φ(s) decreases in each step of the process, so
we can directly get the conclusion that PoS is at most 2 by
comparing Φ(s) with the total social cost.

The above price of stability result can be easily general-
ized to approximately stable solutions as well. We say a state
(s, γ) is α-approximate stable if it is budget balanced, and
no agent could deviate to lower its cost to 1

α of its current
cost:

Definition 5. A state (s, γ) is α-approximate stable if it is
budget balanced, and for each agent i, for any strategy s′i 6=
si :

ci(s, γ) ≤ α · c̃i(s′i, s−i)

Theorem 4. There always exists an α-approximate stable
state (ŝ, γ) such that c(ŝ)

c(s∗) ≤
2
α .

This theorem implies that, in particular, the optimum so-
lution s∗ is a 2-approximate stable state, i.e., no player can
improve their cost by more than a factor of 2 by switching
its facility.

Payments to Form Good Stable Solutions
Agents Paying Each Other: “Paid Peering”
In this section, we consider the case that agents can pay each
other to stabilize the optimal assignment. Formally, for a pair
(i, j) such that si = sj = fk, i can pay j up to w(i, j)
in order to discourage j from leaving facility fk and thus
disconnecting from i. Given the asymmetry of agent costs
(due to connection costs), it may make sense for agents to
give their “friends” extra incentives to connect with them
using a particular facility. Of course, agent i would never
voluntarily pay agent j more than j’s value to i, i.e., more
than w(i, j). Such payments make sense in general settings
of group formation, and make sense in our motivating IXP
setting as well: when two ISP’s decide to make a peering ar-
rangement to exchange traffic after joining a common IXP, it
is often the case that they make a paid peering contract (Shri-
mali and Kumar 2006), in which one ISP pays the other for
the traffic exchange, thus giving it extra incentive to remain
connected to their joint facility.

Let pij denote the payments that agent i pays its neighbor
j to discourage it from leaving the facility they share. pij ≥
0 means i pays j, and pij < 0 means i receives payment
from j. For any pair of agents (i, j), we have pji = −pij .
In this section, ∆i denotes the total payments that agent i
receives from its neighbors minus the total payments i pays
its neighbors. In other words, ∆i =

∑
j|si=sj pji. We abuse

the notation to allow ∆i to be negative, in which case i pays
more than receives from its neighbors. We consider stabil-
ity with payments defined in Section . It is easy to see that
Lemma 1 still holds with this modified definition of ∆i.

In the optimal assignment s∗ with a pricing strategy γ,
consider the stability of every agent using fk: by Lemma 1,
we know every agent i would be stable if γi(s∗i ) − ∆i ≤
Qi(s

∗). For a pair of agents (i, j) using fk in s∗, suppose
Qi(s

∗) ≥ 0, andQj(s∗) < 0, which means we can get some
payments from i (to pay the facility or its neighbors) while
keeping it stable, but j needs to be paid to become stable
at s∗. Thus, it makes sense for i to pay j to stop it from
deviating, but i would not pay more than w(i, j), which is
the maximum increase of i’s cost as a result of j’s deviation.
Theorem 5. If we allow agents to pay their neighbors, and i
pays j no more than w(i, j), then there exist γ and payments
of players to each other so that the resulting solution (s∗, γ)
is stable, with s∗ being the solution minimizing social cost.
In other words, the price of stability becomes 1.

Paying Agents Directly to Stabilize s∗
In this section, we take on the role of a central coordinator,
who is paying the agents in order to stabilize the optimum
solution s∗. We study the relationship between the Price of
Stability and the minimum total payments required to sta-
bilize s∗. We use the notation of ∆i and stability with pay-
ments defined in Section . ∆i represent the payment each
agent i receives from the central coordinator, and the total
payments are ∆ =

∑
i ∆i.

In our main technical result below, we show that the total
payment ∆ required to stabilize s∗ is only a fraction of the
social cost of the optimal solution. In fact, there is a tradeoff
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between ∆ and PoS: when PoS is large, e.g., PoS = 2, we
only need to pay 1

5c(s
∗) to stabilize s∗, which is a reason-

ably small fraction of c(s∗). Thus when PoS is small, there
already exist good stable solutions by definition of PoS, and
when PoS is large, only a relatively small amount of pay-
ments are necessary to stabilize s∗.

Theorem 6. For any instance, ∆
c(s∗) ≤ 1− 2

5PoS, where ∆

is the payment needed to stabilize s∗.

Proof Sketch. Let bi denote the strategy of agent i such
that c̃i(bi, s∗−i) is minimized. We first show that if there ex-
ists a state s, such that

∑
i∈A c̃i(bi, s

∗
−i) ≥ 4

5 Φ̃(s), then
∆

c(s∗) ≤ 1 − 1
τ PoS. Therefore, we only need to find an as-

signment s that satisfies this condition. We define several as-
signments s0, s1, s2 as candidates that may satisfy this con-
dition, and then prove that at least one of them must do so
for every instance. s0 is the assignment such that every agent
i switches its strategy to bi. Consider all the connection and
disconnection costs in the potential function Φ̃(s0). All the
connection costs are in the sum of c̃i(bi, s∗−i). As for the dis-
connection cost between any pair of agents (i, j), if it is in
Φ̃(s0), then it must be in c̃i(bi, s∗−i) or c̃j(bj , s∗−j) except for
one situation: if bi = s∗j , bj = s∗i , but bi 6= bj . This is the
only case in which the disconnection cost w(i, j) occurs in
Φ̃(s0), but not in either of c̃i(bi, s∗−i) or c̃j(bj , s∗−j). To han-
dle this case, we carefully decompose all the agents into two
sets A1 and A2, so that this special type of disconnection
costs only occur between agents belonging to different sets.
Then we define s1 and s2, each representing the assignment
such that only one set of agents switches their strategies to
bi, and the other set stays at s∗. Finally, we show by con-
tradiction that at least one of s0, s1, and s2 must satisfy the
condition above, which finishes the proof of the theorem.

Multiple Facilities per Agent
We also consider the case that each agent is allowed to use
multiple facilities. All of our results, with the exception of
Theorem 6, still hold in this setting, but with a constraint on
possible deviations: when agents switch their strategies, they
are only allowed to drop from at most one facility each time,
although they can join as many new facilities as they want to.
The proofs for agents being allowed to connect to multiple
facilities are almost the same as for the setting where they
can only connect to a single facility. We include the results
and proofs in the full version for completeness.

Note that, as is common when studying PoS and PoA, in
this paper we consider stable solutions with respect to uni-
lateral deviations, i.e., a single agent changing their strategy.
Looking at coalitional stability concepts is an interesting di-
rection of future research, although it is not difficult to prove
that Strong equilibrium (SE) may not exist for our setting,
while an approximate SE always does.

Computation of Optimum Solutions
In this section, we discuss approximation algorithms to cal-
culate the optimal assignment in polynomial time.

Theorem 7. If ∀k, c(fk) = 0 and each agent is only allowed
to use one facility, then computing the optimum solution s∗
is NP-Hard, but there exists a poly-time 2-approximation al-
gorithm.

When some facility costs are not 0, it is easy to show that
this problem is inapproximable to better than Ω(log n) un-
less P=NP (Hochbaum 1982). We now show that even if
each agent is allowed to use multiple facilities with non-
zero costs, there exist polynomial time algorithms that give
a min{O(log n),m+ 1}-approximation with high probabil-
ity. First note that the following is an LP-relaxation for our
problem (see the full version):

min
∑
i,k

w(i, fk)xik + 2
∑
(i,j)

w(i, j)xij +
∑
k

c(fk)xk

subject to xijk ≤ xik ∀(i, j), k
xijk ≤ xjk ∀(i, j), k
1− xij ≤

∑
k xijk∀(i, j)

xk ≥ xik ∀i, k
0 ≤ xij ≤ 1 ∀(i, j)
0 ≤ xijk ≤ 1 ∀(i, j), k
0 ≤ xk ≤ 1 ∀k

(1)

Algorithm 1. Let x∗ik, x
∗
ij , x

∗
k, x
∗
ijk denote the optimal solu-

tion to LP 1. For all x∗ik ≥ 1
m+1 , assign agent i to facility

k.

Theorem 8. Algorithm 1 gives a (m+ 1)-approximation to
the optimal solution s∗.

Algorithm 2. Let x∗ik, x
∗
ij , x

∗
k, x
∗
ijk denote the optimal solu-

tion to LP 1. For each facility fk, we apply correlated ran-
domized rounding on all x∗ik as follows: first order all agents
i by increasing order of x∗ik. Without loss of generality, sup-
pose x∗1k ≤ x∗2k ≤ · · · ≤ x∗nk. With probability x∗1k, assign
xik = 1 for all i. With probability x∗jk − x∗(j−1)k, assign
xik = 1 for all i ≥ j, and xik = 0 for all i < j. Finally,
with probability 1 − xnk, assign xik = 0 for all i. Repeat
this randomized rounding process 4 ln 10n times, then as-
sign agent i to facility k iff xik is assigned to 1 in at least
one of the 4 ln 10n runs.

Theorem 9. With high probability, the social cost of the so-
lution given by Algorithm 2 is no more than O(lnn) · c(s∗).
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