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Abstract
In classic network security games, the defender distributes
defending resources to the nodes of the network, and the at-
tacker attacks a node, with the objective to maximize the dam-
age caused. Existing models assume that the attack at node u
causes damage only at u. However, in many real-world secu-
rity scenarios, the attack at a node u spreads to the neighbors
of u and can cause damage at multiple nodes, e.g., for the
outbreak of a virus. In this paper, we consider the network
defending problem against contagious attacks.
Existing works that study shared resources assume that the
resource allocated to a node can be shared or duplicated be-
tween neighboring nodes. However, in real world, sharing re-
source naturally leads to a decrease in defending power of the
source node, especially when defending against contagious
attacks. To this end, we study the model in which resources
allocated to a node can only be transferred to its neighboring
nodes, which we refer to as a reallocation process.
We show that this more general model is difficult in two as-
pects: (1) even for a fixed allocation of resources, we show
that computing the optimal reallocation is NP-hard; (2) for
the case when reallocation is not allowed, we show that com-
puting the optimal allocation (against contagious attack) is
also NP-hard. For positive results, we give a mixed integer
linear program formulation for the problem and a bi-criteria
approximation algorithm. Our experimental results demon-
strate that the allocation and reallocation strategies our al-
gorithm computes perform well in terms of minimizing the
damage due to contagious attacks.
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Introduction
In recent years, security games have attracted much re-
search attention within the artificial intelligence commu-
nity and have been widely adopted for the computation of
optimal allocation of security resources in many areas of
the field (Letchford, Conitzer, and Munagala 2009; Tambe
2012; Yin and Tambe 2012; Sinha et al. 2018). A consid-
erable portion of these works consider the security games
played within a network structure, i.e., the network security
games (Assimakopoulos 1987; Gan et al. 2017; Zhang et al.
2017; Schlenker et al. 2018). In a network security game,
there is an underlying graph, where each node of the graph
represents a target with a defending requirement and a value
to protect. The game is played between a defender who al-
locates defensive resources to the nodes of the graph and an
attacker who picks a node to attack, depending on how the
nodes are defended.

Many existing works consider the setting when the
allocated resource can be shared between neighboring
nodes (Yin et al. 2015). For example, Gan et al. (Gan, An,
and Vorobeychik 2015) considered a network security game
in which allocating one unit of resource to some target pro-
tects not only the target but also the neighboring targets. Li
et al. (Li, Tran-Thanh, and Wu 2020) studied the model in
which the defending power of each node u is determined
by the resource ru allocated to u, plus a linear function of
the resources allocated to its neighbors. These models are
mainly motivated by surveillance or patrolling applications,
in which when a node u shares resource with its neighbor,
we do not need to worry about the defending power of u.

However, for defending problems in which the attack is
contagious, it is necessary to take into account the decrease
in the defending power of node u, especially when u is at the
risk of being involved in the attack. Consider a contagious
attack, e.g., the spread of a virus, on a node v. Suppose the
attack spreads to the neighbors of v and can cause damage
at each of the nodes the attack spreads to, depending on how
well the node is defended. In this case, if we measure the
defending power of v by taking into account the resources
shared from its neighbor u, then naturally, we need to con-
sider the decrease in the defending power of u.

Ideally, a node u can only transfer (a fraction of) the re-
source it owns to its neighbor v, which increases the defend-
ing power of the receiver v but decreases its own defending

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5135



power. When defending against attacks without spreading
effects, this assumption is equivalent to being able to dupli-
cate resources between neighbor nodes, as we can always
transfer the maximum possible resources towards the node
under attack. However, when the attack can spread to neigh-
bors of the node under attack, this assumption demands a
stronger defending requirement. Specifically, the following
example shows that when resources can only be transferred
(instead of being duplicated), the total resource required to
obtain a good defending result can be much larger.

Example 1 Consider a star graph, with node u in the cen-
ter, and v1, v2, . . . , vn−1 being neighbors of u. Suppose each
node requires 1 unit of resource to defend himself. Suppose
node u is attacked and the attack spreads to all neighbors of
u. When resources can be duplicated, allocating one unit
of resource at node u guarantees that every node is suf-
ficiently defended, and thus no loss is incurred. However,
when resources can only be transferred, as long as the total
resources allocated are less than n units, there always exists
at least one insufficiently defended node.

In the paper, we consider the problem of defending
against contagious attack, in which the defending resources
can only be transferred between neighboring nodes. Specif-
ically, when the attacker attacks a node u in the network,
the attack spreads to neighbors of u and may cause damage
at multiple nodes. The defender decides an allocation strat-
egy of defending resources to nodes in the graph before the
attack happens, and is allowed to transfer some resources
between neighboring nodes (subject to some capacity con-
straints) when the attack happens. Our model is motivated by
real-world applications like defending against virus spread-
ing. In these applications, it is reasonable to assume that we
can transfer medical resources or doctors between neighbor-
ing cities or countries in order to minimize the damage when
the virus breaks out. Unfortunately, existing models fail to
capture such applications as most of them do not consider
the reallocation of defending resources.

Our Results
We study the problem of computing optimal allocations and
reallocations of defending resources. Since our main moti-
vation of the problem is defending against virus spreading
and, in real world, the allocation of defending resources is
usually public information, we focus only on pure strate-
gies, i.e., deterministic defending algorithms. We propose a
mathematical model that generalizes that of (Gan, An, and
Vorobeychik 2015; Li, Tran-Thanh, and Wu 2020), and as-
sume that (1) an attack spreads to a subset of nodes and may
cause damage at each of them; (2) defending resources can
be transferred between neighboring nodes, which we refer to
as a reallocation of resources. The objective is to minimize
the maximum possible damage due to an attack.

We show that this general model is difficult in two aspects.
We first show that even with a given allocation of resources
and a node that is attacked, computing the optimal reallo-
cation is NP-hard Then we show that if no reallocation is
allowed, the problem of computing the optimal allocation
strategy is also NP-hard.

Regarding positive results, we provide mixed integer lin-
ear programs (MILPs) to model the computation of alloca-
tion and reallocation strategies. We show that the optimal
solutions for the MILPs provide optimal allocation and real-
location strategies. Since solving an MILP is not guaranteed
to terminate in polynomial time, we also propose polyno-
mial time algorithms for special cases and approximation
algorithms. We give a polynomial time algorithm that de-
cides whether there exists a defending strategy in which no
loss incurs, and outputs one if it exists. Then we give a poly-
nomial time bi-criteria ( 1

1−ε ,
1
ε )-approximation algorithm,

for any ε ∈ (0, 1) Specifically, for ε = 0.5 we have a bi-
criteria (2, 2)-approximation. Moreover, we show that under
the Unique Game Conjecture (Khot and Regev 2008), there
does not exist (2− δ, 2− δ)-approximation, for any constant
δ > 0.

Finally, we extensively evaluate our algorithms on syn-
thetic and real-world datasets.

Other Related Work
As mentioned, there is a sequence of existing works in the
network security game domain that consider resource shar-
ing between nodes. Gan et al. (Gan, An, and Vorobeychik
2015; Gan et al. 2017) consider models in which allocat-
ing a unit of defending resource to a node can also protect
the neighbors of that node. Their models only study the bi-
nary version of resource allocation, i.e., ru ∈ {0, 1}. Yin et
al. (Yin et al. 2015) also study a model in which the resource
can be shared, and they assume sharing resources takes time.
However, these existing models does not consider the conta-
gious attacks or the resource reallocation.

There are also works that study the contagion in net-
work security games (Nguyen, Alpcan, and Basar 2009;
Bachrach, Draief, and Goyal 2013; Vorobeychik and Letch-
ford 2015; Acemoglu, Malekian, and Ozdaglar 2016; Lou,
Smith, and Vorobeychik 2017; Goyal and Vigier 2014;
Aspnes, Chang, and Yampolskiy 2006). Besides, Tsai et
al. (Tsai, Nguyen, and Tambe 2012) study a zero-sum two-
player influence blocking maximization game, in which the
attacker and the defender try to maximize their influence on
a network. However, these works do not model the problem
in terms of allocating defending resources to meet defend-
ing requirements and minimizing the loss due to attack, and
thus are incomparable to our model. There are other works
that study contagion of attack by assuming that an insuffi-
ciently protected node can affect the defending result of its
neighboring nodes (Chan, Ceyko, and Ortiz 2017; Li, Tran-
Thanh, and Wu 2020). There are also works that study game-
theoretic models of the security games (Kunreuther and Heal
2003; Johnson et al. 2010; Chan, Ceyko, and Ortiz 2012).

Model Description
We model the network as an undirected1 connected graph
G(V,E), where each node u ∈ V has a threshold θu that
represents the defending requirement, and a value αu that
represents the possible damage due to an attack at node u.

1While we assume the graph is undirected, it can be verified
that all our results extend straightforwardly to directed graphs.
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We use N(u) := {v : (u, v) ∈ E} to denote the set of
neighbors for node u ∈ V . We use Nk(u) to denote the set
of nodes at distance at most k from u ∈ V . By definition we
have N1(u) = {u} ∪ N(u). We use n and m to denote the
number of nodes and edges in the graph G, respectively.

Defending Resource and Defending Power
The defender has a total resource ofR that can be distributed
to nodes in V , where ru is the defending resource2 allocated
to node u, and

∑
u∈V ru = R. Each node u can transfer at

mostwuv ·ru units of defending resource to each of its neigh-
bor v, where wuv ∈ [0, 1] is the weight of edge (u, v), which
represents the efficiency (or willingness) when transferring
defending resource between u and v.
Definition 1 (Allocation Strategy) We use ru ≥ 0 to de-
note the resource allocated to node u. We use r = {ru}u∈V
to denote an allocation strategy.
Definition 2 (Reallocation Strategy) We use t(u, v) ≥ 0
to denote the resource u transfers to its neighbor v. In gen-
eral v can also send resource to node u (which is denoted by
t(v, u) ≥ 0). We use t = {t(u, v), t(v, u)}(u,v)∈E to denote
a reallocation strategy.

The fractions of resource transferred between u and v are
upper bounded by the edge weight as follows:

t(u, v) ≤ wuv · ru, t(v, u) ≤ wuv · rv.
That is, each node u can transfer at most wuv fraction of

the resource ru to its neighbor v. Additionally, we need to
guarantee that the total resources node u sends out is at most
the total resource it owns:∑

v∈N(u) t(u, v) ≤ ru.
Since the resources can be sent and received, the defend-

ing power of a node is not fixed. Instead, depending on the
attack, the defending power at each node can be adaptive by
deciding an appropriate reallocation strategy.
Definition 3 (Defending Power) The defending power of
node u is defined as the total resource node u owns after
the reallocation, which is given as follows:

pu = ru −
∑

v∈N(u)

t(u, v) +
∑

v∈N(u)

t(v, u).

We use p = {pu}u∈V to denote defending powers of nodes.
Depending on the reallocation, the defending power pu of

node u can take values in range [p̄u, p̂u], where
p̄u = max{1−

∑
v∈N(u) wuv, 0} · ru,

p̂u = ru +
∑
v∈N(u) wuv · rv.

Note that the allocation strategy r (which allocates the de-
fending resources) must be decided before the attack hap-
pens. In contrast, the defender can decide the reallocation
strategy depending on which node is attacked. Specifically,
the defender can define n reallocation strategies {tu}u∈V ,
one for each node when it is attacked.

Put differently, there are four sequential steps:
2Similar to (Li, Tran-Thanh, and Wu 2020), we assume the re-

source can be allocated continuously in our model.

(1) the algorithm decides an allocation strategy r, which al-
locates a total of R resources;

(2) the attacker picks a node u to attack;
(3) the algorithm decides a reallocation strategy tu to min-

imize the loss due to the attack. Note that at this point,
the allocation strategy is fixed, but the defending power
depends on the reallocation strategy.

(4) the loss due to the attack is evaluated.

Definition 4 (Defending Strategy) We refer to a solu-
tion for the defending problem as a defending strategy
(r, {tu}u∈V ), which consists of an allocation strategy r and
n reallocation strategies {tu}u∈V .

Next, we define the loss due to an attack. Let p =
{pu}u∈V be the defending powers of nodes. Suppose u is
attacked, the attack spreads to all nodes in Nk(u), where
k is a parameter that represents the level of contagiousness
of the attack. The loss due to the attack is the total damage
caused at nodes in Nk(u), where each node v ∈ Nk(u) suf-
fers from a damage of αv if pv < θv . If pv ≥ θv , then no
damage is caused at v.

Definition 5 (Defending Result) Given defending strategy
(r, {tu}u∈V ), let Loss(u) be the total damage when u is
attacked and the reallocation strategy tu is deployed. The
defending result is defined as the maximum loss due to an
attack, i.e., maxu∈V Loss(u).

The objective of the problem is to compute a defending
strategy with the minimum defending result. We use OPT
to denote the optimal (minimum) defending result. In the
remaining part of the paper, we use DCA (Defending against
Contagious Attack) to refer to the problem of computing the
defending strategy against contagious attack. Note that the
decision problem of verifying whether a defending strategy
has result at most some value is in NP. Given the defending
strategy, the verification can be done by computing Loss(u)
for every node u and taking the maximum, both of which
take polynomial time.

When k = 0, there is no spreading effect and we only
need to protect the node under attack by borrowing defend-
ing resources from its neighbors. Hence in this case we have
pu = p̂u if node u is attacked. Consequently, the prob-
lem degenerates to the single-threshold model of (Li, Tran-
Thanh, and Wu 2020), which can be solved in polynomial
time. However, in general (when k ≥ 1), when the attack
spreads to multiple nodes, the reallocation must be carefully
designed so as to protect multiple nodes, because when a
node transfers resource to its neighbors, its own defending
power decreases.

Optimal Response to an Attack
As a warm-up towards further analysis, in this section, we
first focus on the subproblem of computing optimal realloca-
tions. That is, given a fixed allocation strategy r = {ru}u∈V
and suppose node u is under attack, we compute the real-
location strategy tu with which Loss(u) is minimized. The
following example shows how an appropriate reallocation of
resources helps reduce the damage due to an attack.
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Example 2 Consider the graph given in Figure 1(a), and
node a is under attack. Assuming k = 1, the attack spreads
to N1(a) = {a, b, d, e}. Suppose (1) all edges have weight
0.5; (2) θa = 4, θb = θd = 2 and θe = 3; and (3) all nodes
have defending resource 2. Obviously, without any realloca-
tion, we suffer from a total loss of αa+αe since only nodes b
and d are sufficiently defended. However, if we reallocate the
resources as shown in Figure 1(b), then all nodes in N1(a)
are well defended, and no loss incurs.

�� �

�� �

(a)

�� �

�� �

1

1 1

1

1

1

(b)

Figure 1: Example of a reallocation strategy, where a di-
rected edge indicates a transfer of resource. For example, the
edge from b to a with value 1 indicates that node b transfers
t(b, a) = 1 unit of resource to node a.

However, in general, we cannot guarantee that there al-
ways exists a reallocation strategy under which all nodes
under attack are well defended. In this case, we need to
compute a reallocation strategy to minimize the total loss.
For example, we can choose to protect nodes u with larger
value αu while leaving some nodes v with smaller αv insuf-
ficiently defended. Unfortunately, we show that the problem
of computing the optimal reallocation strategy is NP-hard.
For space reasons, we move the proof of the following hard-
ness result to the full version of the paper.

Theorem 1 Unless P=NP, there does not exist any polyno-
mial time algorithm that, given an allocation strategy and a
node under attack, computes the optimal reallocation strat-
egy, for any k ≥ 1.

Next, we formulate the problem of computing the opti-
mal reallocation strategy as a Mixed Integer Linear Program
(MILP). Recall that we are given an allocation strategy r and
a node u that is attacked.

minimize
∑
v∈Nk(u)

(1− xv) · αv
subject to rv −

∑
z∈N(v) t(v, z)+

∑
z∈N(v) t(z, v)

≥ θv · xv, ∀v ∈ Nk(u) (1)
0 ≤ t(v, z) ≤ wvz · rv, ∀z, v ∈ V (2)∑

z∈N(v) t(v, z) ≤ rv, ∀v ∈ V (3)

xv ∈ {0, 1}, ∀v ∈ Nk(u).

For each node v ∈ Nk(u) we introduce an integer vari-
able xv ∈ {0, 1} that indicates whether pv ≥ θv . We intro-
duce fractional variables t(v, z), t(z, v) for each (v, z) ∈ E.
The objective of the MILP is the total loss due to the attack,
which is the sum of values αv for v ∈ Nk(u) that is not
well defended (xv = 0). Constraints (1) guarantee that if we
set xv = 1, then v should be well defended, i.e., pv ≥ θv .
Constraints (2) and (3) ensure that the transfers of resource
between neighboring nodes are feasible.

Note that {rv}v∈V are given and are not variables. The
optimal solution (x, t) for the MILP gives an optimal real-
location t that minimizes Loss(u), with the fixed allocation
r and node u that is attacked.

There are redundant variables that can be removed from
the MILP. Recall thatNk(u) are the nodes the attack spreads
to. For each v ∈ V \Nk(u), we have no defending require-
ments and thus do not need to transfer any resources towards
these nodes. Consequently, it is unnecessary to introduce
variable t(z, v), for any z ∈ N(v). In other words, we only
introduce the variable t(z, v) if v ∈ Nk(u). With this ob-
servation, we can reduce the total number of fractional vari-
ables from |E| to

∑
v∈Nk(u)

|N(v)|, which is much smaller
when k is small and the graph is sparse.

Note that the MILP can not be solved exactly in time poly-
nomial in |Nk(u)|. A natural idea is to relax the integer vari-
ables x to take values in [0, 1]. However, the following in-
stance shows that the integrality gap between the MILP and
its LP relaxation is unbounded.

Example 3 (Integrality Gap) Consider the trivial graph
with only one node u, where θu = αu = 1. Suppose
R = ru = 1 − ε, where ε > 0 is arbitrarily small. Obvi-
ously we have Loss(u) = 1. However, the optimal objective
of the LP relaxation is ε, by setting xu = 1− ε.

While the integrality gap of MILP and its LP relaxation
is unbounded, we still have two useful observations. First,
the optimal objective of the LP relaxation provides a lower
bound on the optimal objective of the MILP, which will be
utilized to do a pruning on the MILP in later sections. Sec-
ond, for a fixed {0, 1}-vector x ∈ {0, 1}Nk(u), the MILP be-
comes a feasibility LP, which can be solved efficiently. For
example, we use this idea to compute defending strategies
with defending result 0 in Section 4. We also extend this
idea in Section 4 to compute a polynomial time bi-criteria
approximation. The idea is to find a vector x ∈ {0, 1}Nk(u)

for which the induced LP is feasible, and the objective∑
v∈V (1− xv) · αv is as small as possible.

Computing the Defending Strategy
In this section, we consider the computation of defend-
ing strategies and extend the observations and ideas from
the previous section. Recall that the defending result is
maxu∈V Loss(u), and is uniquely determined by the de-
fending strategy (r, {tu}u∈V ). We have shown in Theo-
rem 1 that given a fixed allocation strategy and a node under
attack, computing the optimal reallocation strategy is NP-
hard. However, the hardness result does not necessarily im-
ply a hardness result for computing the allocation strategy. In
the following, we show that computing the allocation strat-
egy is indeed NP-hard.

Hardness
We first define a simple special case of the DCA problem
called isolated model, and then show that even for this spe-
cial case, the problem is NP-hard.

Definition 6 (Isolated Model) We refer to the DCA prob-
lem where wuv = 0 for all (u, v) ∈ E as the isolated model.
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Note that in the isolated model, the defending strategy
consists of only an allocation strategy since no reallocation
is allowed. When k = 0, the special case can be solved triv-
ially by greedily allocating resources to the nodes with max-
imum value, because the defending result is defined by the
not-well-defended node with maximum value.

However, in contrast to the case when k = 0, we show
that when k ≥ 1, the problem becomes NP-hard.

Theorem 2 Computing the optimal defending strategy is
NP-hard for k ≥ 1, even for the isolated model with identi-
cal thresholds.

Proof: We prove by a reduction from the (unweighted)
vertex cover (VC) problem, which is known to be NP-
hard (Chlebı́k and Chlebı́ková 2006). Given an instance
Gvc = (Vvc, Evc), the VC problem is to select a minimum
size subset S ⊆ Vvc such that each edge (u, v) ∈ Evc
has at least one endpoint in S. We construct an instance
G = (V,E) of the DCA problem in which wuv = 0 for
all edges (u, v) ∈ E and θu = 1 for all nodes u ∈ V as
follows. Let the instanceG of the DCA problem be obtained
by inserting a node for every edge (u, v) ∈ Evc, splitting the
edge. Specifically, we first initializeG = Gvc. Then for each
e = (u, v) ∈ Evc, we remove e, insert a new node ue and
two edges (u, ue), (ue, v) into E. We refer to these nodes
(that split edges) the splitting nodes, and the other nodes as
original nodes. Note that each splitting node has exactly two
neighbors, both of which are original nodes. The neighbors
of each original node are all splitting nodes. Note that we
have |V | = |Vvc| + |Evc| and |E| = 2|Evc|. Set αu = 0
for splitting nodes, and αu = 1 for original nodes. In other
words, only the original nodes are valuable and worth de-
fending. Let θu = 1 for all u ∈ V and k = 1.

Observe that since resource cannot be transferred, the op-
timal allocation strategy assigns resource either 0 or 1 to
each original node, and 0 to each splitting node. We call a
node u defended if ru = 1, undefended otherwise. Since
k = 1, when the attacker chooses to attack an original node
u, the total loss is 0 if u is defended, 1 otherwise. How-
ever, if the attacker attacks a splitting node, the total loss is
the number of undefended neighbors of the splitting nodes,
which can be 2. Suppose there exists an allocation strategy
using total resource R for which the defending result is at
most 1, then there must exist a vertex cover of size at most
R for Gvc. Specifically, the defended original nodes form a
vertex cover for Gvc (otherwise, there exists a splitting node
whose two neighbors are both undefended). Hence if there
exists a polynomial time algorithm for the DCA problem,
then we can use binary search on R ∈ {1, 2, . . . , |Vvc| − 1}
to identify the minimum R with which the defending result
is 1. Consequently, we can compute a minimum vertex cover
in polynomial time, which is a contradiction. �

Interestingly, we show that the reduction also implies a
hardness of approximation.

Corollary 1 For any c < 2, computing a c-approximation
defending strategy when k ≥ 1 is NP-hard, even for the
isolated model with identical thresholds.

Proof: In the above reduction, for any R < |Vvc|, the de-
fending result is either 1 or 2. Let OPT be the optimal de-
fending result and ALG be that of the c-approximation al-
gorithm, where c < 2. Note that both OPT and ALG take
values in {1, 2}. Observe that for OPT = 1, we must have
ALG = 1 since otherwise the approximation ratio is 2. Sim-
ilarly, for OPT = 2, we have ALG = 2. Hence any better-
than-2 approximation algorithm is equivalent to an exact al-
gorithm, and the corollary follows from Theorem 2. �

MILP Formulation
Nevertheless, we show that we can formulate the compu-
tation of the optimal defending strategy as an MILP as we
have done in Section 3. Similar as before, we introduce a set
of variables for the case when u is under attack: we intro-
duce an integer variable xuv ∈ {0, 1} for each v ∈ Nk(u),
which indicates whether pv ≥ θv when u is under attack;
we also introduce a variable tu(z, v) for each v ∈ Nk(u)
and z ∈ N(v), which represents the resource z sends to v.

Unlike before, where the allocation strategy is given,
here we introduce a variable ru to denote the resource al-
located to node u ∈ V . We also changed the objective
from minimizing Loss(u) to minimizing maxu∈V Loss(u),
by introducing a variable Loss that is at least Loss(u) =∑
v∈Nk(u)

(1−xuv )αv for all u ∈ V . The computation of the
defending strategy is then formulated as follows.

minimize Loss
subject to

∑
u∈V ru ≤ R,

rv −
∑
z∈N(v)∩Nk(u)

tu(v, z)+
∑
z∈N(v) t

u(z, v)

≥ θv · xuv , ∀u, v (4)
0 ≤ tu(v, z) ≤ wvz · rv, ∀u, v, z (5)∑

z∈N(v)∩Nk(u)
tu(v, z) ≤ rv, ∀u, v, z (6)∑

v∈Nk(u)
(1− xuv )αv ≤ Loss, ∀u (7)

xuv ∈ {0, 1}, ∀u, v.

Similar as before, the set of constraints (4) guarantees that
the defending power of a node v is at least θv when xuv = 1.
Constraints (5) and (6) guarantee feasibility of transfers of
resource. Constraints (7) ensure Loss = maxu∈V Loss(u)
in the optimal solution. As before, we only need to intro-
duce variable tu(z, v) if v ∈ Nk(u) and z ∈ N(v). We use
MILP(R) to denote the above program that uses total re-
source R. Note that in the program ru’s and tu(z, v)’s are
fractional variables while xuv ’s are integer variables. We de-
note by LP(R) the linear program relaxation when we re-
place each constraint xuv ∈ {0, 1} with xuv ∈ [0, 1]. As Ex-
ample 3 shows, the integrality gap of LP(R) and MILP(R)
is unbounded. Nevertheless, LP(R) provides a lower bound
for MILP(R), which can be used for a pruning on MILP.

Prunings. Suppose we have a lower bound l of the op-
timal defending result OPT, i.e., the optimal objective of
MILP(R). Then for every node u with

∑
v∈Nk(u)

αv ≤ l,
we can remove all variables with superscript u and all con-
straints containing such variables. The reason is, when u is
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attacked, the maximum loss (even if we do not allocate or
reallocation any resource) is at most

∑
v∈Nk(u)

αv . Given
OPT ≥ l, not defending nodes in Nk(u) does not increase
the objective of MILP(R). Note that the optimal solution of
LP(R) gives one such lower bound l. The closer the opti-
mal objectives of LP(R) and MILP(R) are, the better the
pruning reduces the size of MILP(R).

Existence of Perfect Defending Strategy
While the general problem of computing the optimal alloca-
tion strategy is NP-hard, we show in this section that decid-
ing whether there exists a defending strategy with defending
result 0 (which we refer to as a perfect defending strategy) is
polynomial time solvable. Moreover, if they exist, then we
can compute one in polynomial time.

Theorem 3 For every k ≥ 0, there exists a polynomial time
algorithm that computes a perfect defending strategy for the
DCA , if perfect defending strategies exist.

Proof: Recall that MILP(R) computes the optimal defend-
ing strategy. If there exist perfect defending strategies, then
we have Loss = 0 in the optimal solution for MILP(R).
Since Loss ≥

∑
v∈Nk(u)

(1− xuv )αv , we must have xuv = 1

for all integer variables in the optimal solution.
Therefore, by fixing xuv = 1 for all integer variables,

MILP(R) must be feasible. Observe that after fixing an as-
signment to the integer variables, MILP(R) becomes a fea-
sibility LP, which can be solved exactly in polynomial time.
Any feasible solution (r, {tu}u∈V ) for the LP provides a
perfect defending strategy, as claimed. �

Bi-criteria Approximation
As Example 3 indicates, it is impossible to obtain any
bounded approximation of the reallocation by rounding the
LP relaxation of MILP(R). However, we show that by aug-
menting the total resource we use, good approximation so-
lutions (in terms of defending results) can be obtained.

Definition 7 (Bi-criteria Approximation) We call a de-
fending strategy (γ, β)-approximate if it uses R total re-
source and its defending result is at most γ · OPT, where
OPT is the optimal defending result using R/β resource.

While it is not possible to obtain bounded (standard) ap-
proximations by rounding LP(R), we show that achieving
bi-criteria approximations is possible. We defer the proof of
the following theorem to the full version of the paper.

Theorem 4 For any ε ∈ (0, 1), we can compute a ( 1
1−ε ,

1
ε )-

approximate defending strategy in polynomial time. In par-
ticular, with ε = 0.5 we can compute a (2, 2)-approximate
solution in polynomial time.

We show that under the Unique Game Conjecture
(UGC) (Khot and Regev 2008), there do not exist strong
Pareto improvements over our bi-criteria (2, 2) approxima-
tion ratio. The proof is deferred to the full version of paper.

Lemma 1 Under UGC, there does not exist polynomial time
(2− δ, 2− δ)-approximate algorithm for the DCA problem,
for any constant δ > 0.

Implementation. In practice, we can enumerate different
ε ∈ (0, 1) to compute different defending strategies, and
then pick the one with the best defending result. In the fol-
lowing, we show that we might be able to improve the de-
fending result further by deploying a more aggressive round-
ing on x. Specifically, we first solve LP(ε · R) and get the
optimal solution. Then we pick some τ ∈ [0, ε], round each
x variable that is less than τ to 0, and those at least τ to 1.
With the fixed integer variables, we solve MILP(R), which
has become a feasibility LP. If the resulting LP is feasible,
then we obtain a defending strategy with defending result at
most 1

1−τ ·OPT, where OPT is the optimal defending result
of defending strategies using ε · R resources. Hence the re-
sulting solution is a ( 1

1−τ ,
1
ε )-approximate defending strat-

egy. For different problem instances, the minimum τ with
which the induced LP is feasible can be different. However,
the LP must be feasible when τ = ε. As we will show in
our experiments, in all datasets we consider, the defending
result after optimizing τ is much smaller than using τ = ε.

Experimental Evaluation
In this section, we evaluate the effectiveness and efficiency
of our algorithms on synthetic and real-world datasets. Our
datasets contain synthetic graphs, including random graphs
and power-law distribution graphs, which are well recog-
nized as the best in modeling random networks and social
networks. We also consider real-world networks, including
aviation networks and social networks, in order to demon-
strate the practical performance of our algorithms on defend-
ing against contagious attacks in the real world. The datasets
are generated as follows. For each dataset, n and m denote
the number of nodes and edges, respectively.

Rand Pow-S Pow-L USAir FB Twit

# Node 200 400 700 221 600 1000
# Edge 803 1579 2087 2166 4638 13476

Table 1: Number of nodes and edges of the datasets.

• Random: We generate the dataset with n = 200 and
p = 0.04 using the algorithm by (Batagelj and Brandes
2005), where there is an edge between each pair of nodes
independently with probability p. The thresholds θu’s and
values αu’s are chosen uniformly at random from integers
in [1, 10]. The edge weights wuv’s are uniformly chosen
from [0.3, 1].

• Power-law distribution graphs (Pow): We use the graph
generator by NetworkX (Hagberg, Schult, and Swart
2008) to generate the power-law distribution graphs,
where we set the parameters3 to be (400, 4, 0.5) for Pow-
S and (700, 3, 0.5) for Pow-L. The parameters θu’s, αu’s
and wuv’s are generated randomly as before (for dataset
Rand).

3For the details, please refer to https://networkx.github.io/
documentation/networkx-1.10/reference/generated/networkx.
generators.random graphs.powerlaw cluster graph.html.

5140



• USAir: We select the flight records in the US from years
2008 to 2010 to generate a directed graph where each
node represents a city. There is a directed edge from city
u to city v if the number of flights per week from u to
v is at least 25. We set the edge weight as the ratio be-
tween the flights-per-week of the edge and the maximum
flights-per-week value of all edges. We set θu and αu as
the population (in millions) of city u.

• Social networks: We use the network of Facebook
(undirected) and Twitter (directed) to generate our
datasets (McAuley and Leskovec 2012). The dataset FB
(resp. Twit) is extracted from the source network by pick-
ing a random node in the network and expand using
breath-first-search until the size of the dataset reaches
n = 600 (resp. n = 1000). We set θu = αu = wuv = 1
for all nodes and edges.

Experiment Environment. We perform our experiments
on an AWS Ubuntu 18.04 machine with 32 threads and
128GB RAM without GPU. We use Gurobi optimizer as our
solver for the LPs and MILPs.

We evaluate the effectiveness of our exact and approxima-
tion algorithms by comparing the results of defending strate-
gies under different settings and datasets. Throughout all the
experiments, we fix the contagiousness parameter k = 2.

Effectiveness of Reallocation. One of the main innova-
tions of our work is that we consider the reallocation of de-
fending resources between the nodes. The reallocation al-
lows the algorithm to react adaptively against the attack. In
particular, we compare the results of defending strategies
with and without reallocation as follows.

We first use the algorithm in Section 4 to compute for
each dataset the minimum total resource required in a perfect
defending strategy (a strategy with defending result 0). As
our experiment (in Table 2) shows, reallocation (see the row
withw 6= 0) always helps in reducing the requirement on the
defending resource, for all datasets. For example, for the first
dataset Rand, the resource required in a perfect defending
strategy is 40% less than the case when reallocation is not
allowed (see the row with w = 0).

Rand Pow-S Pow-L USAir FB Twit

w = 0 1037 1892 3406 341 600 1000
w 6= 0 587 1687 2320 340 524 623

Table 2: Resource required to achieve defending result 0.

Comparing Different Algorithms. We also evaluate the
effectiveness of our bi-criteria approximations from Sec-
tion 4, and compare it with the exact solution and the Greedy
algorithms. The results are shown in Table 3, where BA(ε)
stands for the approximation algorithm by rounding the op-
timal solution for LP(ε · R) and optimizing ε ∈ (0, 1);
BA(ε, τ) stands for the approximation algorithm that further
optimizes τ ∈ (0, ε] in the more aggressive rounding. We
use Greedy to refer to the algorithm that greedily allocates

resources to nodes with the maximum value (break tie ar-
bitrarily) and does not use reallocation; Greedy-R is based
on Greedy but uses greedy reallocation. Specifically, when
node u is attacked, for each node v ∈ Nk(u) in decreasing
order of their values, the algorithm transfers resource to v
until its defending power is at least its threshold, or when no
more resource can be transferred from its neighbors. In the
experiments, we fix R = 0.5 ·

∑
u∈V θu for all datasets.

Rand Pow-S Pow-L USAir FB Twit

Greedy 278 859 1168 178.7 188 302
Greedy-R 225 819 1025 178.7 186 281

BA(ε) 289 1134 1230 291.8 109 148
BA(ε, τ) 107 785 701 204.3 58 55

Exact 69 740 616 170.3 51 53

Table 3: Defending results by the bi-criteria approximations.

From Table 3, we observe that by deploying a more aggres-
sive rounding on the fractional solutions, the approximation
solutions by BA(ε, τ) outperform BA(ε) dramatically, and
are very close to the optimal solutions in all datasets. More-
over, in general, BA(ε, τ) achieves much smaller defend-
ing results when compared with both Greedy approaches in
most datasets. The only exception is the dataset USAir, in
which the values of nodes differ greatly. Thus, Greedy allo-
cation of resources achieves the almost optimal result. BA(ε)
does not perform well because the solution is obtained by a
very loose rounding on the solution of LP(ε · R). Observe
that with the help of reallocation, Greedy-R obtains advan-
tages over Greedy, which again demonstrates the critical role
of reallocation.

Efficiency Evaluation. Finally, we evaluate the efficiency
of our algorithms and summarize the running times in Ta-
ble 4, where No-Prune refers to the algorithm by solving the
MILP without using the pruning we mentioned in Section 4;
Pruning refers to the one with pruning; BA(ε, τ) refers to
our bi-criteria approximation algorithm.

Rand Pow-S Pow-L USAir FB Twit

No-Prune 4637 8180 36293 10686 32608 8441
Pruning 4259 3351 8227 2920 18929 2757
BA(ε, τ) 246 867 1508 416 2540 1294

Table 4: Running times of different algorithms (in seconds).

As we can see from the Table 4, the running times for
solving MILPs are obviously improved after pruning, which
shows the effectiveness of removing redundant variables. In
particular, for the dataset Pow-L, which admits the long tail
phenomenon, there is a 77% improvement on the running
time after pruning. Our approximation algorithm improves
the running time even further, e.g., is several times faster
than that of Pruning in all datasets, which demonstrates its
great efficiency in practical use.
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