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Abstract

When allocating indivisible resources or tasks, an envy-free
allocation or equitable allocation may not exist. We present
a sufficient condition and an algorithm to achieve envy-
freeness and equitability when monetary transfers are al-
lowed. The approach works for any agent valuation functions
as long as they satisfy superadditivity. For the case of additive
valuations, we present a characterization of allocations that
can simultaneously be made equitable and envy-free via pay-
ments. We then present a distributed algorithm to compute an
approximately envy-free outcome for any class of valuations.

Introduction
A fundamental problem that often arises in several settings is
that of allocating items, resources, or tasks in a fair manner.
We consider scenarios where agents have valuations over
bundles of indivisible items. The goal is to compute allo-
cations of items that are fair. Multi-agent fair allocation has
received considerable interest in diverse research communi-
ties including computer science, economics, and mathemat-
ics. There are several notions of fairness that have been con-
sidered in the literature. Among them, two of the strongest
ones are envy-freeess (no agent should envy another agent’s
outcome) and equitability (every agent should get the same
utility). When monetary transfers are not allowed, there may
not exist any outcome that is envy-free or equitable. We con-
sider outcomes in which each agent gets a bundle of items
as well as a payment. Agents have quasi-linear utilities: their
utility for an outcome is the sum of the value they have for
their bundle of items, and the payment they get. The central
question we study is the following one: under what condi-
tions fairness can be achieved via monetary transfers?

Contributions We first present a sufficient condition
called transfer-stability for allocations that can lead to eq-
uitability and envy-freeness by monetary transfers. In con-
trast to most of the related results that focus on additive or
positive valuations, the statement holds for any superaddi-
tive valuations. The result holds if we replace the payment
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balance conditions with the condition that agents get subsi-
dies.

For the domain of additive valuations, we provide a com-
plete characterization of allocations that can lead to equi-
tability and envy-freeness by monetary transfers. We also
show that if valuations are not superadditive, simultaneously
achieving envy-freeness, equitability, and maximum welfare
can be impossible.

For superadditive valuations, we use our insights to de-
sign a polynomial-time distributed algorithm that takes as
input a given an allocation and computes an allocation and
payment such that the new allocation achieves as much so-
cial welfare as the given allocation and the outcome satisfies
envy-freeness, equitability, and payment balance. If the val-
uations need not be superadditive, we propose an alternative
distributed algorithm that computes an approximately envy-
free outcome. Finally, we discuss issues around computation
and bounds for minimal payments to achieve fairness.

Related Work
In the fair division literature (see, e.g. Aziz (2020); Bou-
veret, Chevaleyre, and Lang (2016); Brams and Taylor
(1996)), envy-freeness (Foley 1967) and equitability (Du-
bins and Spanier 1961; Freeman et al. 2019; Robertson and
Webb 1997) are well-known fairness properties. When the
items are divisible goods, an equitable and envy-free alloca-
tion is guaranteed to exist (Alon 1987). On the other hand,
when considering indivisible goods, neither of the two prop-
erties are guaranteed to be achievable.

In this paper, we consider achieving these properties with
the help of monetary transfers. Fair allocation with money
is well-established, especially in the context of room-rent
division. A feature of most of the work in the area is
that each agent has demand for exactly one item or room
(Aragones 1995; Gal et al. 2017; Klijn 2000; Maskin 1987;
Su 1999; Svensson 1983). More general models where envy-
freeness is achieved via side-payments have been considered
by Haake, Raith, and Su (2002), Meertens, Potters, and Rei-
jnierse (2002), and Pápai (2003). Chevaleyre, Endriss, and
Maudet (2010, 2017) consider the distributed allocation of
goods and focussed on convergence to envy-free and effi-
cient outcomes via trades among agents.
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More recently, there has been focus on computing envy-
free allocations when agents have demands for multiple
items and monetary transfers are allowed (Haake, Raith, and
Su 2002). In particular, Halpern and Shah (2019) popular-
ized the problem of finding allocations for which minimal
subsidies will result in envy-freeness. In followup work, the
computational aspects of minimal subsidies has been con-
sidered in further depth both from the perspectives of ex-
actly minimal subsidies (Brustle et al. 2020) and approxi-
mately minimal subsidies (Caragiannis and Ioannidis 2020).
In our model, the valuations can be positive or negative and
we also target equitability. In particular, we explore simple
distributed algorithms to achieve fairness properties. Even
when payments are not available, work on fairness with
money can be seen as quantifying the ‘distance from fair-
ness’ (Hosseini et al. 2020).

Setup
We consider the setting in which there is a set N of n agents
and a set T of m tasks or items . Each agent i ∈ N has a
valuation function vi : 2T → R. The function vi specifies
a value vi(A) for a given bundle A ⊆ T . The value can be
positive or negative. We assume that vi(∅) = 0 for all i ∈ N .

The valuation function of an agent i is supermodular if for
each A,B ⊆ T , vi(A ∪B) ≥ vi(A) + vi(B)− vi(A ∩B).
The valuation function of an agent i is additive if for each
A,B ⊆ T such that A∩B = ∅, the following holds: vi(A∪
B) = vi(A) + vi(B). The valuation function of an agent i
is superadditive if for each A,B ⊆ T such that A ∩ B =
∅, the following holds: vi(A ∪ B) ≥ vi(A) + vi(B). Note
that supermodularity and additivity are stronger conditions
than superadditivity. The valuation function of an agent i is
submodular if for each A,B ⊆ T , vi(A ∪ B) ≤ vi(A) +
vi(B)− vi(A ∩B).

An allocation X = (X1, . . . , Xn) is a partition of the
tasks into n bundles where Xi is the bundle allocated to
agent i. For an allocation X , the social welfare SW (X) is∑
i∈N vi(Xi).
An outcome is a pair consisting of the allocation and the

payments made by the agents. Formally, an outcome is a pair
(X, p) where X = (X1, . . . Xn) is the allocation that speci-
fies bundle Xi ⊆ T for agent i and p specifies the payment
pi made by agent i. If pi is negative, it means agent i gets
money. We say that p is balanced if

∑
i∈N pi = 0.

An agent i’s utility for a bundle-payment pair (Xj , pj)
is ui(Xj , pj) = vi(Xj) − pj . In other words, we assume
quasi-linear utilities. An outcome (X, p) is envy-free if for
all i, j ∈ N , it holds that ui(Xi, pi) ≥ ui(Xj , pj). An out-
come (X, p) is equitable if for all i, j ∈ N , ui(Xi, pi) =
uj(Xj , pj). An allocation X is envy-freeable if there exists
a payment function p such that (X, p) is envy-free. An allo-
cation X is equitable-convertible if there exists a payment
function p such that (X, p) is equitable. An allocation X is
EFEQ-convertible if there exists a payment function p such
that (X, p) is both equitable and envy-free.

For any given allocationX , the corresponding envy-graph
is a complete directed graph with vertex set N . For any pair
of agents i, j ∈ N the weight of arc (i, j) is the envy agent i

has for agent j under the allocation X: w(i, j) = vi(Xj)−
vi(Xi). For any path or cycle C in the graph, the weight of
the C is the sum of weights of arcs along C.

Sufficient and Necessary Conditions to
Achieve Fairness

We note that every allocation is trivially equitable-
convertible: each agent can be given money so that their util-
ity is equal to maxi∈N vi(Xi). On the other hand, not every
allocation is envy-freeable or EFEQ-convertible.

We say that an allocation is reassignment-stable, if it max-
imizes the social welfare across all reassignments of its bun-
dles to agents.

The following characterization is well-known for envy-
freeable allocations.
Theorem 1. The following conditions are equivalent for a
given allocation:

1. the allocation is envy-freeable
2. the allocation is reassignment-stable
3. for the allocation, there is no positive weight cycle in the

corresponding envy-graph

The theorem above also holds for any class of valua-
tions. It was stated by Halpern and Shah (2019) for pos-
itive additive valuations. The statement for any valuations
can be dervived by treating each bundle as a single item.
The equivalence between the first two conditions has been
proved previously (see e.g., Haake, Raith, and Su (2002)
and Mu’alem (2009)). Reassignment stability was referred
to as local-efficiency by Mu’alem (2009). Finally, the theo-
rem also follows from the insights of Klijn (2000).

We explore the conditions under which an allocation is
EFEQ-convertible. Firstly, we show that even for positive
additive utility, reassignment-stability is not sufficient to
simultaneously achieve envy-freeness and equitability via
payments.
Example 1. Even for positive additive valuations and a
given envy-freeable allocation, there may not exist any pay-
ments to the agents to achieve both envy-freeness and eq-
uitability. Consider an instance with the following additive
valuations. We consider an allocation X indicated with the
squares in which agent 1 gets a and 2 gets b.

a b

1 200 100
2 2 1

The allocation is envy-freeable because it is
reassignment-stable. We show that there exist no pay-
ments to achieve both envy-freeness and equitability
simultaneously. Without loss of generality suppose that
agents are paid money. The minimum amount needed
to obtain equitability is to pay 199 to agent 2. We can
maintain equitability by giving equal amounts of money
to both the agents. Note however, that the outcome will
continue violating envy-freeness. Agent 1 envies agent 2:
ui(X1, p1) = 200 + 0 < 100 + 199 = u1(X2, p2).
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The example above shows that reassignment-stability is
not sufficient to achieve envy-freeness and equitability. In
our quest to achieve both envy-freeness and equitability via
monetary transfers, we focus on allocations that are transfer-
stable. We say that an allocationX is transfer-stable if there
exist no i, j ∈ N such that vi(Xi∪Xj) > vi(Xi)+vj(Xj).
We note that under additive valuations, transfer-stability is
stronger than the reassignment-stability property.
Lemma 1. Under additive valuations, if an allocation is
transfer-stable, then it is reassignment-stable.

Proof. Suppose there exists a reassignment which increases
the total welfare. This means that the movement of at least
one bundle Xj to some agent i increases the social welfare:
vi(Xj) > vj(Xj). Since the valuations are additive, it fol-
lows that vi(Xi ∪ Xj) = vi(Xi) + vi(Xj) > vi(Xi) +
vj(Xj). Hence, the allocation is not transfer-stable.

Since transfer-stability is a stronger property than
reassignment-stability under additive valuations, a natural
question is whether it can be used to achieve stronger fair-
ness guarantees. We answer the question in the affirmative
in the following lemma. The lemma applies to the class of
superadditive valuations.
Lemma 2. For a transfer-stable allocationX , suppose each
agent imakes a payment equal to pi = vi(Xi)−SW (X)/n.
Then if agent valuations are superadditive, the outcome
(X, p) is envy-free and equitable.

Proof. We first want to prove envy-freeness: for all i, j ∈ N ,
it holds that ui(Xi, pi) ≥ ui(Xj , pj). By transfer-stability
of allocation X , vi(Xi) + vj(Xj) ≥ vi(Xi ∪Xj).

Since vi is superadditive, it follows that vi(Xi ∪ Xj) ≥
vi(Xi) + vi(Xj).

By combining the two inequalities above, we get

vi(Xi) + vj(Xj) ≥ vi(Xi) + vi(Xj)

⇐⇒ 0 ≥ vi(Xj)− vj(Xj)

⇐⇒ vi(Xi)− vi(Xi) + SW (X)/n

≥ vi(Xj)− vj(Xj) + SW (X)/n

⇐⇒ vi(Xi)− (vi(Xi)− SW (X)/n)

≥ vi(Xj)− (vj(Xj)− SW (X)/n)

⇐⇒ vi(Xi)− pi ≥ vi(Xj)− pj
⇐⇒ ui(Xi, pi) ≥ ui(Xj , pj).

The last inequality indicates that agent i is not envious of j
and hence (X, p) satisfies envy-freeness.

Next, we argue that the outcome (X, p) satisfies equi-
tability. Each agent i ∈ N gets utility vi(Xi) − pi =
vi(Xi)− (vi(Xi)− SW (X)/n) = SW (X)/n. Since each
agent has the same utility SW (X)/n, the outcome satisfies
equitability.

The payment function pi = vi(Xi) − SW (X)/n used
in the lemma is not new. It is referred to as the Knaster
payments (Knaster 1946) and is inspired by the idea that
each agent should get utility that is at least the proportion-
ality guarantee vi(T )/n that was popularized by Steinhaus
(1948).

i

Xi Xj

vi(Xi) vi(Xj)

j vj(Xi) vj(Xj)

<

Figure 1: Assumption that X is not transfer-stable in the
proof of Lemma 3

Remark 1. Note that the Knaster payments are balanced:∑
i∈N pi = 0.
In the literature on fair allocation with money, Knaster

payments have typically been applied on welfare maximiz-
ing allocations. Raith (2000) discusses them prominently in
the context of 2 agents and additive valuations. We show
that it is sufficient to consider superadditive valuations and
transfer-stable allocations for Knaster payments to achieve
both equitability and envy-freeness.

Our insights also show that any social welfare maximizing
allocation is EFEQ-convertible.
Corollary 1. For superadditive valuations, a social welfare
maximizing allocation is EFEQ-convertible.

Proof. A social welfare maximizing allocation is transfer-
stable. By Lemma 2, it is EFEQ-convertible.

In Lemma 2, we have shown that for additive valuations,
transfer-stability is a sufficient condition to simultaneously
achieve equitability and envy-freeness via payments. Next,
we show that transfer-stability is also a necessary condition.
Lemma 3. Under additive valuations, if an allocation is
EFEQ-convertible, then it is transfer-stable.

Proof. Suppose an allocation X is not transfer-stable. Then
there exist agents i, j ∈ N such that

vi(Xj) > vj(Xj)

The inequality is depicted in Figure 1.
If X is not envy-freeable, we are done so we assume that

X is envy-freeable. Then it must be that

vj(Xi) ≤ vi(Xi)

or we can swap the allocations of i and j to get a welfare
improvement which means that it is not envy-freeable which
implies that it is not EFEQ-convertible. The case is depicted
in Figure 2.

By Theorem 1, we know that X does not admit an envy-
cycle. Therefore, either vi(Xi) ≥ vi(Xj) or vj(Xj) ≥
vj(Xi).

We first consider the case vi(Xi) ≥ vi(Xj) which is de-
picted in Figure 3.

Since vi(Xj) > vj(Xj), it follows that

vi(Xi) ≥ vi(Xj) > vj(Xj).

Since i gets a strictly higher value than j from her al-
location, we need to pay money to agent j to ensure eq-
uitability. In particular, agent j is paid amount vi(Xi) −
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i

Xi Xj

vi(Xi) vi(Xj)

j vj(Xi) vj(Xj)

<≤
Figure 2: Assumption that X is envy-freeable but not
transfer-stable in the proof of Lemma 3

i

Xi Xj

vi(Xi) vi(Xj)

j vj(Xi) vj(Xj)

<≤

≥

Figure 3: A case in the proof of Lemma 3

vj(Xj). In that case agent i’s estimation of agent j’s out-
come is vi(Xj) + (vi(Xi) − vj(Xj)) where we know that
vi(Xi)− vj(Xj) > 0. Therefore agent i is envious of agent
j. Hence X is not EFEQ-convertible.

In Figure 3, note that vj(Xj) < vj(Xi). Next we con-
sider the other case vj(Xj) ≥ vj(Xi) which is depicted in
Figure 4.

We distinguish between two cases (a) vi(Xi) ≥ vi(Xj)
and (b) vi(Xi) < vi(Xj).

We already considered case (a) vi(Xi) ≥ vi(Xj) in the
previous analysis (Figure 3). Therefore, we now consider
case (b) and assume that vi(Xi) < vi(Xj) which is depicted
in Figure 5.

We distinguish between two further final cases: case
vi(Xi) ≥ vj(Xj) and the case vi(Xi) < vj(Xj).

1. vi(Xi) ≥ vj(Xj) which is depicted in Figure 6.
Since vi(Xi) < vi(Xj), agent 1 is envious of agent 2 and
needs money to remove the envy. On other hand, we know
that vi(Xj) > vj(Xj) so agent 2 needs more money to
achieve equitability. Both the properties cannot be met.

2. vi(Xi) < vj(Xj) which is depicted in Figure 7.
Since vi(Xi) < vi(Xj), agent 1 is envious of agent 2
and needs money to remove the envy. The exact amount
needed to remove envy is vi(Xj) − vi(Xi). But then the
new utility of agent i is vi(Xj) which we know (see Fig-
ure 7) is more than vj(Xj) so equitability is violated.

We have proved that in all the cases, if an allocation is not
transfer-stable, then it is not EFEQ-convertible.

The lemma above does not hold for the case of superad-
ditive valuations.
Example 2. Consider the following superadditive valua-
tions of two agents for subsets of three tasks.

i

Xi Xj

vi(Xi) vi(Xj)

j vj(Xi) vj(Xj)

<≤

≤

Figure 4: A case in the proof of Lemma 3

i

Xi Xj

vi(Xi) vi(Xj)

j vj(Xi) vj(Xj)

<≤

≤

<

Figure 5: A case in the proof of Lemma 3

{a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
1 0 0 0 100 0 0 120
2 0 0 10 0 10 10 10

Consider the allocation X in which X1 = {a, b} and X2 =
{c}. The allocation is not transfer-stable as transfering c
to 1 increases social welfare. Now suppose agent 2 gets 90
dollars and agent 1 gets or pays no money. In that case both
agents get utility 100 so equitability is satisfied. Agent 1 is
not envious of agent 2 as she has utility 90 for 2’s outcome.
Agent 2 is not envious of agent 1 as she has utility 0 for agent
1’s outcome.

Next, we obtain the following result: transfer-stability
characterizes EFEQ-convertible allocations.
Theorem 2. Under additive valuations, an allocation is
EFEQ-convertible if and only if it is transfer-stable.

Proof. The statement follows from Lemma 2 and Lemma 3.

Corollary 2. For additive valuations, there exists a O(n2)
algorithm to check whether a given allocation is EFEQ-
convertible.

Proof. By Theorem 2, we need to check whether the alloca-
tion is transfer-stable or not.

Our main result in this section is a sufficient condition
for allocations that lead to envy-freeness and equitabil-
ity. In particular, we show that for superadditive valutions,
welfare maximization, envy-freeness, and equitability can
be achieved simultaneously (Corollary 1). Next, we show
that if valuations are not superadditive, then the welfare-
maximizing and hence transfer-stable allocation may not be
EFEQ-convertible.
Lemma 4. If valuations are not superadditive, then the
welfare-maximizing and hence transfer-stable allocation
may not be EFEQ-convertible.
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i

Xi Xj

vi(Xi) vi(Xj)

j vj(Xi) vj(Xj)

<≤

≤

<

≥

Figure 6: A case in the proof of Lemma 3

i

Xi Xj

vi(Xi) vi(Xj)

j vj(Xi) vj(Xj)

<≤

≤

<

<

Figure 7: A case in the proof of Lemma 3

Proof. Consider the following instance with monotone val-
uations that are not superadditive.

{a} {b} {a, b}
1 99 10 100
2 1 2 2
3 1 1 1

The only two reassignment-stable (equivalently EF-
convertible) allocations are the following ones:

• X: X1 = {a}, X2 = {b}, X3 = ∅.
• Y : Y1 = {a, b}, Y2 = Y3 = ∅.

For allocation X (that is the unique welfare maximizing
allocation), in order to ensure equitability, agent 2 needs to
get 97 more dollars than agent 1. However, in that case,
agent 1 is envious. Therefore the allocation is not EFEQ-
convertible.

Combining Lemma 4 with Lemma 2 we obtain the follow-
ing conclusion: superadditive valuations constitute a maxi-
mal class of valuations for which a welfare-maximizing al-
location is EFEQ-convertible. Lemma 4 raises the question
whether an EF and equitable outcome exists for any valua-
tion function. We use our insights from Lemma 2 to prove
that an EFEQ-covertible allocation exists for any valuations.
Theorem 3. For any valuations of agents, consider the al-
location X that gives T to an agent in argmaxi∈n vi(T ).
Suppose each agent i makes a payment equal to pi =
vi(Xi)− SW (X)/n. Then, the outcome (X, p) is envy-free
and equitable.

Proof. Suppose agent i∗ = argmaxi∈n vi(T ). Denote by
X the allocation in which T is given to i∗. We claim the
outcome (X, p) is equitable and EF. Each agent j ∈ N gets
utility SW (X)/n so equitability is satisfied. Agent i∗ is not

envious as she has utility SW (X)/n for each agent’s out-
come. Any agent j ∈ N \{i∗} is not envious of i as her util-
ity for i∗’s outcome is vj(T ) − n−1

n SW (X) ≤ 1
nSW (X).

Any agent j ∈ N \ {i∗} is not envious of k ∈ N \ {i∗}
because their personal outcomes are the same.

Although we have pointed out that an EF and equitable
outcome exists for any valuations, the argument relies on
bundling all the tasks together. The drawback of bundling
all tasks together is that it may give poor welfare guarantees.
Another drawback could be the bundle of all tasks may sim-
ply not be feasible because of size constraints on the bundle.
In the next section, we explore distributed algorithms that
circumvent these drawbacks.

Algorithms to Achieve Fairness
In this section, we discuss distributed algorithms to compute
fair outcomes. These algorithms do not require centralized
operations to converge to desirable outcomes.

An Algorithm for Equitability and Envy-freeness
The following lemma shows that a greedy distributed ap-
proach can achieve a transfer-stable allocation.
Lemma 5. Suppose there exists an oracle that computes the
value of an agent for a bundle of tasks in time f(I). Then, for
any given allocation Y , a transfer-stable allocation X can
be computed in O(n4f(I)) such that SW (X) ≥ SW (Y ).

Proof. We initialize allocation X to Y . We take any pair
of agents i, j ∈ N and check if vi(Xi ∪ Xj) > vi(Xi) +
vj(Xj). This can be checked in time O(f(I)) for a pair of
agents and in O(f(I)n2) for all pairs of agents. If vi(Xi ∪
Xj) > vi(Xi)+vj(Xj), we give the allocation of j to agent
iwhich results in agent j getting an empty bundle. With each
such operation the total social welfare increases. Hence, the
process terminates. Next, we prove that the process termi-
nates in a polynomial number of steps.

With each operation, one of the two cases occurs. The first
case is that an additional agent j completely loses her bun-
dle. When a bundle goes to another agent who has a non-
empty bundle, then the number of agents who have an empty
bundle increases. Such operations can happen at most n− 1
times. Now suppose that the number of agents who have
an empty bundle does not increase. This is only possible
in the case that that agent i had an empty allocation who
gets the bundle Xj . Since each transfer of a bundle is wel-
fare improving, it cannot happen that a bundle is returned
to an agent i. Therefore such operations can happen at most
n− 1 times until the bundle will not move to any agent with
an empty allocation. Hence these operations can happen at
most n2 times until no more transfers are possible.

Lemma 2 and Lemma 5 give us a simple method to
achieve envy-freeness and equitability. The method is pre-
sented as Algorithm 1. We use the algorithm in the proof of
Lemma 5 to obtain a transfer-stable allocation. After that we
use the payment function specified in Lemma 2 to achieve
envy-freeness and equitability. Algorithm 1 leads to the fol-
lowing theorem.
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Algorithm 1 Envy-freeness and equitability with payments

Input: Allocation Y and valuations functions vi for each
agent i ∈ N .

Output: Allocation X and payment function p
1: Allocation X ←− Y
2: while there exists some i, j ∈ N s.t. vi(Xi ∪ Xj) >
vi(Xi) + vj(Xj) do

3: Xi ←− Xi ∪Xj ; Xj ←− ∅
4: end while
5: For each agent i, pi ←− vi(Xi)− SW (X)/n
6: return (X, p) where p is balanced

Theorem 4. Suppose agents have superadditive valuations.
Then for a given allocation Y , an allocationX and payment
function p can be computed in polynomial time such that

1. the outcome (X, p) is equitable and envy-free,
2. SW (X) ≥ SW (Y ), and
3. p is balanced.

Note that Theorem 4 helps us achieve envy-freeness and
equitability after starting from any given allocation Y . If
the initial allocation Y achieves a reasonable approximation
of maximum social welfare, then we can achieve fairness
properties in conjunction with good approximations of so-
cial welfare. Having said that, maximimizing social welfare
is notoriously hard for superadditive valuations.

Note that our result allows for some payments to be pos-
itive, i.e., some agents need to pay money. If we insist on
simply using subsidies from a third party to achieve envy-
freeness, then we can find the largest payment p′i made by
an agent i and give each agent an additional amount of
p′i so that agents only get money and do not need to give
money. To be precise, if the balanced payment is p, we can
get negative or zero payments p′ as follows: p′i is set to
pi −max{pj : j ∈ N, pj > 0}.

An Algorithm for Envy-freeness
Next, we present a distributed algorithm to compute an ap-
proximately envy-free outcome. For any ε ≥ 0, we say that
an outcome (X, p) is ε-envy-free if for all i, j ∈ N , it holds
that ui(Xi, pi) ≥ ui(Xj , pj)−ε. The algorithm is a general-
ization and adaptation of a brilliant algorithm by Bertsekas
(1988) for the maximum assignment problem, the problem
of computing a maximum weight matching. The algorithm
of Bertsekas (1988) assumes that the weights of the edges
are positive. Phrased in terms of agents and tasks, the out-
come of the algorithm computes an allocation in which each
agent gets one task and the goal is to maximize utilitarian
social welfare. In order to compute the maximum weight
matching, the algorithm takes an auction-based approach in
which the prices of tasks are computed and each agent gets
a task that gives it almost the maximum possible utility. Al-
though the algorithm of Bertsekas has important ramifica-
tions on issues around fair division, it has surprisingly not
caught attention in the fair division literature focussed on
envy-freeness with money (see e.g., Aragones (1995); Feld-

man, Gravin, and Lucier (2016); Klijn (2000); Su (1999);
Meertens, Potters, and Reijnierse (2002)).

We present an adaptation (Algorithm 2) of the original al-
gorithm of Bertsekas to compute an envy-free outcome in
a more general setting: (1) instead of allocating one task to
each agent, we allow any number of tasks and any kind of
allocations (2) agents can have any valuation over bundles
of tasks (3) the individual tasks do not have posted price and
we only consider agents making payments for their bundles.
Importantly, the algorithm runs in a distributed manner that
does not require centralized operations such as solving a lin-
ear program to compute the payments (Halpern and Shah
2019), or doing centralized operations on the assessment
matrix (Haake, Raith, and Su 2002) or examining the paths
and cycles of the underlying weighted envy-graph (Klijn
2000; Brustle et al. 2020).

Algorithm 2 Generalized Bertsekas Envy Swap (GBES) Al-
gorithm

Input: (N,T, v), ε > 0 and a given allocation Y
Output: Outcome (X, p) which is ε-EF.

1: X ←− Y
2: pi = 0 for all i ∈ N (each agent can start its payment

being zero)
3: while there exists an agent i ∈ N who is not ε-envy-

free: vi(Xi)− pi < maxj∈N (vi(Xj)− pj)− ε do
4: j∗ ←− argmaxj∈N (vi(Xj)− pj)
5: u1i ←− (vi(Xj∗) − pj∗); u2i ←−

maxj∈N\{j∗}(vi(Xj)− pj)
6: B ←− Xj∗ ; Xj∗ ←− Xi; Xi ←− B {Swap alloca-

tions of i and j∗}
7: c←− pi; pi ←− pj∗ + u1i − u2i + ε
8: pj∗ ←− c
9: end while

10: return X

Theorem 5. Suppose there exists an oracle that computes
the value of an agent for a bundle of tasks in time f(I).
Algorithm GBES takes an input allocation Y and ε >
0 and computes an outcome (X, p) and (X, p) is ε-EF.
The running time of the algorithm is O(n3f(I)Cε ) where
C = maxi,j∈N vi(Xj) − min(0,mini,j∈N vi(Xj)). If all
values are integers and ε < 1/n, then GBES returns an
ε-EF outcome (X, p) where the returned allocation X is
reassignment-stable and SW (X) ≥ SW (Y ).

Proof. If an agent i gets a bundle B and makes payment pi,
we will view pi as the payment made to get B. In the al-
gorithm, if a bundle B = Xj∗ is the cause of the ε-envy
and hence a swap, we will refer to the bundle B as a target-
ted bundle. At the start of the while loop, ε-envy is checked
which takes time O(n2f(I)).

We note that once a bundle B is targeted and given from
one agent j∗ to some other agent i, then such a bundle re-
mains in the hands of some agent who is ε-EF. If each swap
involves a targetted new bundle, then we will reach a state in
n swaps such that each agent is now ε-EF.
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Another case is that the same bundles keep changing with-
out a new bundle being targetted for a swap by an agent.
Note however after at most |C|/ε targetted swaps of any
given bundle B, each agent will be at least as interested in a
bundle that has not yet been targetted (and hence for which
the price is zero). Hence after at most n|C|/ε swaps, a new
bundle is targetted. We have shown that the algorithm con-
verges to an allocation in at most n+ n|C|/ε swaps.

We now argue that each agent is ε-EF. This follows from
the fact that the algorithm only terminates once the while
loop terminates which only terminates once all the agents
are ε-EF.

Finally, the algorithm works in the same way as the one by
Bertsekas (1988), if we view each bundle as one meta-item
and we scale up the valuations by adding a large enough
constant to each value (to make valuations positive). For his
setting, Bertsekas (1988) proved that the total welfare of the
new allocation is at most nε less than the maximum wel-
fare among all reassignments of the same bundles. If the
valuations are integers and ε < 1/n, then the returned al-
location X is reassignment stable and hence SW (X) ≥
SW (Y ).

The payment computed in Algorithm 2 may not be bal-
anced. However we can modify the payments p to balanced
payments q as follows: qi = pi− 1

n

∑
j∈N pi. Note that uni-

form change in the payments of agents does not affect the
envy-freeness of the outcome.

The algorithm starts off with an initial allocation Y . We
can make sure Y satisfies welfare guarantees especially
when the valuation functions have additional structure. For
example, under submodular valuations, a greedy algorithm
can be used to obtain a 2-approximation of maximum wel-
fare (Lehmann, Lehmann, and Nisan 2006). We can com-
bine the result with our insights to derive the following state-
ment.
Theorem 6. If agents have integral submodular valuations,
there exists a pseudo polynomial-time algorithm to compute
an ε-envy-free outcome in which the allocation gives a 2-
approximation of the maximum welfare.

Discussion
In this paper, we focussed on envy-freeness and equitabil-
ity and presented a characterization of allocations that are
EFEQ-convertible. Figure 8 highlights some of the insights
from this paper and the paper of Halpern and Shah (2019).

When using payments to achieve fairness, one may want
to use the minimal exchange of money or subsidy to achieve
fairness. The problem has been explored by Halpern and
Shah (2019) and Brustle et al. (2020) when the goal is envy-
freeness. Suppose a given allocationX is EFEQ-convertible.
Then there is a linear-time algorithm to compute the mini-
mal payments to achieve both envy-freeness and equitabil-
ity. For EFEQ-convertible allocations, it is sufficient to focus
on achieving equitability. Any additional (uniform) payment
for all agents does not affect envy-freeness. Therefore, we
can give agents sufficient money to ensure that each agent
has utility equal to maxi∈N vi(Xi). Next, we consider the

EFEQ-convertible ⇐⇒

=⇒ =⇒

envy-freeable ⇐⇒

transfer-stable

reassignment-stable

=⇒

equitable-convertible ⇐⇒

=⇒

no restriction

Figure 8: Properties of allocations under additive valuations

problem in which we can choose a suitable allocation so as
to require minimal payments to acheive fairness. We can
derive the following statement. Computing the minimum
payments to simultaneously achieve envy-freeness and equi-
tability is strongly NP-hard. Unless P = NP, there exists no
deterministic polynomial-time algorithm that approximates
within any given positive factor the minimum payments to
simultaneously achieve envy-freeness and equitability. The
proof follows from the fact that checking whether there ex-
ists an envy-free allocation is NP-complete if the agents have
identical valuations.

In this paper, we focussed on two fairness concepts
namely envy-freeness and equitability. It will be interesting
to explore other desirable fairness properties such as envy-
freeness for mixed goods (Bei et al. 2020) and proportion-
ality (see e.g (Chevaleyre, Endriss, and Maudet 2017)). The
field of mechanism design and auction design with money
is largely focussed on mechanisms that maximize welfare or
revenue. A possible research direction is a deeper study of
how well fairness can be achieved by such mechanisms and
their variants.
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