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Abstract

We study the allocation of indivisible goods that form an
undirected graph and quantify the loss of fairness when we
impose a constraint that each agent must receive a connected
subgraph. Our focus is on the well-studied fairness notion of
maximin share fairness. We introduce the price of connec-
tivity to capture the largest gap between the graph-specific
and the unconstrained maximin share, and derive bounds on
this quantity which are tight for large classes of graphs in
the case of two agents and for paths and stars in the general
case. For instance, with two agents we show that for bicon-
nected graphs it is possible to obtain at least 3/4 of the max-
imin share with connected allocations, while for the remain-
ing graphs the guarantee is at most 1/2. Our work demon-
strates several applications of graph-theoretic tools and con-
cepts to fair division problems.

1 Introduction
We consider a classical resource allocation setting where a
set of goods are to be allocated among interested agents.
Our goal is to find an allocation that is fair to all agents.
This problem has been addressed in a large body of lit-
erature on fair division (Brams and Taylor 1996a; Moulin
2003), which has found applications ranging from divorce
settlement (Brams and Taylor 1996b) to credit assignment
(de Clippel, Moulin, and Tideman 2008). One of the most
prominent fairness notions in the literature is proportional-
ity. An allocation is said to be proportional if every agent
receives value at least 1/n of her value for the entire set of
goods, where n denotes the number of agents.

Our focus in this paper is on the setting where we allocate
indivisible goods. This pertains to the allocation of houses,
cars, artworks, electronics, and many other common items.
When goods are indivisible, a proportional allocation does
not always exist—consider two agents trying to divide a sin-
gle valuable good. As a result, relaxations of proportionality
have been studied. A relaxation that has received consider-
able attention in recent years is maximin share fairness—the
maximin share (MMS) of an agent is the largest value that the
agent can guarantee for herself if she is allowed to divide the
goods into n parts and always receives the worst part (Bud-
ish 2011). An allocation that gives every agent her maximin
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share—said to satisfy maximin share fairness—does not al-
ways exist for additive utilities when there are at least three
agents, but a constant multiplicative approximation can be
obtained (Kurokawa, Procaccia, and Wang 2018).

Perhaps the best-known fair division protocol is the cut-
and-choose protocol, which can be used to allocate a divisi-
ble good between two agents. In this protocol, the first agent
divides the good into two equal parts (this is possible be-
cause the good is divisible), and the second agent chooses
the part that she prefers. The cut-and-choose protocol has
a direct analogue in the indivisible goods setting: since an
equal partition may no longer exist, the first agent now di-
vides the goods into two parts that are as equal as possible
in her view. The resulting allocation is guaranteed to satisfy
maximin share fairness. However, this guarantee relies cru-
cially on the assumption that any allocation of the goods to
the two agents can be chosen—in reality, there are often con-
straints on the allocations that we desire. A common type of
constraints is captured by a model of Bouveret et al. (2017),
where the goods are vertices of a connected undirected graph
and each agent must be allocated a connected subgraph. For
instance, the goods could represent offices in a university
building that we wish to divide between research groups, and
it is desirable for each group to receive a connected set of of-
fices in order to facilitate communication within the group.
In this paper we therefore ask the following question:

To what extent do maximin share fairness guarantees
hold when connectivity constraints are imposed, and
how does the answer depend on the underlying graph?
Put differently, what is the price in terms of fairness
that we have to pay if we desire connectivity?

1.1 Our Contributions
In this paper, we study maximin share fairness for agents
with additive utilities. We define the price of connectivity
(PoC) of a graph to be the largest gap between the max-
imin share defined over all possible partitions and the graph
maximin share (G-MMS), which is defined over all partitions
that respect the connectivity constraints of the graph. For any
graph and any number of agents, it follows from the defini-
tions that if the PoC is α and one can give each agent β times
her G-MMS, then it is also possible to guarantee all agents a
β/α fraction of their MMS. Moreover, in cases where giving
every agent their full G-MMS is possible (i.e., β = 1), we
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Class of graphs n = 2 n ≥ 2

Paths
1 if m = 2

2 if m ≥ 3
(Thm. 3.1)

1 if m < n

m− n+ 1 if n ≤ m < 2n− 1

n if m ≥ 2n− 1

(Thm. 4.7)

Stars m− 1 (Thm. 3.1) m− n+ 1 (Thm. 4.3)
Vertex connectivity 1 k (Thm. 3.1, see caption) ≤ m− n+ 1 (Thm. 4.1)
Vertex connectivity 2 4

3 (Cor. 3.6) ≤ m− n+ 1 (Thm. 4.1)
Vertex connectivity ≥ 3 ≤ 4

3 (Thm. 3.4) ≤ m− n+ 1 (Thm. 4.1)

Table 1: Summary of our PoC bounds, where n and m denote the number of agents and goods, respectively. For n = 2 and
graphs with vertex connectivity 1 (which include all trees), the parameter k denotes the maximum number of components that
can result from deleting a single vertex from the graph.

observe in Section 2 that the resulting factor 1/α is tight—in
other words, the PoC is the reciprocal of the optimal MMS
approximation that can be achieved. Since it is known from
prior work that β = 1 for two agents and arbitrary graphs as
well as for any number of agents and trees, our PoC notion
precisely captures the best possible MMS guarantee in these
cases. Hence, determining the PoC, whose definition only
involves a single utility function, allows us to identify the
optimal MMS guarantee for agents with possibly different
utility functions.

With this relationship in hand, we proceed to determine
the PoC of various graphs; our results are summarized in
Table 1. In the two-agent case (Section 3), we show that the
PoC is related to the vertex connectivity of the graph, i.e., the
minimum number of vertices whose deletion disconnects the
graph. For graphs with connectivity exactly 1, including all
trees, we show that the PoC is equal to the maximum num-
ber of connected components that result from deleting one
vertex. As a consequence, the PoC is at least 2 for any graph
in this class. On the other hand, we show an upper bound of
4/3 for all graphs with connectivity at least 2—this bound is
tight for all graphs with connectivity exactly 2 and, perhaps
surprisingly, for certain graphs with connectivity up to 5. In
addition, we pose an intriguing conjecture that the PoC of
any graph with connectivity at least 2 is closely related to
its “linkedness”—the two-agent case would be completely
solved if the conjecture holds—and verify our conjecture
when the graph is a complete graph with an arbitrary match-
ing removed.

For any number of agents (Section 4), we establish a gen-
eral upper bound of m − n + 1 on the PoC (where m and
n denote the number of goods and agents, respectively), and
show that this implies the existence of a connected alloca-
tion that gives every agent at least a 1/(m− n+ 1) fraction
of her MMS with respect to any graph. We also derive the
exact PoC for paths and stars. Notably, in order to establish
the PoC for paths, we introduce a new relaxation of propor-
tionality that we call the indivisible proportional share (IPS)
property. This notion strengthens a number of relaxations of
proportionality in the literature while maintaining guaran-
teed existence, so we believe that it may be of independent
interest as well.

From a technical point of view, our work makes exten-
sive use of tools and concepts from graph theory, includ-
ing vertex connectivity, linkedness, ear decomposition, and
bipolar ordering. We believe that establishing these connec-
tions enriches the growing literature and lays the ground-
work for fruitful collaborations between researchers across
the two well-established fields. Furthermore, we remark that
with the exception of Theorem 3.11, all of our guarantees are
constructive. In particular, we exhibit polynomial-time algo-
rithms that produce allocations satisfying the guarantees.

1.2 Related Work

The paper most closely related to ours is the one by Bou-
veret et al. (2017) that we already mentioned. They showed
that for any number of agents with additive utilities, there al-
ways exists an allocation that gives every agent her maximin
share when the graph is a tree, but not necessarily when the
graph is a cycle. It is important to note that their maximin
share notion corresponds to our G-MMS notion and is de-
fined based on the graph, with only connected allocations
with respect to that graph taken into account in an agent’s
calculation. As an example of a consequence, even though
a cycle permits strictly more connected allocations than a
path, it offers less guarantee in terms of the G-MMS. Our
approach of considering approximations to the (complete-
graph) MMS allows us to directly compare the guarantees
that can be obtained for different graphs.

Besides Bouveret et al. (2017), a number of other au-
thors have recently studied fairness under connectivity con-
straints. Bilò et al. (2019) considered the same model with
respect to relaxations of another important fairness property,
envy-freeness. Lonc and Truszczynski (2018) investigated
maximin share fairness in the case of cycles, also using the
G-MMS notion, while Suksompong (2019) focused on paths
and provided approximations of envy-freeness, proportion-
ality, as well as another fairness notion called equitability.
Igarashi and Peters (2019) examined fairness in conjunc-
tion with the economic efficiency notion of Pareto optimal-
ity, and Bouveret, Cechlárová, and Lesca (2019) studied the
problem of chore division, in which all items yield disutility
to the agents.
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2 Preliminaries
Let N = {1, 2, . . . , n} denote the set of agents, and M =
{1, 2, . . . ,m} the set of goods. There is a bijection between
the goods inM and them vertices of a connected undirected
graphG; we will refer to goods and vertices interchangeably.
A bundle is a subset of goods, and an allocation is a parti-
tion ofM into n bundles (M1, . . . ,Mn) such that agent i re-
ceives bundle Mi. A bundle is called connected if the goods
in it form a connected subgraph of G, and an allocation or
a partition is connected if all of its bundles are connected.
We assume in this paper that allocations are required to be
connected.

Each agent i has a nonnegative utility ui(M ′) for each
bundle M ′ ⊆M , where we assume without loss of general-
ity that ui(∅) = 0 for all i. For a good g ∈ M , we will use
ui({g}) and ui(g) interchangeably. We assume that utilities
are additive, i.e., u(M ′) =

∑
g∈M ′ u(g) for all M ′ ⊆ M ;

this assumption is commonly made in the fair division litera-
ture, especially when studying maximin share fairness (Bou-
veret et al. 2017; Kurokawa, Procaccia, and Wang 2018;
Lonc and Truszczynski 2018; Gourvès and Monnot 2019).
An instance consists of the goods, their underlying graph,
the agents, and their utilities for the goods.

We are ready to define maximin share fairness.
Definition 2.1. Given a graphG, an additive utility function
u, and the number of agents n, the graph maximin share (G-
MMS) for G, u, n is defined as

G-MMS(G, u, n) := max
(M1,...,Mn)

min
i=1,...,n

u(Mi),

where the maximum is taken over all partitions
(M1, . . . ,Mn) that are connected with respect to G.
The maximin share (MMS) for u, n is defined as

MMS(u, n) := G-MMS(CG, u, n),

where CG denotes the complete graph over the goods.
When the parameters are clear from the context, we will re-
fer to the graph maximin share and the maximin share sim-
ply as G-MMS and MMS, respectively. A partition for which
the maximum is attained is called a G-MMS partition (resp.,
MMS partition).

It follows from the definition that

G-MMS(G, u, n) ≤ MMS(u, n) ≤ u(M)

n

for all G, u, n, and G-MMS(G1, u, n) ≤ G-MMS(G2, u, n)
if G1 is a subgraph of G2. Moreover, G-MMS(G, u, n) =
MMS(u, n) = 0 if m < n.

Next, we define the price of connectivity.
Definition 2.2. Given a graphG and the number of agents n,
the price of connectivity (PoC) of G for n agents is defined
as

sup
u

MMS(u, n)

G-MMS(G, u, n)
,

where the supremum is taken over all possible additive util-
ity functions u.1 We denote the PoC of a graph G for n
agents by PoC(G,n).

1We interpret 0
0

in this context to be equal to 1.

By definition of the PoC, we have

PoC(G,n) · G-MMS(G, u, n) ≥ MMS(u, n) (1)

for anyG, u, n, and the factor PoC(G,n) cannot be replaced
by any smaller factor. When G and n are clear from the con-
text, we will refer to PoC(G,n) simply as PoC. Note that
the PoC is always at least 1, and is exactly 1 for complete
graphs of any size. Moreover, the PoC is 1 if m ≤ n.

Suppose that for some graph G and number of agents n,
there always exists a connected allocation that gives each
agent at least β times her G-MMS. By (1), this allocation
also gives each agent at least β/PoC(G,n) times her MMS.
Prior work has established that β = 1 when n = 2 and
G is arbitrary (Lonc and Truszczynski 2018, Cor. 2), as
well as when G is a tree and n is arbitrary (Bouveret et al.
2017, Thm. 5.4). Hence, in these cases, we can guaran-
tee each agent at least 1/PoC(G,n) times her MMS. The
factor 1/PoC(G,n) is also the best possible. To see this,
consider n agents with the same utility function u. From
the definition of G-MMS, any connected allocation gives
some agent a value of at most G-MMS(G, u, n). By con-
sidering u such that G-MMS(G, u, n) is arbitrarily close to
MMS(u, n)/PoC(G,n), this agent receives arbitrarily close
to 1/PoC(G,n) times her MMS. To summarize, we have the
following proposition.
Proposition 2.3. Let n be any positive integer andG be any
graph. If n = 2 (and G is arbitrary), or if G is a tree (and n
is arbitrary), then there always exists a connected allocation
that gives each agent at least 1/PoC(G,n) times her MMS.
Moreover, the factor 1/PoC(G,n) is tight in both cases.

Proposition 2.3 implies that if there are two agents or G
is a tree, in order to determine the optimal MMS approxi-
mation for agents with possibly different utilities, it suffices
to determine the value PoC(G,n), which only concerns a
single utility function. The rest of this paper is devoted to
finding (or obtaining bounds on) the PoC in these cases.

3 Two Agents
We first focus on the setting of two agents. Before we pro-
ceed to our results, we remark here that this setting is fun-
damental in fair division. Indeed, a number of fair division
applications including divorce settlements, inheritance divi-
sion, and international border disputes often fall into this set-
ting, and numerous prominent works in the field deal exclu-
sively with the two-agent case (Brams and Fishburn 2000;
Brams, Kilgour, and Klamler 2014; Kilgour and Vetschera
2018).2 In addition, as we will see, under connectivity con-
straints the setting with two agents is already surprisingly
rich and gives rise to several challenging questions.

Recall that all graphs we consider are assumed to be con-
nected. The vertex connectivity (or simply connectivity) of a
graph G is the minimum number of vertices whose deletion
disconnects G. A graph with vertex connectivity at least k is
said to be k-connected. By definition, every connected graph
is 1-connected. A 2-connected graph is also called bicon-
nected. A bipolar ordering (also called bipolar numbering)

2See also (Plaut and Roughgarden 2020b) for further discussion
on the importance of the two-agent setting.
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of a graph is an ordering of its vertices such that every prefix
and every suffix of the ordering forms a connected subgraph.

We begin by establishing the PoC for all graphs with con-
nectivity 1.

Theorem 3.1. Let G be a graph with connectivity exactly 1,
and let k ≥ 2 be the maximum number of connected compo-
nents that can result from deleting a single vertex ofG. Then
PoC(G, 2) = k.

Proof. First, we show that the PoC of G is at least k. Let
v be a vertex of G whose deletion results in k components.
Consider a utility function with value k for v, value 1 for
an arbitrary vertex in each of the k components, and value
0 for all other vertices. The MMS is k. In any connected
bipartition, the part that does not contain v is a subset of one
of the k components, so this part has value at most 1. Hence
the PoC is at least k.

Next, we show that the PoC of G is at most k. Take an ar-
bitrary utility function u, and assume without loss of gener-
ality that u(M) = 1. Since MMS(u, 2) ≤ u(M)/2 = 1/2,
the desired claim follows if there is a connected bipartition
such that both parts have value at least 1/(2k). Assume that
no such bipartition exists.

Pick a spanning tree T of G, and let v be an arbitrary
vertex. The removal of v results in a number of subtrees of
T ; clearly, at most one of these subtrees can have value more
than 1/2. If such a subtree exists, we move from v towards
the adjacent vertex in that subtree and repeat the procedure
with the new center vertex. Note that we will never traverse
back an edge—otherwise there are two disjoint subtrees with
value more than 1/2 each, contradicting u(M) = 1. Since
the tree is finite, we eventually reach a vertex v such that
all subtrees T1, . . . , Tr resulting from the removal of v have
value at most 1/2 each.

Since Ti and T\Ti are both connected for every i, by our
earlier assumption, each of the subtrees T1, . . . , Tr has value
less than 1/(2k). Recall that in the original graph G, remov-
ing v can result in at most k components. This means that if
r > k, the r subtrees must be connected by some edges not
belonging to T . If subtrees Ti and Tj are connected by such
an edge, we can merge Ti and Tj into one component. Note
that Ti ∪ Tj has value less than 1/(2k) + 1/(2k) = 1/k ≤
1/2, so since Ti ∪ Tj and T\(Ti ∪ Tj) are both connected,
Ti ∪ Tj must again have value less than 1/(2k). Our proce-
dure can be repeated until the components can no longer be
merged, at which point we are left with at most k compo-
nents. Each of these components has value less than 1/(2k),
which implies that v has value more than 1−k/(2k) = 1/2.
In this case, a bipartition with v as one part is an MMS par-
tition, so MMS(u, 2) = 1 − u(v). On the other hand, at
least one of the (at most) k components has value at least
(1−u(v))/k, which is 1/k of the MMS. We can take a con-
nected bipartition with such a component as one part and
obtain the desired result.

We remark that the proof of Theorem 3.1 also yields a
polynomial-time algorithm for computing a bipartition such
that both parts have value at least 1/k of the MMS. To com-
pute an allocation between two agents such that both agents

receive 1/k of their MMS, we simply let the first agent com-
pute a desirable bipartition, and let the second agent choose
the part that she prefers. Since MMS(u, 2) ≤ u(M)/2, the
second agent is always satisfied.

Before we move on to results about graphs with higher
connectivity, we show the following lemma, which will help
simplify our subsequent proofs. The lemma implies that in
order to prove an upper bound on the PoC in the case of two
agents, it suffices to establish the bound for utility functions
such that in an MMS partition, the two parts are of equal
value. The proof of this lemma, along with all other omitted
proofs, can be found in the full version of this paper (Bei
et al. 2019).
Lemma 3.2. For n = 2 and any graph G, the PoC remains
the same if instead of taking the supremum in Definition 2.2

sup
u

MMS(u, 2)

G-MMS(G, u, 2)

over all utility functions u, we only take the supremum over
all utility functions u such that in any MMS partition ac-
cording to u, the two parts are of equal value.

Next, we consider biconnected graphs, i.e., graphs with
connectivity at least 2. We show that the PoC is at most 4/3
for all such graphs. For this result, we will use a property of
biconnected graphs which we state in the following propo-
sition. An open ear decomposition of a graph consists of a
cycle as the first ear and a sequence of paths as subsequent
ears such that in each path, the first and last vertices (which
must be different) belong to previous ears while the remain-
ing vertices do not.
Proposition 3.3 (Whitney (1932a,b)). In a biconnected
graph with at least three vertices, any two vertices belong
to a common cycle, and there exists an open ear decomposi-
tion. Moreover, we may choose any cycle in the graph as the
first ear.3

Theorem 3.4. Let G be a biconnected graph. Then
PoC(G, 2) ≤ 4/3.

Proof. The case m ≤ 2 is trivial since n = 2 and the
PoC is 1 in this case, so consider m ≥ 3. Take an arbi-
trary utility function u, and assume without loss of general-
ity that u(M) = 1. By Lemma 3.2, we may also assume that
MMS(u, 2) = 1/2. Call a good heavy if it has value strictly
more than 1/4. Since there can be at most one heavy good in
each part of an MMS partition, there are at most two heavy
goods in total. Pick goods g1 and g2 so that together they
include all of the heavy goods. By Proposition 3.3, there is a
cycle in G containing g1 and g2, and an open ear decompo-
sition with this cycle as the first ear.

We will construct a bipolar ordering of the vertices that
begins with g1 and ends with g2. Assume that the first ear
is a cycle with vertex order g1, h1, . . . , hi, g2, hi+1, . . . , hj .
We arrange these vertices as

g1, h1, h2, . . . , hi, hj , hj−1, . . . , hi+1, g2.

3There is also a linear-time algorithm for computing an open
ear decomposition with an arbitrary cycle as the first ear (Schmidt
2013).
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For each subsequent ear, suppose that the two vertices be-
longing to previous ears are h and h′, where h appears before
h′ in the current ordering. We insert the remaining vertices
on the path from h to h′ into the ordering directly after h,
following the same order as in the path. One can check (for
example, by induction on the number of ears) that the re-
sulting ordering is a bipolar ordering beginning with g1 and
ending with g2.

Consider first the case where max{u(g1), u(g2)} > 1/2;
assume without loss of generality that u(g1) > 1/2. In this
case, MMS(u, 2) = 1 − u(g1) < 1/2, contradicting the
assumption that MMS(u, 2) = 1/2.

Assume now that max{u(g1), u(g2)} ≤ 1/2, and recall
that u(g) ≤ 1/4 for all g 6∈ {g1, g2}. Since MMS(u, 2) =
1/2, it suffices to find a connected bipartition such that both
parts have value at least 3/8. Let S = {g1}, so u(S) ≤
1/2. We add one good at a time to S following the bipolar
ordering until u(S) ≥ 1/2. Since u(g2) ≤ 1/2, we stop (not
necessarily directly) before we add g2. Moreover, since each
good besides g1 and g2 has value at most 1/4, at some point
during this process we must have 3/8 ≤ u(S) ≤ 5/8. In the
bipartition with S as one part, both parts are connected and
have value at least 3/8, completing the proof.

Unlike for Theorem 3.1, the proof of Theorem 3.4 does
not directly lead to a polynomial-time algorithm for com-
puting an allocation such that both agents receive at least
3/4 of their MMS. The problematic step is when we ap-
ply Lemma 3.2, since computing the MMS value is NP-
hard by a straightforward reduction from the partition prob-
lem. Woeginger (1997) showed that a PTAS for the prob-
lem exists—using his PTAS, we can obtain a (3/4 − ε)-
approximation algorithm that runs in polynomial time for
any constant ε > 0. Nevertheless, we show in the full version
of this paper that by building upon the proof of Theorem 3.4,
we can also achieve a polynomial-time 3/4-approximation
algorithm (Bei et al. 2019).

In light of Theorems 3.1 and 3.4, it is tempting to be-
lieve that for graphs with connectivity 3 or higher, the PoC
is strictly less than 4/3. Perhaps surprisingly, this is not the
case: a counterexample is the wheel graph shown in Fig-
ure 1, which has connectivity 3. In the instance shown in the
figure, the MMS is 4 while the G-MMS is 3, so the PoC of
the graph is at least 4/3 (and by Theorem 3.4, exactly 4/3).
The key point of this example is that the graph cannot be
partitioned into two connected subgraphs in such a way that
one subgraph contains the vertices with value 1 and 3, while
the other subgraph contains the two vertices with value 2.
This observation allows us to generalize the counterexam-
ple. A graph is said to be 2-linked if for any two disjoint pairs
of vertices (a, b) and (c, d), there exist two vertex-disjoint
paths, one from a to b and the other from c to d.

Proposition 3.5. LetG be a graph that is not 2-linked. Then
PoC(G, 2) ≥ 4/3.

Proof. Suppose that G is not 2-linked, and let (a, b) and
(c, d) be disjoint pairs of vertices such that there do not exist
two disjoint paths, one from a to b and the other from c to
d. Consider a utility function u such that u(a) = u(b) = 2,

3

1

0

0

20

20

0

Figure 1: An instance showing that the PoC of a wheel graph
is at least 4/3.

u(c) = 3, u(d) = 1, and u(g) = 0 for every other ver-
tex g. We have MMS(u, 2) = 4. On the other hand, the
graph cannot be partitioned into two connected subgraphs
in such a way that one subgraph contains a and b while the
other subgraph contains c and d—indeed, such a partition
would give rise to two disjoint paths that cannot exist by our
assumption. This means that G-MMS(G, u, 2) ≤ 3. Hence
PoC(G, 2) ≥ 4/3.

Every graph with connectivity at most 2 is not 2-linked,4
and Figure 1 shows an example of a 3-connected graph
that also does not satisfy the property. In fact, Mészáros
(2015) constructed a 5-connected graph that still fails to be
2-linked!5 Combining these facts with Theorem 3.4 yields
the following corollaries:
Corollary 3.6. Let G be a graph with connectivity 2. We
have PoC(G, 2) = 4/3.
Corollary 3.7. There exists a graph G with connectivity 5
such that PoC(G, 2) = 4/3.

While we have not been able to precisely determine the
PoC for all graphs with connectivity 3 or above, we present a
conjecture that, if settled in the affirmative, would complete
the picture for the two-agent case. Before we can describe
the conjecture, we need the following generalization of 2-
linkedness (Mészáros 2015):
Definition 3.8. Given positive integers a, b, a graph G is
said to be (a, b)-linked if for any disjoint set of vertices
M1,M2 with |M1| = a and |M2| = b, there exist disjoint
connected subgraphs G1, G2 of G such that Mi is contained
in Gi for i = 1, 2.

For example, (2, 1)-linkedness is equivalent to biconnec-
tivity, while (2, 2)-linked graphs correspond to what we have
so far called 2-linked graphs. The new definition allows us
to extend the lower bound from Proposition 3.5.
Proposition 3.9. Let k be a positive integer, and let G be a
graph that is not (2, k)-linked. Then PoC(G, 2) ≥ 2k/(2k−
1).

4Indeed, given such a graph, let a, b be two vertices whose re-
moval disconnects the graph, and let c, d be vertices from distinct
components in the resulting graph. Then any path between c and d
must go through either a or b.

5On the other hand, a 6-connected graph is always 2-linked
(Jung 1970).
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Our conjecture is that for biconnected graphs, the PoC is
exactly captured by (2, k)-linkedness:

Conjecture 3.10. Let k ≥ 2 be an integer, and let G be a
graph that is (2, k − 1)-linked but not (2, k)-linked. Then
PoC(G, 2) = 2k/(2k − 1).

The case k = 2 of Conjecture 3.10 holds by Corol-
lary 3.6. We demonstrate next that the conjecture also holds
for ‘almost-complete’ graphs, i.e., for complete graphs with
a nonempty matching removed. These graphs have mini-
mum degree m− 2, where m is the number of vertices (i.e.,
goods). We show that the PoC of these graphs is always ex-
actly (2m − 4)/(2m − 5), with the only exception being
the graph L5 that results from removing two disjoint edges
from the complete graph K5 (Figure 2). The graph L5 is not
2-linked, so Proposition 3.5 (or alternatively, the utilities in
Figure 2) implies that its PoC is at least 4/3 instead of 6/5.
In fact, since the graph has connectivity 3, Theorem 3.4 tells
us that its PoC is exactly 4/3.
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Figure 2: Graph L5 and utilities showing that its PoC is at
least 4/3.

Theorem 3.11. LetG be a graph that results from removing
a nonempty matching from a complete graph with at least
three vertices, and assume that G is different from L5. Then
PoC(G, 2) = (2m− 4)/(2m− 5).

One can check that any such graph G is (2,m−3)-linked
but not (2,m − 2)-linked, so Theorem 3.11 confirms Con-
jecture 3.10 for this class of graphs.

4 Any Number of Agents
We move on to the general setting where the goods are di-
vided among an arbitrary number of agents. In this setting,
it is no longer true that the PoC alone captures the MMS
approximation that can be guaranteed to the agents—this is
evident in the case of a complete graph, where the PoC is
1 by definition, but an allocation that gives all agents their
full MMS does not always exist (Kurokawa, Procaccia, and
Wang 2018). At first glance, it may seem conceivable that
certain graphs do not admit any useful MMS approxima-
tion. However, we provide a non-trivial guarantee for arbi-
trary graphs that depends only on the number of agents and
goods and, in particular, not on the utilities (Theorem 4.2).
We begin by establishing a general upper bound on the PoC.

Theorem 4.1. For any graph G and any number of agents
n, we have PoC(G,n) ≤ m− n+ 1.

As we will see in Theorems 4.3 and 4.7, the bound m −
n + 1 is tight for sufficiently short paths and all stars. We
now give a maximin share guarantee for arbitrary graphs.

Theorem 4.2. For any graph G and any number of agents
n, there exists a connected allocation that gives each agent
at least 1/(m− n+ 1) of her MMS.

Next, we derive tight bounds on the PoC in the cases of
paths and stars for any number of agents. By Proposition 2.3,
this also yields the optimal MMS approximation for each of
these cases. We begin with stars.

Theorem 4.3. Let n ≥ 2 and let G be a star. Then

PoC(G,n) =

{
m− n+ 1 if m ≥ n;

1 if m < n.

Proof. The following simple fact about MMS will be useful.

Lemma 4.4. Let m ≥ n, and let M ′ ⊆ M be an arbitrary
set of at least m − n + 1 goods. For an agent with utility
function u, we have u(M ′) ≥ MMS(u, n).

Proof. Observe that in any partition of the vertices into n
parts, at least one of the parts is contained in M ′. In par-
ticular, this holds for an MMS partition. It follows that
MMS(u, n) ≤ u(M ′), as claimed.

We proceed to the proof of Theorem 4.3. If m < n the
PoC is 1, so assume that m ≥ n. We first show that the PoC
is at leastm−n+1. Consider a utility function u with value
m− n+ 1 for the center vertex and for n− 2 of the leaves,
and value 1 for each of the remaining m− n+ 1 leaves. We
have MMS(u, n) = m − n + 1. In any connected partition
into n parts, at least n − 1 parts contain a single leaf. This
means that at least one of these parts contains a single leaf
with value 1. Hence the PoC is at least m− n+ 1.

Next, we show that the PoC is at most m−n+ 1. Take an
arbitrary utility function u, let v∗ be the center vertex, and let
v1, v2, . . . , vn−1 be the leaves with the highest value where
u(v1) ≥ · · · ≥ u(vn−1). Consider a connected partition Π
with each of these n−1 vertices as a part, and the remaining
m− n+ 1 vertices as the last part.

Let A := M\{v∗, v1, . . . , vn−2}. By Lemma 4.4,
MMS(u, n) ≤ u(A). Since there are m − n + 1 vertices
in A and vn−1 is a vertex with the highest value, we have

u(vn−1) ≥ 1

m− n+ 1
· u(A) ≥ 1

m− n+ 1
·MMS(u, n).

It follows that u(vi) ≥ MMS(u, n)/(m − n + 1) for all
i = 1, 2, . . . , n − 1, so the first n − 1 parts of Π have value
at least MMS(u, n)/(m − n + 1) each. The last part of Π
is B := M\{v1, v2, . . . , vn−1}. By Lemma 4.4 again, we
have MMS(u, n) ≤ u(B). This means that all parts of Π
have value at least MMS(u, n)/(m−n+1), as desired.

To address the more involved case of paths, we introduce
an approximation of proportionality that can be of interest
even in the absence of connectivity considerations. Recall
that an allocation is said to be proportional if it gives ev-
ery agent at least her proportional share, which is defined as
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u(M)/n. Even though a proportional allocation always ex-
ists for divisible goods, as we explained in the introduction,
this is not the case for indivisible goods—our definition of
indivisible proportional share therefore adapts proportion-
ality to the setting of indivisible goods. In order to ensure a
nontrivial approximation, we will need to hypothetically re-
move up to n − 1 goods from the entire bundle. When the
number of goods is large, we will then be able to guarantee
a 1/n fraction of the remaining value; however, for smaller
numbers of goods, we can achieve a better approximation.

Definition 4.5. For positive integers n,m, define

IPS(n,m) =


1
n if m ≥ 2n− 1;

1
m−n+1 if n ≤ m < 2n− 1;

0 if m < n.

Given n agents andm goods, a bundleA is said to satisfy the
indivisible proportional share (IPS) property for an agent
with utility function u if there exists a (possibly empty) set
B ⊆M\A with |B| ≤ n− 1 such that

u(A) ≥ IPS(n,m) · u(M\B).

An allocation is said to satisfy the IPS property if every agent
receives a bundle that satisfies the IPS property. For brevity,
we will refer to a bundle or allocation that satisfies the IPS
property as being IPS.

We remark that IPS is a stronger property than
PROP∗(n−1) considered by Segal-Halevi and Suksompong
(2019), which corresponds to taking IPS(n,m) = 1/n for
m ≥ n and 0 for m < n. It is also stronger than PROP1
considered by Conitzer, Freeman, and Shah (2017) and Aziz
et al. (2019), as well as a proportionality relaxation studied
by Suksompong (2019). Despite its strength, we show that
an IPS allocation always exists. Moreover, we can obtain a
connected IPS allocation if the graph is a path.

Proposition 4.6. Let n ≥ 2 and letG be a path. There exists
a connected IPS allocation of the m goods to the n agents.

Proof. If m < n, each agent needs utility 0 in an IPS al-
location, so the claim holds trivially. Assume that m ≥ n.
Starting with an empty bundle, we process the goods along
the path (say, from left to right) and add them one at a time to
the current bundle until the bundle is IPS to at least one of the
agents. We then allocate the bundle to one such agent, and
repeat the procedure with the remaining goods and agents.
Any leftover goods are allocated to the agent who receives
the last bundle.

We claim that this procedure always results in an IPS al-
location. Notice from Definition 4.5 that if a bundle is IPS
for an agent, then so is any superset of the bundle. Hence it
suffices to show that after n − 1 bundles are allocated, the
last agent still finds the remaining bundle to be IPS. Assume
without loss of generality that the bundles are allocated to
agents 1, 2, . . . , n in this order, and let u be the utility func-
tion of agent n. The claim holds trivially if the empty bundle
is IPS for agent n, so assume that it is not. For 1 ≤ i ≤ n−1,
let the bundle allocated to agent i beMi = Xi∪Yi, where Yi
consists of the last good added to Mi (if Mi is nonempty),

and Xi consists of the remaining goods. Let X = ∪n−1i=1 Xi

and Y = ∪n−1i=1 Yi. In particular, |Y | ≤ n− 1.
Let Mn be the bundle allocated to agent n.

• Case 1:m ≥ 2n−1. By definition of the procedure, agent
n does not find any of the bundles X1, . . . , Xn−1 to be
IPS. In particular, noting that Y ⊆ M\Xi for each 1 ≤
i ≤ n − 1 and taking B = Y in Definition 4.5, we have
u(Xi) < IPS(n,m) · u(M\Y ) = u(M\Y )/n for all i.
Hence,

u(Mn) = u(M)−
n−1∑
i=1

u(Xi)−
n−1∑
i=1

u(Yi)

> u(M)− n− 1

n
· u(M\Y )− u(Y )

=
1

n
· u(M\Y ).

Since Y ⊆M\Mn, bundle Mn is IPS for agent n.
• Case 2: n ≤ m ≤ 2n − 1. This case involves a more

detailed analysis, which we defer to the full version of
this paper (Bei et al. 2019).

Proposition 4.6 allows us to establish the PoC for paths,
which we do next in Theorem 4.7. Conversely, the instances
that we use to show the upper bound on the PoC in Theo-
rem 4.7 also show that the factor IPS(n,m) in the existence
guarantee of Proposition 4.6 cannot be improved.
Theorem 4.7. Let n ≥ 2 and let G be a path. Then

PoC(G,n) =


n if m ≥ 2n− 1;

m− n+ 1 if n ≤ m < 2n− 1;

1 if m < n.

5 Conclusion
In this paper, we have studied the fair allocation of in-
divisible goods under connectivity constraints and investi-
gated maximin share fairness guarantees for various classes
of graphs. In particular, we established a link between the
graph-specific maximin share and the well-studied maximin
share through our price of connectivity (PoC) notion, which
allows us to directly compare the guarantees provided by
different graphs. We presented a number of bounds on the
PoC, several of which are tight, and left a tempting conjec-
ture that would settle the two-agent case if it holds.

As is the case in most of the maximin share fairness litera-
ture, our results rely on the assumption that the agents’ util-
ity functions are additive. Maximin share fairness beyond
additive utilities has been studied by Barman and Krishna
Murthy (2017) and Ghodsi et al. (2018); for example, they
showed that a constant approximation of the maximin share
can be achieved for any number of agents with submodular
utilities when the graph is complete. Since complementarity
and substitutability occur in practice, it would be interesting
to see how the graph-based approximations that we obtain
in this paper change as we enlarge the class of utility func-
tions considered. Indeed, as Plaut and Roughgarden (2020a)
noted, there is a rich landscape of problems to explore in
fair division with different classes of utility functions, and
the graphical setting is likely to be no exception.
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