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Abstract

The recent literature on fair Machine Learning manifests that
the choice of fairness constraints must be driven by the utilities
of the population. However, virtually all previous work makes
the unrealistic assumption that the exact underlying utilities
of the population (representing private tastes of individuals)
are known to the regulator that imposes the fairness constraint.
In this paper we initiate the discussion of the mismatch, the
unavoidable difference between the underlying utilities of
the population and the utilities assumed by the regulator. We
demonstrate that the mismatch can make the disadvantaged
protected group worse off after imposing the fairness con-
straint and provide tools to design fairness constraints that
help the disadvantaged group despite the mismatch.

1 Introduction
At first glance, algorithms may seem free of human biases
such as sexism or racism. However, in many situations, they
are not: the automated recruiting tool used by Amazon was
favoring men (Doleac and Hansen 2016); judges in the US
use the COMPAS algorithm to estimate the probability that
the defendant will re-offend while this algorithm was accused
of being biased against black people (Larson et al. 2016). See
O’Neill (2016) for many more examples. These challenges
call for imposing fairness constraints on algorithm design
and, in particular, on machine-learned classifiers, which are
the subjects of this paper. As a running example, consider a
bank that gives loans to potential borrowers and is regulated
by a policy-maker. The bank learns a decision rule (namely, a
classifier) from historical data to decide for whom to approve
or decline the loan to maximize its revenue that is increasing
with the number of repaid loans. As repeatedly observed
in the past, the resulting classifier may be biased against a
protected group (e.g., ethnic minority). Hence, the regulator
may wish to impose a fairness constraint on the bank.

Bias is deemed unjust. Beyond that, it affects the welfare
of protected groups, as borrowers have preferences towards
the different outcomes of the classification, captured by util-
ity functions.1 Consequently, the goal of imposing fairness
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1We use the term utility for the well-being of a single individual

constraints is to improve the welfare of the disadvantaged
group (the originally-discriminated one). A natural approach
by which the regulator can achieve this goal is by assuming a
utility function and requiring the bank’s classifier to equalize
the protected groups’ welfare. The two most popular fair-
ness constraints, Demographic Parity (Agarwal et al. 2018;
Dwork et al. 2012) and Equal Opportunity (Hardt et al. 2016)
(henceforth DP and EO, respectively) are special cases of this
approach for particular utility functions. For instance, DP is
recovered by assuming that every agent gets a utility of one
when receiving the loan, and zero otherwise.

The possibility that fairness may harm the well-being of
those it is designed to protect, i.e., that it can harm the disad-
vantaged group’s welfare, seems counter-intuitive. However,
it is well known both theoretically and empirically that the
most intuitive fairness constraint of Unawareness (which
forbids using the sensitive attribute in classification) can be
harmful (Corbett-Davies and Goel 2018; Dwork et al. 2018;
Ustun, Liu, and Parkes 2019; Doleac and Hansen 2016). For
example, Doleac and Hansen (2016) show that the “ban the
box” policy, adopted by the United States and preventing
employers from seeing applicants’ criminal background, de-
creased the welfare of discriminated minorities (the chances
of getting a job). Additionally, Liu et al. (2018) discovered
that DP and EO are not free of the same flaw if we consider
long-term consequences. They show that fairness constraints
may force the bank to give loans to those members of the dis-
advantaged group who, otherwise, would not have received
the loans due to the high probability of default. Therefore,
such unqualified borrowers are likely to have problems with
paying back the loan. This increased default ratio would
harm the disadvantaged group’s average credit score, thereby
harming its welfare in the long run.

1.1 Our Contribution
In this paper, we uncover another mechanism underlying
harmful fairness even in static settings:

Imposing a fairness constraint can make the disadvan-
taged group worse off if the fairness constraint and the
utilities of the population mismatch.

and welfare for the aggregated well-being of groups of individuals.
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Following the recent trends of fair ML literature, we assume
that agents may have different preferences over classification
outcomes, which are captured by utility functions. For exam-
ple, borrowers may differ in their value for getting the loan
depending on their access to alternative sources of money
and on the purpose of borrowing. With utilities in hand, we
can use social welfare to evaluate a group’s well-being for
any given classifier. To talk about the mismatch between util-
ities and fairness constraints, the latter has to be defined in
utilitarian terms. As we described above, fairness constraints
like DP and EO are naturally cast as equalizing some welfare
functions of the protected groups. However, the difficulty
in applying any welfare-based fairness constraint is that the
utilities must be known to the designer, while these utilities
represent individuals’ private tastes. Hence, even if domain
experts determine the utilities used in a fairness constraint
(henceforth, assumed utilities), they can only approximate the
actual utilities of the population (underlying utilities in what
follows). This discrepancy leads to the following conclusion.

In practice, the mismatch between the underlying util-
ities of the population and the utilities assumed by the
regulator is unavoidable.

Together with the observation that the mismatch can make
fairness harmful, this becomes a serious caution for regu-
lators that design fairness constraints for a certain industry,
e.g., banking. We complement this caution with a positive
message. Naturally, a small discrepancy between underlying
and assumed utilities must be innocuous. However, we char-
acterize a much more applicable and promising connection;
we show that

Fairness constraints help the disadvantaged group
whenever the utilities assumed by the regulator and
the underlying utilities of the population agree on which
group is disadvantaged.

Finally, we suggest additional ways to deal with the mismatch
if the underlying utilities can be approximated from data.

1.2 Related Work on Economic Ideas in Fair
Classification

Welfare-Equalizing, our approach to fairness, has a long his-
tory in normative economics (Pazner and Schmeidler 1978;
Roemer 1986) (where it is known under the name of egal-
itarianism) and political philosophy (Rawls 2009); it was
used for fair resource allocation without money transfers (Li
and Xue 2013), in the field of cooperative games (Dutta and
Ray 1989) and bargaining problems (Kalai and Smorodin-
sky 1975). In contrast to recent papers on the utilitarian ap-
proach to fair classification (Heidari et al. 2018; Heidari,
Gummadi, and Krause 2019), which suggest maximizing the
minimal welfare among the protected groups, we strengthen
this desideratum by making it a normative requirement: the
welfare must be equal among the subgroups defined by a
sensitive attribute. This normative condition allows one to
separate the fairness constraint (which may be imposed by a
regulator) from the selfish objective of the decision-maker (a
revenue-maximizing bank in our running example) and thus
allows one to analyze how decisions change after imposing

the fairness constraint. Another advantage of the Welfare-
Equalizing concept is the simple threshold structure of the
optimal fair classifier (similar to the one for Demographic
Parity or Equal Opportunity (Corbett-Davies et al. 2017)),
which makes it efficiently computable.

This work joins recent attempts (Rambachan et al. 2020a,b;
Hu and Chen 2020; Elzayn and Fish 2020; Hossain, Mladen-
ovic, and Shah 2020) to bring better economic understanding
to fairness in ML; we address some of them here and refer the
reader to Finocchiaro et al. (2020) for a comprehensive sur-
vey. Hu and Chen (2020) propose an optimization framework
for fair classification and welfare analysis. In their modeling,
a learner executes a soft-margin SVM with the additional
constraint of group fairness: limiting the two groups’ wel-
fare discrepancy to a predefined quantity. They provide a
sensitivity analysis, showing that applying stricter fairness
constraints (decreasing the allowed discrepancy) can worsen
welfare outcomes for both groups. Their findings are in line
with ours, but our analysis is fundamentally different; in
particular, they do not address the utility mismatch issue. Im-
posing fairness constraints on profit-maximizing entities, as
we do in this paper, is an understudied point of view, as noted
recently by Elzayn and Fish (2020).

There are also several recent attempts to harness economic
principles to fair classification. For example, Gölz, Kahng,
and Procaccia (2019) treat fair classification as an allocation
of goods, where there is a fixed amount of resources to dis-
tribute. They examine the compatibility (or lack thereof) of
Equalized Odds with axioms of fairness from the economic
literature on fair division; see (Brandt et al. 2016) for a survey.
Envy-freeness, the dominant fairness concept in economics,
plays a crucial role in several recent papers at the intersection
of economics and AI (Caragiannis et al. 2019; Cohler et al.
2011; Benade et al. 2018; Guruswami et al. 2005; Gal et al.
2016; Plaut and Roughgarden 2018), including several works
on fair classification (Zafar et al. 2017; Balcan et al. 2019;
Ustun, Liu, and Parkes 2019; Hossain, Mladenovic, and Shah
2020). However, these papers on fair classification focus on
sample complexity and generalization (Balcan et al. 2019),
or asserting that users favor treatment disparity (Ustun, Liu,
and Parkes 2019; Zafar et al. 2017) in health applications.

The work most related to ours is the paper by Hossain,
Mladenovic, and Shah (2020). Concurrently to and indepen-
dently of our work, Hossain, Mladenovic, and Shah (2020)
argue for group equability in fair classification, which coin-
cides with our Welfare-Equalizing fairness constraint. They,
too, show that their concept subsumes previously suggested
fairness notions. However, there is a significant difference
between the two works. First, Hossain, Mladenovic, and Shah
(2020) are interested in learning the best classifier from data,
and hence address issues of generalization from samples and
differentiability. In contrast, we devote our paper to societal
considerations of fair classification, and thus consider fair-
ness as a post-processing step similarly to (Corbett-Davies
et al. 2017; Hardt et al. 2016). Additionally, in contrast to
Hossain, Mladenovic, and Shah (2020), our analysis focuses
on the mismatch between the utilities assumed by the regula-
tor and the actual, underlying utilities.
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1.3 Paper Structure
In Section 2, we present our formal model, define the Welfare-
Equalizing fairness framework, and prove structural results
for optimal fair classifiers in Subsection 2.2. Section 3 deals
with the implications of a mismatch between the population’s
underlying utilities and the utilities assumed by the regulator.
Finally, Section 4 describes how to compute the bank-optimal
fair classifier if the assumed utilities approximate the under-
lying utilities well enough.

2 Model
We consider a general classification problem, where agents
have an ex-ante non-observable “quality” correlated with ob-
servable attributes. We keep using the metaphor of a bank that
predicts the reliability of the population and makes lending
decisions; however, the same setting captures student admis-
sions, recruiting, assessing the recidivism risk for a criminal,
etc.

There are three parties in the model: a heterogeneous pop-
ulation of potential borrowers; a bank that makes lending
decisions based on the observable attributes of borrowers and
cares only about its revenue; and a regulator that cares about
fairness and can restrict the set of lending policies available
to the bank by imposing a fairness constraint. We now present
these parties formally.

Borrowers We assume that each potential borrower (hence-
forth borrower) is associated with a pair of observable at-
tributes (X,A) ∈ X × {0, 1}. Here A is a binary2 sensitive
attribute (e.g., gender) and X ∈ X encodes all other char-
acteristics of a borrower, e.g., employment history, salary,
education, assets and so on. We do not impose any assump-
tions on X . By {A = 0} and {A = 1} we denote the groups
of all borrowers with the sensitive attribute equal to 0 or 1,
respectively; we call {A = a} a protected group. Further-
more, in addition to the observable attributes X and A, every
borrower is also associated with an unobservable variable
Y ∈ {0, 1}, which describes whether that borrower will pay
back the loan or not. For brevity, we call borrowers with
Y = 1 and Y = 0, good and bad, respectively. The sta-
tistical characteristics of the population are described by a
probability space (Ω,F ,P); so X = X(ω), A = A(ω) and
Y = Y (ω) are random variables on ω ∈ Ω. By small letters
(x, a, y) we denote realizations of X , A, and Y , i.e., generic
elements of X × {0, 1} × {0, 1}.

Each borrower (x, a, y) obtains a utility when receiving
the loan. This utility can depend on x and a in many ways,
but what is more critical is that it must depend on the non-
observable quality of the borrower, namely v = v(x, a, y).
To simplify the presentation, we assume that the utility from
a rejected application is zero and that the average utility
of a borrower with given x and a is non-negative,3 i.e.,

2The assumption of the dichotomy of A is made for simplicity.
Extending our results to the non-binary case (ethnicity) is straight-
forward.

3Zero utility for not getting a loan is a normalization-condition:
before borrowing money, everybody is at zero utility level. Non-
negativity of v can be regarded as a rationality assumption on bor-

E[v(X,A, Y ) | X = x,A = a] ≥ 0. However, both as-
sumptions can be relaxed. We refer to v as the underlying
utility of the population.

The bank We assume that the bank knows the joint distri-
bution of (X,A, Y ) from historical data. In particular, it
knows the exact conditional probability of being a good
borrower given the observable attributes; we denote it by
p(x, a) = P(Y = 1 | X = x,A = a).4

The bank makes lending decisions based on X and A but
without observing Y . It uses a classifier c : X × {0, 1} →
[0, 1] where c(x, a) is the probability of giving a loan to a
population of borrowers with X = x and A = a. Each loan
given to a good borrower brings a revenue5 of α+(X) > 0 to
the bank while each bad borrower leads to a loss of α−(X) >
0; we assume that α±(x) are bounded functions of x ∈ X .
The bank’s revenue depends on the choice of a classifier c,
and is defined by

R(c) = E [c(X,A) (α+(X)Y − α−(X)(1− Y ))] . (1)

To ease notation, we define t(x) and r(x, a) such that for
every a ∈ {0, 1}, x ∈ X

t(x) :=
α−(x)

α+(x) + α−(x)
, (2)

r(x, a) := (α+(x) + α−(x)) (p(x, a)− t(x)) ; (3)

hence, we can rewrite Equation (1) by taking a conditional
expectation with respect to A,X as

R(c)=E
[
c(X,A)

(
α+(X)p(X,A)−α−(X)(1−p(X,A)

)]
=E[r(X,A)c(X,A)]. (4)

The goal of the bank is to maximize R(c) over the set of
feasible classifiers, i.e., classifiers that satisfy the regulator’s
constraints.

The regulator The regulator evaluates the well-being of a
group using its welfare: the expected utility of its members.
For an underlying utility function v and a classifier c, the
welfare of the subgroup {A = a} is given by

Wv,c(a) = E [v(X,A, Y )c(X,A) | A = a] . (5)

The regulator aims to equalize welfare among the protected
groups. However, as we discuss in the introduction, the under-
lying utility v is unknown to the regulator; thus, the regulator
is forced to use a certain substitute u instead. We refer to u
as the assumed utility; ideally, the assumed utility must be an
approximation to the underlying one.

The objective of the regulator is captured by the following
u-Welfare-Equalizing constraint (u-WE for abbreviation).

rowers: no rational agent would apply for a loan if she/he expects
that getting the loan brings negative utility while not getting gives 0.

4Indeed, this is aligned with previous works that consider fair-
ness as a post-processing step (Corbett-Davies et al. 2017; Hardt
et al. 2016).

5In contrast to the rest of the literature, we allow the bank’s
revenue to depend on the non-sensitive attribute X . This becomes
important if X also encodes the type of loan a client is applying for,
e.g., different borrowers may need a different amount of money and
thus bring a different revenue/loss.
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Definition 1 (u-WE classifier). Given a utility-function u, a
classifier c is u-Welfare-Equalizing if

Wu,c(0) = Wu,c(1), (6)

i.e., if c equalizes the welfare among the two protected groups.
The set of all such classifiers is denoted by WE(u).

Note that Welfare-Equalizing constraint is defined with
respect to the assumed utility.

2.1 Special Cases of Welfare-Equalizing Fairness
The framework of Welfare-Equalizing fairness allows one to
analyze existing fairness constraints in a unified manner. For
instance,

• The fairness constraint of Demographic Parity (DP) (e.g.,
(Agarwal et al. 2018; Dwork et al. 2012)) requires that
the fraction of those who receive loans in the two groups
must be the same. Formally, a classifier c satisfies DP if
E[c(X,A) | A = 0] = E[c(X,A) | A = 1]. It is a special
case of WE fairness with u(x, a, y) ≡ 1 for any triplet
(x, a, y).

• Motivated by drawbacks of DP, Hardt et al. (2016) con-
cluded that good and bad borrowers within protected
groups must be treated separately and introduced the con-
cept of Equal Opportunity (EO). Under this fairness con-
straint, the fraction of good borrowers who get loans must
be the same in the two subgroups. Formally, a classifier c
satisfies EO if

E[c(X,A) | Y = 1,A= 0] = E[c(X,A) | Y = 1,A= 1].

We recover EO by setting u(x, a, y) = y · βa. The coef-
ficients βa = 1/E[Y |A=a] normalize the maximal possible
welfare in each group to 1. Such a rescaling is known un-
der the name of “relative welfare” and is commonly used
in economics to make welfare or utilities among groups
comparable (Kalai and Smorodinsky 1975).

• Borrowers can differ in the amount of money m they need.
We can assume that information about m is encoded in X ,
so m = m(X). Then, a straightforward generalization of
EO is the following concept of Heterogeneous-EO given by
u(x, a, y) = y ·m(x) ·βa with βa = 1/E[m(x)|A=a]. We can
capture any other heterogeneity similarly (e.g., different
interest rates, time-period, and payment schedules).

2.2 Structural Properties of the Bank-Optimal
Classifiers

In this subsection, we analyze classifiers that are optimal
for the bank. We first state the result of Corbett-Davies et al.
(2017), who characterize the structure of the bank-optimal
unconstrained classifier. Then, we build upon their results for
the constrained case. Namely, we assume that the regulator
imposes the u-WE fairness constraint on the bank and explore
the structure of the bank-optimal classifiers. We show that
the optimal classifiers have a generalized threshold structure,
a fact that is extensively used in Sections 3 and 4.

Unconstrained classifier c∗unc If the regulator imposes no
constraint on the bank, i.e., the bank is free to choose any
classifier, then the revenue-maximizing classifier has a sim-
ple form (Corbett-Davies et al. 2017). Only borrowers with
r(x, a) > 0 are profitable for the bank, which is equiva-
lent to the probability of paying back p(x, a) being greater
than t(x) (recall that t and r are defined by Equations (2)
and (3)). Consequently, the optimal lending policy is given
by the following threshold classifier c∗unc: all borrowers with
p(x, a) > t(x) get loans (c∗unc(x, a) = 1) and all borrowers
with p(x, a) ≤ t(x) are rejected (c∗unc(x, a) = 0).6

Constrained classifier c∗WE(u) Consider the general, con-
strained case, where the regulator imposes u-WE fairness
on the bank. For a fixed and given assumed utility u, we
denote by c∗WE(u) the classifier that maximizes the bank’s
revenue R(c) (see Equation (1)) among all u-WE classifiers
c ∈WE(u). The set of u-WE classifiers is non-empty since
0 ∈WE(u) and, therefore, the bank’s optimization problem
is well-defined.

To ease notation, we denote by u(x, a) the assumed util-
ity of a borrower associated with (x, a) averaged over the
possible values of Y ,

u(x, a) = E[u(X,A, Y ) | X = x,A = a]

= u(x, a, 1)p(x, a) + u(x, a, 0)(1− p(x, a)).

Further, we denote by R∗a(w) the maximal revenue that the
bank could extract from the group {A = a} at the (assumed)
welfare level Wu,c(a) = w. Formally,

R∗a(w) = max
{c:X→[0,1] |Wu,c(a)=w}

E [r(X,A) · c(X) | A = a] ,

where r is given by Equation (3). The following Proposition
2 shows that the bank-optimal constrained classifier always
exists and reveals its structure.
Proposition 2. The bank-optimal u-WE classifier c∗WE(u)

exists. Furthermore, each optimal classifier has the following
form:

c∗WE(u)(x, a) =


1 r(x, a) > λau(x, a)

0 r(x, a) < λau(x, a)

τa(x) r(x, a) = λau(x, a)

. (7)

The group-dependent thresholds λa, a ∈ {0, 1} belong to the
super-gradient7 of the subgroup-optimal revenue R∗a(w) (a
concave function of w) computed at the welfare level w∗ max-
imizing the total bank’s revenue P(A = 0)R∗0(w) + P(A =
1)R∗1(w). The functions τa : X → [0, 1] are arbitrary8 up to
the constraint that c∗WE(u) provides the desired welfare level
w∗ for both groups, w∗ = Wu,c∗

WE(u)
(0) = Wu,c∗

WE(u)
(1).

6For definiteness, we assume that if the bank finds the two
decisions equally profitable (the knife-edge case p(x, a) = t(x)), it
chooses the one with fewer loans given (e.g., this policy minimizes
paperwork).

7For a concave function f = f(t), t ∈ [t0, t1], the super-
gradient ∂tf is the set of all q ∈ R such that f(t′) ≤ f(t)+q(t′−t)
for all t′. If f is continuous, then for any t the super-gradient is
non-empty, see Rockafellar (2015).

8In particular, there always exists c∗WE(u) with constant τa, i.e.,
independent of x.
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Proof sketch of Proposition 2. The revenue maximization
over c ∈WE(u) can be represented as a two-stage procedure.
In the first stage, we find the revenue-maximizing classifier in
each of the subgroups {A = a} given the welfare level w; in
the second stage, we optimize over w. The welfare constraint
in the first stage can be internalized using the Lagrangian ap-
proach; the corresponding Lagrange multipliers λa are equal
to the “shadow prices”, i.e., the derivatives of the value func-
tions R∗a(w) with respect to w. This internalization reduces
finding the subgroup optimal classifier to the unconstrained
problem; thus, the optimal classifier has a threshold struc-
ture similarly to c∗unc. This structure is inherited by c∗WE(u).
Since the resulting linear program is infinite-dimensional
and R∗a(w) may be non-differentiable, the formal proof re-
quires some functional-analytic arguments presented in the
appendix.

For the special cases of Demographic Parity and Equal Op-
portunity, the explicit form of the optimal classifiers was ob-
tained by Corbett-Davies et al. (2017). Their result becomes
an immediate corollary of Proposition 2; see the appendix.

3 Mismatch of Fairness and Underlying
Utilities

As we discussed in the introduction, the regulator aiming
to equalize welfare among protected groups unavoidably as-
sumes a certain approximation u of the underlying utilities v.
For example, u can be determined by the domain experts,
while v reflects the private tastes of the population and hence
is not observable directly. We refer to the fact that u is differ-
ent from v as a mismatch. This section explores how imposing
the Welfare-Equalizing fairness constraint with respect to u
affects the underlying welfare, which is measured by v.

We use the situation that exists before imposing the fair-
ness constraint as the benchmark. We say that a group
{A = a} is v-disadvantaged if under the bank-optimal un-
constrained classifier, the welfare of {A = a} is lower than
the welfare of the other group {A = 1 − a}. Formally, the
group {A = a} is v-disadvantaged if

Wv,c∗unc
(a) < Wv,c∗unc

(1− a),

where W is defined in Equation (5) and c∗unc is the bank-
optimal unconstrained classifier from Subsection 2.2. When
the underlying utility v is clear from the context, we say that
the group is disadvantaged and omit the dependence on v.

Ideally, imposing WE-fairness (or any other fairness con-
straint) should improve the welfare of the disadvantaged
group. However, as we show next, this is not always the case.
We say that a fairness constraint harms the group {A = a} if
Wv,c∗(a) < Wv,c∗unc

(a), where c∗ is the bank-optimal classi-
fier after imposing that fairness constraint. Put differently, the
fairness constraint harms the group {A = a} if the welfare
of the group (measured with respect to underlying utilities)
decreases after imposing the fairness constraint.

Harmful mismatch We now demonstrate that the mis-
match between assumed and underlying utilities can make
the fairness constraint harmful to the disadvantaged group.

Example 3. Let the underlying utility-function be
v(x, a, y) ≡ 1, i.e., all borrowers equally benefit from
receiving loans. However, the regulator does not know
the underlying utilities and decides to impose the fairness
constraint of EO. Equivalently, the regulator assumes the
utility u(x, a, y) = y ·βa, for normalizing coefficients βa (as
we explained in Subsection 2.1). Notice that the underlying
utility is the one associated with DP, and the regulator’s
assumed utility is the one associated with EO. Since v 6= u,
there is a mismatch.

Suppose that X = {0, 1, 2}, and all the combinations of
(x, a) have the same probability of 1

6 . Furthermore, assume
that the fraction p(x, a) of good borrowers is given by the
table

x = 0 x = 1 x = 2
a = 0 3/4 3/4 1/4
a = 1 1 0 0

.

In addition, let the revenue of the bank from a paid-back loan
be α+(x) = 1, and the loss from a borrower’s default be
α−(x) = 2 for every x ∈ X .

We first want to determine which group is disadvantaged.
The threshold for the bank-optimal unconstrained classifier
c∗unc equals t(x) = 2

3 . Hence, under c∗unc, only borrowers with
x = 0 receive loans in the group {A = 1}. In {A = 0},
borrowers with x ∈ {0, 1} receive loans since in such cases
t(x) = 2

3 < 3
4 = p(x, 0); however, loans are not given

to borrowers with x = 2 since t(2) = 2
3 > 1

4 = p(2, 0).
Consequently, {A = 1} is disadvantaged: Wv,c∗unc

(0) = 2
3

compared to Wv,c∗unc
(1) = 1

3 .
Next, let us examine how imposing the fairness constraint

of EO changes the outcome of the bank-optimal classifier.
The proportion of loans given by c∗unc to good borrowers in
{A = 0} is equal to the welfare of this group with respect to
the assumed utility u, namely

Wu,c∗unc
(0) = E [c∗unc(X,A) | Y = 1, A = 0] =

6

7
.

In contrast, for {A = 1} we have

Wu,c∗unc
(1) = E [c∗unc(X,A) | Y = 1, A = 1] = 1.

By imposing u-WE-fairness, the regulator requires the bank
to equalize these two quantities. To do so, the bank-optimal
constrained classifier can either increase the amount of loans
given to {A = 0} by approving some applications of x = 2
or decrease the number of loans given to {A = 1}. However,
giving loans to x = 2 in {A = 0} is too costly: the cost
3
4α− −

1
4α+ is not compensated by the benefit 1 · α+ from

giving the same amount of loans to good borrowers with
x = 0 in {A = 1}. Therefore, the bank-optimal constrained
classifier coincides with c∗unc in {A = 0} and gives fewer
loans to x = 0 in the group {A = 1}: c∗WE(u)(0, 1) = 6

7 .
Consequently, the bank equalizes the proportion of loans
given to good borrowers in both groups: Wu,c∗

WE(u)
(0) =

Wu,c∗
WE(u)

(1) = 6
7 . However, since the underlying utility

is measured by v, not u, we get that Wv,c∗
WE(u)

(1) = 2
7 <

Wv,c∗unc
(1) = 1

3 and the disadvantaged group is harmed by
imposing the fairness constraint.
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Wu,c∗unc(0) Wu,c∗unc
(1)w∗

Welfare level

Revenue R∗
0(w)

R∗
1(w)

Figure 1: Intuition for the proof of Lemma 5. The red curve illustrates the revenue R∗0(w) from the disadvantaged group
{A = 0} at every possible welfare level, and the blue curve illustrates R∗1(w) from the advantaged group {A = 1}. The
subgroup revenues R∗a(w) are concave functions of w that attain their maxima at a welfare level of Wu,c∗unc

(a). The total revenue
is P(A = 0)R∗0(w) + P(A = 1)R∗1(w), which is maximized at w∗ = Wu,c∗

WE(u)
. Noticeably, it always lies between the two

maxima. In this illustration, P(A = 0) = 1
3 and P(A = 1) = 2

3 .

3.1 Can WE-fairness Help the Disadvantaged
Group Despite The Mismatch?

In this subsection, we examine when imposing WE-fairness
could help the disadvantaged group, even in the presence of
a mismatch.9 A natural observation is that if the assumed and
underlying utilities “almost” match, the results of imposing
u-WE-fairness or v-WE-fairness should be roughly the same.
We postpone such quantitative statements to the end of this
subsection and first address easy-to-check general conditions
guaranteeing that fairness is not harmful. Theorem 4 below
shows that only a lenient condition is required to assure that
imposing WE-fairness benefits the disadvantaged group.

Theorem 4. If v and u agree on which group is disadvan-
taged, then the u-WE classifier weakly increases v-welfare
of the disadvantaged group, i.e.,{
Wu,c∗unc(a)<Wu,c∗unc(1−a)
Wv,c∗unc(a)<Wv,c∗unc(1−a)

=⇒Wv,c∗unc
(a)≤Wv,c∗

WE(u)
(a).

At first glance, this theorem may look rather intuitive. How-
ever, the claim is non-trivial even if there is no mismatch,
i.e., when v ≡ u. To see this, recall that the WE-fairness
constraint is imposed on the bank: a self-interested party,
which is going to find the revenue-optimal way to satisfy
the constraint. One possible way to achieve welfare equality
is to give no loans to both protected groups thus harming
both of them. As we show in the appendix, such an undesired
behavior is possible when Unawareness is imposed. However,
it never happens under the WE-fairness; we use this inherent
property of WE-fairness as a tool to prove Theorem 4. Mo-
mentarily, let us assume that there is no mismatch, i.e., that
the assumed utility and the underlying one are exactly the
same. In such a case, the following Lemma 5 suggests that
not only imposing WE-fairness always improves the welfare
of the disadvantaged group, but also that every individual in
the disadvantaged group is weakly better off.

Lemma 5 (Matching utilities). The bank-optimal u-WE clas-
sifier makes the u-disadvantaged protected group {A = a}
weakly better off at the expense of the advantaged group.

9We remind the reader that “helping” and “harming” is always
with respect to the actual underlying utility.

Formally,

Wu,c∗unc
(a) < Wu,c∗unc

(1− a)

=⇒

{
Wu,c∗unc

(a) ≤Wu,c∗
WE(u)

(a)

Wu,c∗unc
(1− a) ≥Wu,c∗

WE(u)
(1− a)

.

Moreover, any borrower from the u-disadvantaged group who
receives a loan under the unconstrained classifier, receives
it under the bank-optimal u-WE one.10 Formally, for every
x ∈ X it holds that

Wu,c∗unc
(a) < Wu,c∗unc

(1−a) =⇒ c∗unc(x, a) ≤ c∗WE(u)(x, a).

Proof of Lemma 5. By Proposition 2, the welfare level
w∗ = Wu,c∗

WE(u)
(0) = Wu,c∗

WE(u)
(1) achieved by the u-WE

classifier maximizes the revenue P(A = 0)R∗0(w) + P(A =
1)R∗1(w) as a function of welfare level w. The sub-group
revenues R∗a(w), a ∈ {0, 1} are concave functions; thus the
welfare level w∗ lies between their maxima. These maxima
are attained at the welfare levels of the bank-optimal uncon-
strained classifier; therefore, the welfare level w∗ is between
Wu,c∗unc

(a) and Wu,c∗unc
(1− a). See Figure 1 for illustration.

The second part of the lemma, the individual guarantees,
follow from the threshold structure of the bank-optimal con-
strained classifier c∗WE(u), which we identified in Proposi-
tion 2. Since the welfare level w∗ is above the maximum
of R∗a(w) (for {A = a} being the disadvantaged group), its
super-gradient contains λa ≤ 0; therefore, c∗unc(x, a), which
corresponds to λa = 0, is below c∗WE(u)(x, a).

Equipped with Lemma 5, we are ready to prove Theorem 4.

Proof of Theorem 4. We apply Lemma 5 to the assumed
utility function u. By the second part of the lemma, af-
ter imposing the u-WE constraint every borrower x ∈ X
from the u-disadvantaged group {A = a} who received
loans under the unconstrained classifier still receives them.
Namely, c∗unc(x, a) ≤ c∗WE(u)(x, a) for all x ∈ X . Multi-
plying both sides by the actual underlying utility v(x, a, y),
substituting X = x and Y = y, and taking expectation, we

10While our paper is focused on group notions of fairness, we
stress that this result provides stronger “individual” guarantees.
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get Wv,c∗unc
(a) < Wv,c∗

WE(u)
(a). In other words, the bank-

optimal classifier c∗WE(u) for the utilities u assumed by the
regulator improves the welfare of the group {A = a} with
respect to the underlying utilities v. Since v and u agree on
the disadvantaged group’s identity, this classifier improves
the disadvantaged group’s underlying welfare.

In the presence of a mismatch, it is easy to see that a weak
converse to Theorem 4 holds, i.e., fairness always makes the
disadvantaged group weakly worse off. To avoid a mismatch,
one can use a simple quantitative criterion. We say that u is
an α-approximation of v for some α ≥ 1 if for all x, a, and y,
1
α ≤

v(x,a,y)
u(x,a,y) ≤ α. Theorem 4 implies the following quanti-

tative criterion on how well the regulator should approximate
the underlying utilities to help the disadvantaged group.
Corollary 6. If the utility u assumed by the regulator is
an α-approximation of the underlying utility v and the gap
between the welfare of the groups with respect to u is big
enough, namely,

Wu,c∗unc
(0)

Wu,c∗unc
(1) ∈

(
0, 1

α2

)
∪
(
α2,+∞

)
, then u-

WE classifier helps the v-disadvantaged group.

4 Computing Bank-Optimal
Welfare-Equalizing Classifiers

In this section, we provide evidence for the applicability of
WE-fairness by developing tools for computing bank-optimal
WE classifiers. Our goal is to show how the bank can use
the assumed utility proposed by the regulator to compute
approximately optimal classifiers. We first discuss the case
where the underlying and assumed utilities match (i.e., v ≡ u)
and the other objects are fully known (revenues and losses
α±(x), and the probability p(x, a) of paying back). Later
on, we relax this assumption. Due to space considerations
and our desire to focus on the conceptual assets of the paper,
we defer most of the analysis to the appendix, as well as an
elaborated version of formal statements.

Consider the case where u ≡ v, and both α± and p are
known. If the data is tabular, i.e., X is relatively small (say
several thousand different borrower types), we can compute
the bank-optimal u-WE-classifier c∗WE(u) explicitly by stan-
dard LP-methods. For large sets of attributes, e.g., multidi-
mensional or continuous, the size of the LP “explodes”, and
a different approach should be taken. In this case, we use
the structural insights from Proposition 2: the bank-optimal
WE-classifier c∗WE(u) is parameterized by the two thresholds
λa for a ∈ {0, 1}; therefore, to compute it we can restrict our
attention to a finite-dimensional parametric family of classi-
fiers. Due to the large-scale nature of the problem, we shall
seek efficient algorithms for computing approximately bank-
optimal WE classifiers, where these approximated solutions
are defined as follows.
Definition 7. A classifier c is (ε, ε′) bank-optimal u-WE if
R(c) ≥ R(c∗WE(u))− ε and |Wu,c(0)−Wu,c(1)| ≤ ε′.

Notice that such classifiers are doubly approximated: they
approximate the revenue of the (exact) bank-optimal WE
classifier, and also approximately equalize the welfare of the
two classes. In the appendix, we demonstrate how the bank

can efficiently find a classifier that approximates the revenue
and (exactly) equalizes the welfare. Namely, we show how
one can apply the ternary search method (as in Hardt et al.
(2016)) to find (ε, 0) u-WE-classifier in O

(
log2

(
1
ε

))
run-

time.
Next, we get rid of the full information assumption. Recent

papers (Balcan et al. 2019; Hossain, Mladenovic, and Shah
2020) propose convex relaxations for imposing fairness con-
straints in settings like ours, which includes generalization
bounds. However, since an extensive body of literature deals
with estimating real-valued functions (ranging from linear
regression to deep learning), we take a different approach.
We suggest that the bank employs the assumed utility given
by the regulator, and describe its performance guarantees
in terms of the “quality” of u. This perspective has been
adopted recently for several other ML problems (Medina and
Vassilvitskii 2017; Lykouris and Vassilvitskii 2018; Purohit,
Svitkina, and Kumar 2018).

For simplicity, we assume that |r(x, a)|, u(x, a, y), and
v(x, a, y) are all upper-bounded by 1.
Proposition 8. Fix a small δ > 0 and assume that the bank
has access to a sample of (X,A, Y, α±, v) and to estimators
u and r̂ such that E [|u− v|] ≤ ηu and E [|r̂ − r|] ≤ ηr for
small enough ηu and ηr. Then, a (ε, ε) bank-optimal v-WE
classifier with

ε = 2

√
6

(
1

P(A = 0)
+

1

P(A = 1)

)
max{ηu, ηr}

can be computed with probability 1− δ on a sample of size

O

(
1

max{ηu, ηr}

(
log

1

δ
+ log log

1

max{ηu, ηr}

))
.

5 Conclusions
Our paper draws on the economic approach to fair classifi-
cation. It initiates the discussion of the impact that the reg-
ulator’s misconception about the population characteristics
may have on the protected groups’ well-being. Beyond that,
we believe that our WE-fairness can serve as an anchor for
grounding other fairness stances.

We have prioritized clarity over generality and focused
on binary classification. Nevertheless, our results are more
general. The key technical Proposition 2 can be extended to
multiple classes (e.g., several loans with different periods and
interest rates).11 All other results (the mismatch analysis and
the algorithms) are, essentially, corollaries of Proposition 2
and extend straightforwardly. Noisy utilities and revenues
can be assumed for free if we interpret u, v, and r in all
formulas as the conditional expectations for a given triplet
(X,A, Y ). Allowing for utilities with negative expectations
also does not alter the statements. We see considerable scope
for follow-up work. One prominent direction is to understand
how the “price of fairness” is distributed among the parties,
e.g., by how much the bank’s revenue and the advantaged
group’s welfare drop.

11As in the binary case, there is one threshold λa per group a,
but now the revenue r and the utilities u depend on the class. The
optimal WE-classifier selects a class c with the maximal r− λa · u.
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