
On the Complexity of Finding Justifications for Collective Decisions

Arthur Boixel, Ronald de Haan
Institute for Logic, Language and Computation (ILLC), University of Amsterdam

a.boixel@uva.nl, me@ronalddehaan.eu

Abstract

In a collective decision-making process, having the possibil-
ity to provide non-expert agents with a justification for why
a target outcome is a good compromise given their individ-
ual preferences, is an appealing idea. Such questions have
recently been addressed in the computational social choice
community at large—whether it was to explain the outcomes
of a specific rule in voting theory or to seek transparency and
accountability in multi-criteria decision making. Ultimately,
the development of real-life applications based on these no-
tions depends on their practical feasibility and on the scalabil-
ity of the approach taken. In this paper, we provide computa-
tional complexity results that address the problem of finding
and verifying justifications for collective decisions.
In particular, we focus on the recent development of a general
notion of justification for outcomes in voting theory. Such a
justification consists of a step-by-step explanation, grounded
in a normative basis, showing how the selection of the target
outcome follows from the normative principles considered.
We consider a language in which normative principles can be
encoded—either as an explicit list of instances of the prin-
ciples (by means of quantifier-free sentences), or in a suc-
cinct fashion (using quantifiers). We then analyse the com-
putational complexity of identifying and checking justifica-
tions. For the case where the normative principles are given
in the form of a list of instances, verifying the correctness of
a justification is DP-complete and deciding on the existence
of such a justification is complete for Sigma 2 P. For the case
where the normative principles are given succinctly, deciding
whether a justification is correct is in NEXP wedge coNEXP,
and NEXP-hard, and deciding whether a justification exists is
in EXP with access to an NP oracle and is NEXP-hard.

Introduction
In a recent paper, Boixel and Endriss (2020) developed a
general notion of justification for collective decisions, and
applied it to the setting of justifying outcomes in a voting
scenario. Their approach, grounded in the axiomatic method
of social choice theory, aims at providing non-expert agents
with easily understandable arguments for showing that a tar-
get outcome is a reasonable compromise in a given situa-
tion. More precisely, a justification consists of (concrete in-
stances of) normative principles—so-called axioms in social

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

choice theory—showing that and how the selection of the
target outcome follows from these principles in a specific
situation.

While they propose a straightforward—and computation-
ally demanding—algorithm to find such justifications, the
precise computational complexity of their approach has not
been studied. In this paper, we will do exactly this.

Our aim is to give insights into the potential and limits of
algorithms for the approach of Boixel and Endriss (2020). In
particular, we hope to lay the foundations for identifying in
what (restricted) settings their approach can work efficiently
in practice. Boixel and Endriss operationalise their approach
by encoding axioms into a constraint modeling language
(with potentially an exponential blow-up in the encoding),
and then using constraint programming algorithms (for de-
ciding satisfiability and for finding minimally unsatisfiable
subsets) to find justifications. That is, they essentially use an
exponential-time algorithm with an NP oracle. Our results
will show that—in the general case—one cannot do signif-
icantly better than this, as the problem of deciding on the
existence of a justification is NEXP-hard.

Concretely, we will study two computational tasks related
to the setting of automatically justifying outcomes of a vot-
ing scenario. The first task is that of verifying whether a
given justification is correct (for a given voting scenario).
Boixel and Endriss defined various technical requirements
that justifications should meet—we will define these require-
ments in Section 2. Another important condition for a justi-
fication to be convincing to non-expert agents is that its cor-
rectness can be checked efficiently. This indicates the impor-
tance of studying this first computational task. The second
task that we study is that of identifying whether a correct jus-
tification exists, given a particular voting scenario. Clearly,
this computational problem is central to the approach of us-
ing automated reasoning to find justifications.

Related work. There has only been little work on the
notion of generating justifications for collective decisions.
Cailloux and Endriss (2016) proposed an algorithm for find-
ing a justification of a given outcome in the case where that
outcome is the one given by the Borda rule. The notion they
developed can be seen as a restriction of the one proposed
by Boixel and Endriss (2020) and to date, the computational
complexity of their approach is unknown. However, in a re-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5194

cently published paper, Peters et al. (2020) prove that any
outcome given by the Borda rule can be justified—using a
characterisation of the Borda rule different from the classical
one (Young 1974)—in O(m2) steps where m is the number
of alternatives. In the related field of multi-criteria decision
making, Belahcene et al. (2018) seek to justify outcomes in
a noncompensatory sorting model. They show that the prob-
lem of deciding whether an outcome can be represented in
this model is NP-hard; the complexity of deciding whether
an outcome is necessary, however, remains unknown. Be-
lahcene et al. (2019) propose to justify outcomes obtained
by aggregating pairwise comparative statements by generat-
ing arguments based on cancellation principles. Within this
framework, finding a minimal justification is NP-complete.

As our aim in this paper is to use the toolbox of com-
putational complexity to address the practical feasibility of
the problem of finding justifications, our work may be seen
as one particular instance of the application of tools de-
veloped in computer science to analyse collective decision
making mechanisms (see, e.g., Brandt et al., 2016a). Com-
putational complexity, in particular, has been successfully
used to tackle several types of problems in social choice
theory. Examples include studying the hardness of com-
puting an outcome given a specific rule (see, e.g., Dav-
enport and Kalagnanam, 2004; Hemaspaandra, Spakowski,
and Vogel, 2005) to understand whether a given rule can be
used in practice. Another successful application was to use
complexity hardness results as a barrier against manipula-
tion (see, e.g., Conitzer and Walsh, 2016).

Contribution. After defining a concrete logical language
in which to encode classical normative principles from so-
cial choice theory, we prove four results. (1) We show that
the problem of verifying the correctness of a justification is
DP-complete for the specific case where one has immedi-
ate access to all concrete instances of the normative princi-
ples considered. (2) Under the same assumption, we show
that the problem of deciding whether there exists a justifi-
cation is ΣP

2 -complete. (3) We show that in the case where
one is only given a succinct representation of the norma-
tive principles, verifying the correctness of a justification is
in the class NEXP ∧ coNEXP = { A ∩ B | A ∈ NEXP, B ∈
coNEXP } and is NEXP-hard. Finally, (4) we show that in the
setting where the principles are represented succinctly, de-
ciding whether a justification exists is in EXPNP and NEXP-
hard. An overview of our results can be found in Table 1.

The definition of justifications—as we will describe in de-
tail in Section 2—contains both an existential and a universal
quantification. Interestingly, the combination of these two
quantifications manifests in different ways in the complex-
ity results that we establish for the different computational
problems (e.g., DP vs. ΣP

2)—see, e.g., Table 1.
Interestingly, the NEXP-hardness results that we estab-

lish indicate that the approach taken by Boixel and En-
driss (2020) to automate the search for justifications—an
exponential-time reduction to NP machinery—cannot be
fundamentally improved, in the general case.

CHECK-JUST EXISTS-JUST

Quantifier-free DP-complete ΣP
2 -complete

fragment (Thm 3) (Thm 6)

Full in NEXP ∧ coNEXP in EXPNP

first-order (Prop 4) (Prop 7)
language NEXP-hard NEXP-hard

(Thm 5) (Thm 8)

Table 1: Overview of the computational complexity results.

Paper outline. We start in Section 2 by recalling the def-
inition of a justification as defined by Boixel and Endriss
(2020). In the same section, we define a concrete logical lan-
guage in which classical axioms from social choice theory
can be encoded—and we identify two variants of this lan-
guage (the quantifier-free fragment and the full language).
We study the computational complexity of verifying the cor-
rectness of a justification in Section 3—for both variants of
the language. In Section 4, we study the complexity of de-
ciding whether a justification exists for a given scenario—
again, for both variants of the language. In Section 5, we
discuss what types of restrictions on the language one could
place to yield tractability results.

Model
In this section, we start by recalling the language-
independent notion of justification defined by Boixel and
Endriss (2020)—as well as several relevant concepts from
social choice theory. We then make this notion concrete by
defining a many-sorted first-order logic language in which
normative principles and voting rules can be encoded—
allowing us to formally address computational complexity
questions related to the notion of justifications.

What is a Justification?
Consider a group of agents reporting individual preferences
over some alternatives. Given these preferences, they seek to
reach a compromise and take a collective decision. Several
options are then available to them. They could decide, for
example, to use a specific voting rule to aggregate their per-
sonal preferences into a collective one. Another possibility
would be to go through a deliberation process and examine
the pros and cons of the various alternatives. It would be
useful to obtain a formal justification for why a given out-
come is reasonable for their situation. If a voting rule has
been used, a step-by-step explanation of the outcome ob-
tained, using arguments based on the normative principles
characterising it (or any other appealing principles) might
be useful. Such a justification will help to demystify the—
seemingly—arbitrary result returned by the rule, hence im-
proving the agents’ confidence in the election. Alternatively,
if the agents wish to deliberate, providing them with dif-
ferent justifications based on different desirable normative
principles showing why some outcomes might be better than
others could guide them through the process. Let us now
more formally state what constitutes a justification.

Consider a scenario in which a set N∗ of n agents re-
port their individual preferences over a set X of m alterna-

5195

tives. Their preferences are linear orders, elements of L(X).
A profile of preferences �N for an electorate N ⊆ N∗

maps every agent i ∈ N to an element �i ∈ L(X).
The set of all possible profiles for all nonempty electorates⋃

N∈2N∗\{∅} L(X)N is denoted by L(X)+.
Now, a voting rule F : L(X)+ → 2X\{∅} maps every

possible profile to a nonempty winning set of alternatives.
Every single voting rule does satisfy some normative prop-
erties, called axioms but violates others. The Borda rule for
example is the unique voting rule satisfying all the follow-
ing axioms: NEUTRALITY, REINFORCEMENT, FAITHFUL-
NESS and CANCELLATION (Young 1974).1 Whatever the
language used to express an axiom A, its interpretation, the
set of all voting rules satisfying this axiom, is denoted by
I(A) ⊆ L(X)+ → 2X\{∅}. This notion naturally extends
to sets of axioms.

The following notion of justification relies on the concept
of instances of an axiom—that we define for our language
in this Section. An instance of an axiom encodes the re-
striction(s) it imposes for a concrete situation: restrictions
on possible outcomes for a concrete profile for example. We
writeA′ /A to express that axiomA′ is an instance of axiom
A. This notation extends to sets of axioms.

Definition 1 (Justification of an election outcome; Boixel
and Endriss, 2020). Let A be a corpus of axioms for voting
rules F : L(X)+ → 2X\{∅}, let �N∗ be a profile, and let
X∗ ⊆ X be a set of alternatives. Then we say that a pair
〈AN,AE〉 of sets of axioms is a justification, with norma-
tive basis AN and explanation AE, for the set X∗ winning
the election under profile �N∗ if and only if the following
conditions are satisfied:

• Explanatoriness. AE (but none of its proper subsets) can
explain the desired outcome: F (�N∗) = X∗ for every
voting rule F ∈ I(AE), but F (�N∗) 6= X∗ for some
voting rule F ∈ I(A) for every strict subset A (AE.

• Relevance. The explanation AE is an instance of the nor-
mative basis AN: AE /AN.

• Adequacy. All axioms in the normative basis AN belong
to the corpus A of axioms provided: AN ⊆ A.

• Nontriviality. There exists at least one voting rule that sat-
isfies all axioms in the normative basis: I(AN) 6= ∅.
Out of the four requirements defined above, two of

them—relevance and adequacy—seem pretty easy to satisfy
in practice. Adequacy is easily satisfied as long as the algo-
rithm works with the given corpus of axioms; relevance is
easily satisfied as long as one keeps track of which axiom in
the corpus gave rise to which concrete axiom instance.

The other two requirements are more interesting and will
be the hardest to satisfy, thus making the task of generat-
ing justifications computationally hard. The formulation of
the explanatoriness and nontriviality requirements can give
us some intuition regarding how hard to satisfy those re-
quirements are. The explanatoriness condition requires us to
check that all voting rules satisfying the axiom instances in

1For space reasons, we omit a description of these axioms. For
more details, we refer to the literature (e.g., Zwicker, 2016).

the explanation do select the target outcome under the target
profile. We also need to make sure that the explanation can-
not be any smaller. The nontriviality condition on the other
hand requires us to search for a voting rule that satisfies all
the axioms in the normative basis.

A Language for Axioms and Justifications
To precisely study the computational complexity of several
problems related to justifications, we will define a logical
language in which to encode axioms and voting rules. For
this, we will use a many-sorted first-order language with
three sorts: one for the agents, one for the alternatives, and
one for the profiles. The language we define here is highly
inspired by the one used by (Endriss 2020) to model and
analyse axiomatic properties of matching mechanisms.

Let VarN , VarX and VarP be three disjoint, infinite and
countable sets of variables. The following specification—in
Backus-Naur form—defines the set of all sentences ϕ ex-
pressible in this language. In this specification, i denotes a
variable in VarN , x and y variables in VarX and p a vari-
able in VarP . Additionally, we also assume that there is a
sufficiently large number of constants in set Dn,m to repre-
sent any concrete object (agents, alternatives and profile) in a
given situation involving n agents and m alternatives. In the
specification of the language, i` denotes a constant referring
to an agent, x` denotes a constant referring to an alternative,
and p` denotes a constant referring to a profile.

ϕ ::= ∀N i.ϕ | ∀Xx.ϕ | ∀P p.ϕ | ¬ϕ | ϕ ∧ ϕ |
pref(ti, tx, tx, tp) | o(tx, tp)

ti ::= i` | i
tx ::= x` | x
tp ::= p` | p

We also consider the usual abbreviations—e.g., ϕ1 ∨ ϕ2

for¬(¬ϕ1∧¬ϕ2). The language that we consider consists of
all sentences that are generated by the above specification.

The interpretation of sentences in our language depends
on the number n of agents involved in a specific scenario and
on the number m of alternatives considered in this scenario.
Variables in VarN range over the set {i1, . . . , in} of agents,
variables in VarX range over the set {x1, . . . , xm} of alter-
natives, and variables in VarP range over the set {p1, . . . , pl}
of profiles where l =

∑n
k=1

(
n
k

)
m!k is the total number of

profiles involving only—some of the—agents in N∗.
An assignment is a function α : VarN ∪ VarX ∪

VarP ∪ Dn,m → Dn,m, where Dn,m = {i1, . . . , in} ∪
{x1, . . . , xm} ∪ {p1, . . . , pl} is the combined set of agents,
alternatives and profiles involved in a specific scenario.
We require that α(i) ∈ {i1, . . . , in} for all i ∈ VarN ,
that α(x) ∈ {x1, . . . , xm} for all x ∈ VarX , and that α(p) ∈
{p1, . . . , pl} for all p ∈ VarP . Moreover, we require that for
every constant c ∈ Dn,m it holds that α(c) = c. For any
x ∈ VarN ∪ VarX ∪ VarP , assignments α and α′ are called
x-variants of each other if α(y) = α′(y) for every variable
y ∈ VarN ∪ VarX ∪ VarP \{x}.

We write f, α � ϕ to indicate that a voting rule f satisfies
sentence ϕ under assignment α. This notion of satisfaction
is defined inductively as follows:

5196

• f, α � pref(i, x, y, p) if agent α(i) ranks alternative α(x)
above α(y) in profile α(p);

• f, α � o(x, p) if alternative α(x) is selected as one of the
winners according to rule f—that is, α(x) ∈ f(α(p));

• f, α � ¬ϕ if f, α � ϕ is not the case;

• f, α � ϕ ∧ ψ if both f, α � ϕ and f, α � ψ are the case;

• f, α � ∀N i.ϕ if f, α′ � ϕ for all i-variants α′ of α;

• f, α � ∀Xx.ϕ if f, α′ � ϕ for all x-variants α′ of α; and

• f, α � ∀P p.ϕ if f, α′ � ϕ for all p-variants α′ of α.

Furthermore, we will also make use of two other (short-
hand) predicates. We let top(x, i, p) = ∀Xy, pref(i, x, y, p),
which is true if and only if α(x) is the most pre-
ferred alternative of α(i) in profile α(p). Moreover, we
let ω(X∗, p) =

∧
x∈X∗ o(x, p) ∧

∧
x/∈X∗ ¬o(x, p) for

any X∗ ⊆ {x1, . . . , xm}, which states that X∗ is the en-
tire outcome selected under profile α(p).

Instances In the concept of justifications—as defined by
Boixel and Endriss (2020) and previously described in this
Section—normative bases and explanations are expressed in
the same language, and the set AE of sentences that forms
an explanation is required to be an instance of the normative
basis AN. Instances are the building blocks of axioms; an
axiom can be seen as a collection of concrete restrictions
imposed on some concrete objects (profiles, agents, etc.),
these restrictions are the instances of the axiom considered.
We will define what it means for a sentence (and a set of
sentences) expressed in our first-order language to be an in-
stance of another—with respect to a given scenario with n
agents and m alternatives.

An instance is a sentence without any (universal) quanti-
fiers. Moreover, we say that a sentence ϕ1 is an instance of a
sentence ϕ2, written ϕ1 / ϕ2, if ϕ1 can be obtained from ϕ2

by iterated application of the following steps: (i) removing
an outermost quantifier ∀N i, ∀Xx, or ∀P p, and replacing ev-
ery occurrence of the corresponding variable i, x, or p in the
rest of the sentence by a single constant i`, x`, or p` (respec-
tively); and (ii) replacing a proper subformula2:
(ii.a) of the form ∀N i.ψ by

∧
1≤`≤n ψ[i 7→ i`];

(ii.b) of the form ∀Xx.ψ by
∧

1≤`≤m ψ[x 7→ x`];
(ii.c) of the form ∀P p.ψ by

∧
1≤`≤

∑n
k=1 (n

k)m!k ψ[p 7→ p`].
Generally axioms have the following shape: “FORALL

Object, IF Condition is met, THEN Restriction holds for Ob-
ject.” For a given axiom, we seek to generate one concrete
instance of it for each concrete Object, in order to only in-
clude the relevant instances in a justification. This way, justi-
fications only feature the relevant concrete instances, rather
than a sentence specifying the general axiom—the latter of
which would be the case if we were to replace the outermost-
most ∀ quantifiers with large conjunctions.

A set AE of sentences is an instance of a set AN of sen-
tences, written AE / AN, if for every ϕ1 ∈ AE, there exists
some ϕ2 ∈ AN such that ϕ1 / ϕ2.

2With a proper subformula of ϕ, we mean any subformula that
is not identical to the entire formula ϕ.

Note that this notion of instancehood satisfies the three re-
quirements stipulated by Boixel and Endriss (2020): (1) Ev-
ery instance of a sentence is itself a sentence. (2) A sentence
is equivalent to the conjunction of all of its instances. (3) The
number of instances of a sentence is finite.

Variants of the Language In the remainder of the paper,
we will direct our attention to two variants of this language:

• The full language, where we allow all sentences in the
first-order language that we defined. Intuitively, this lan-
guage allows axioms to be expressed in a succinct way,
where one does not need to explicitely list all instances of
the axiom that refer to concrete profiles.

• The quantifier-free fragment, where we only allow sen-
tences without quantifiers. Intuitively, this language re-
quires one to list all relevant applications of the axioms
to concrete objects (profiles, etc.).

Expressing Axioms The language that we defined is ex-
pressive enough to express a wide range of well-known ax-
ioms that have been studied in the social choice literature
(see, e.g., (Brandt et al. 2016b; Zwicker 2016)). To illustrate
this, we express the axiom of Pareto optimality.

Example 2 (Pareto optimality). A voting rule F is Pareto
optimal if for all profiles �N the following is true: for
any two alternatives x, y ∈ X if it holds that each agent
i ∈ N prefers x over y, then y 6∈ F (�N). This prop-
erty can be expressed in the first-order language as follows:
∀P p.∀Xx.∀Xy.(∀N i. pref(i, x, y, p))→ ¬o(y, p).

The following is an example of an instance of this
sentence—given a voting scenario with n agents and m al-
ternatives: (

∧
1≤k≤n pref(ik, a, b, p1)) → ¬o(b, p1). Here,

the restriction is enforced on the concrete profile p1 with re-
spect to the concrete alternatives a and b.

Checking Correctness of a Justification
Now that we have defined a concrete language in which to
express axioms and their instances, we can use the toolbox
of computational complexity in order to gain insights about
the obstacles that may prevent us from reaching practical
feasibility and the possible ways out.

We start by taking a look at the problem of deciding
whether a given justification is correct. That is, we consider
the following decision problem.

CHECK-JUST
INSTANCE: A voting scenario 〈�N∗ , X

∗,A〉 and a pair
〈AN,AE〉.
QUESTION: Is 〈AN,AE〉 a justification for the set X∗
winning the election under profile �N∗?

Note that even if the potential justification is given (and
so is the corresponding normative basis), we still require the
corpus of axioms A to be given as well. Having A is neces-
sary to check the adequacy requirement (which is a compu-
tationally easy property to check).

The problem of checking whether a given justification is
correct is relevant if we wish to automatically use the ap-

5197

proach in practice. Indeed, to improve confidence in the sys-
tem generating justifications, one would like to be able to
easily verify that the system’s output is correct. Any com-
putational intractability result for the problem of checking a
justification would be an obstacle for experts to verify the
output of the system—even with powerful computational
machinery—making it even harder for non-expert individ-
uals to verify whether a justification is correct.

In the remainder of this section, we study the computa-
tional complexity of the problem CHECK-JUST when con-
sidering two different variants of our language in which to
express axioms and their instances: the quantifier-free frag-
ment and the full variant of our language.

The Quantifier-Free Fragment
We first consider the case where the normative principles
in A can only be expressed using quantifier-free sentences.
Thus each axiom can be directly seen as an instance of a
more general one as it can only refer to concrete objects
(agents, alternatives, and profiles). In this scenario axioms
consist of the conjunction of their concrete instances. En-
coding axioms in this way is useful in practice as it enables
the easy use of powerful tools such as SAT solvers.3

We show that the problem CHECK-JUST is DP-complete
in the case where the axioms in the corpus A are given
as quantifier-free sentences. The complexity class DP =
NP ∧ coNP4 lies at the second level of the Boolean Hierar-
chy (Papadimitriou and Yannakakis 1982; Cai et al. 1988).

Theorem 3. In the case where the axioms in the cor-
pus A are given as quantifier-free sentences, the problem
CHECK-JUST is DP-complete.

Proof (sketch). We can obtain a DP algorithm by adapting
the ΣP

2 algorithm in the proof of Theorem 6 (in Section 4) to
the problem CHECK-JUST: instead of guessing a justifica-
tion, we use the (candidate) justification given in the input.
If we do this, the single NP oracle in the algorithm call does
not depend on any guesses—yielding a DP algorithm.

To show DP-hardness, we describe (the general lines of) a
reduction from the DP-complete problem CRITICAL-SAT
(Papadimitriou and Wolfe 1986). In this problem, the in-
put is a propositional formula ϕ =

∧m
i=1 ci in 3CNF with

m clauses and n variables, and the question is to decide
whether ϕ is minimally unsatisfiable—that is, whether it
holds that (1) ϕ is unsatisfiable and (2) removing any clause
from ϕ yields a satisfiable formula.

Given ϕ, we construct an equivalent instance of
CHECK-JUST as follows. We letX = {>,⊥,4} be the set
of alternatives. To each variable v ∈ Vars(ϕ), we associate
a profile �v , and we let �N∗=�v1 . We take X∗ = {4}
to be the target outcome. We let AN = AE = { Aci | ci ∈
ϕ } ∪ {A4}—where the axioms Aci and A4 are defined
as follows. Intuitively, the axioms Aci encode the clauses

3See the original paper of Tang and Lin (2009) for more infor-
mation on how to encode axioms in propositional logic.

4For any two classes C and D the class C ∧D is defined
as {A ∩B |A ∈ C, B ∈ D }. Note that C∧D differs from C∩D.

of ϕ, and the axiom A4 enforces that either (i) all pro-
files �v are assigned to some truth value—corresponding
to a truth assignment for ϕ—or (ii) all profiles are assigned
to the outcome {4}. For each clause ci = (`1 ∨ `2 ∨ `3)
of ϕ, we let Aci = σ(`1) ∨ σ(`2) ∨ σ(`3), where σ(`) =
ω({>},�v) ∨ ω({4},�v) if ` = v is a positive literal,
and σ(`) = ω({⊥},�v) ∨ ω({4},�v) if ` = ¬v is a
negative literal. We let A4 = (

∧
v∈Vars(ϕ) ω({4},�v)) ∨

(
∧

v∈Vars(ϕ) (ω({>},�v) ∨ ω({⊥},�v))).
One can verify that the constructed instance satisfies the

explanatoriness condition if and only if ϕ is minimally
unsatisfiable—and the instance always satisfies the other
three conditions of a justification.

The Full Language
We continue with studying the complexity of CHECK-JUST
for the full variant of our language. We begin by show-
ing that the problem CHECK-JUST is contained in an
exponential-time analogue NEXP∧ coNEXP of the class DP.

Proposition 4. In the case where the axioms in the corpus A
are given as arbitrary sentences in the first-order language,
the problem CHECK-JUST is in NEXP ∧ coNEXP.

Proof (idea). The proof is entirely analogous to the DP
membership proof for the case of quantifier-free sentences
(Theorem 3). When the axioms are given as quantifier-free
sentences, guessing a voting rule F consists of a polynomial
number of guesses (one for each mentioned profile). There-
fore, checking whether there exists some F ∈ I(A) with
certain properties, for some set A of sentences, is an NP
problem. In the case where the axioms are given as arbitrary
sentences, the number of relevant profiles that need to be
considered can be exponential. Therefore, checking whether
exists some F ∈ I(A) with certain properties in this case
is a NEXP problem. Similarly, the coNP problem in the case
of quantifier-free sentences becomes a coNEXP problem for
the full variant of our language.

In the case where axioms are specified as arbitrary first-
order sentences, CHECK-JUST is NEXP-hard. For space
reasons, we omit a proof of this result—one can show this
by straightforwardly modifying the proof of Theorem 8 that
we will establish in Section 4.

Theorem 5. In the case where the axioms in the corpus A
are given as arbitrary sentences in the first-order language,
the problem CHECK-JUST is NEXP-hard.

Existence of a Justification
We continue by studying the problem of deciding whether a
justification exists for a given scenario.

EXISTS-JUST
INSTANCE: A voting scenario 〈�N∗ , X

∗,A〉.
QUESTION: Does there exist a justification 〈AN,AE〉
for 〈�N∗ , X

∗,A〉 such that AN ⊆ A, AE /AN, AN is non-
trivial, and AE satisfies the explanatoriness condition?

This problem captures the question of whether there exists

5198

a justification for a given input. The lower bounds that we
will establish for the complexity of this decision problem
will carry over to the more general problem of computing a
justification 〈AN,AE〉, if it exists.

The Quantifier-Free Fragment
We begin by showing that the problem EXISTS-JUST is ΣP

2 -
complete in the case where the axioms in the corpus A are
given as quantifier-free sentences.
Theorem 6. In the case where the axioms in the cor-
pus A are given as quantifier-free sentences, the problem
EXISTS-JUST is ΣP

2 -complete.

Proof (sketch). We begin by showing membership in ΣP
2 .

We describe a nondeterministic polynomial-time algorithm
with access to an NP oracle that decides the problem. The
algorithm first guesses a normative basis AN ⊆ A, together
with a voting rule F ∈ I(AN) that witnesses that AN is
nontrivial. Since there are only polynomially many different
profiles that are relevant, guessing the rule F can be done
in nondeterministic polynomial time. Moreover, the algo-
rithm guesses a set AE and verifies that AE / AN. Since AN

contains no quantifiers, guessing AE can also be done in
nondeterministic polynomial time. Then, for each A (
AE with |A| = |AE| − 1 the algorithm guesses a voting
rule F ∈ I(A) with F (�N∗) 6= X∗. Finally, the algorithm
uses the NP oracle to verify that there exists no F ∈ I(AE)
with F (�N∗) 6= X∗—that is, that for all F ∈ I(AE) it holds
that F (�N∗) = X∗. The algorithm accepts if and only if all
checks succeed. It is straightforward to verify that the algo-
rithm accepts for some sequence of nondeterministic choices
if and only if there exists a suitable justification 〈AN,AE〉.

Next, we will show ΣP
2 -hardness by reducing from the ΣP

2 -
complete problem ∃∀-3SAT (Stockmeyer 1976; Wrathall
1976). In this problem, the input is a propositional formula
ϕ(A,B) in 3DNF ranging over two distinct sets of variables
A and B, and the question is whether there exists a truth
assignment α : A → {0, 1} such that for all truth assign-
ments β : B → {0, 1} it holds that ϕ[α ∪ β] is true.

Let ϕ(A,B) be an instance of ∃∀-3SAT. We consider a
sufficiently large set of agents, and we let X = {>,⊥,4}
be the set of alternatives. We associate each propositional
variable v ∈ Vars(ϕ) with a profile �v . Moreover, we
let X∗ = {4} and �N∗=�v1

where v1 corresponds to a
variable in the set B.

As set of (quantifier-free) axioms we take A = A+∪A−∪
{A4}, where A4 is defined below, where A+ = {A+

v | v ∈
A} contains an axiom A+

v = ω({>},�v) for each profile
�v linked to some v ∈ A, encoding the fact that the truth
value > should be assigned to v, and where A− = {A−v |
v ∈ A} contains an axiom A−v = ω({⊥},�v) for each
profile �v linked to some v ∈ A, encoding the fact that
the truth value ⊥ should be assigned to v. Note that if we
are able to assign an outcome to each profile �v with v ∈
A, satisfying either A+

v or A−v , then this value assignment
corresponds to a truth assignment α : A→ {0, 1} where for
all v in A, α(v) = 1 if and only if ω({>},�v) is true.

Intuitively, the axiom A4 encodes that, given a truth as-
signment α : A→ {0, 1}, then either there exists a truth as-

signment β : B → {0, 1} making ϕ false (together with α),
or all profiles �v for variables v ∈ B are assigned to the
outcome {4}. We let A4 =

(∧
v∈B ω({4},�v)

)
∨(

¬ψ ∧
∧

v∈B(ω({>},�v) ∨ ω({⊥},�v))
)
, where ψ =∨

di∈ϕ,di=(`1∧`2∧`3) (σ(`1) ∧ σ(`2) ∧ σ(`3)), σ(`) =

ω({>},�v) if ` = v is a positive literal, and σ(`) =
ω({⊥},�v) if ` = ¬v is a negative literal.

One can verify that there exists someAN ⊆ A andAE/AN

(justifying the fact the {4} is the only possible outcome
for profile �v1

) such that (a) AN satisfies the nontriviality
condition and (b) AE satisfies the explanatoriness condition
if and only if (a) there exists some suitable α such that (b) for
all β it holds that ϕ[α ∪ β] is true.

The Full Language
For the case where axioms are specified as arbitrary sen-
tences in our language, the problem EXISTS-JUST is
in EXPNP and NEXP-hard. We begin by showing member-
ship in EXPNP. The complexity class EXPNP has also been
named ∆exp

2 —at the second level of the Exponential-Time
Hierarchy as defined by Dawar, Gottlob, and Hella (1998)—
and is an exponential-time analogue of the class ∆p

2 = PNP.

Proposition 7. In the case where the axioms in the corpus A
are given as arbitrary sentences in the first-order language,
the problem EXISTS-JUST is in EXPNP.

Proof (sketch). We describe an exponential-time algorithm
with an NP oracle that solves the problem. The algorithm
iterates over all (exponentially many) sets AN ⊆ A. For
each AN, it writes out AN as an equivalent quantifier-free
sentence AN

qf. Then, it checks (1) whether AN
qf is nontriv-

ial. This check can be done with a single (exponential-
size) query to the NP oracle. It further checks (2) that ev-
ery rule F ∈ I(AN

qf) has the property that F (�N∗) = X∗.
This can also be done with a single (exponential-size) query
to the NP oracle: the algorithm asks the oracle if there ex-
ists some F ∈ I(AN

qf) such that F (�N∗) 6= X∗. The al-
gorithm outputs “yes” if and only if for some AN ⊆ A both
checks (1) and (2) succeed. This algorithm is correct because
if AN is nontrivial and forces the outcome to be selected,
then there must exist some AE / AN (and thus also some
subset-minimal AE) that satisfies explanatoriness.

The algorithm described in the proof of Proposition 7 is in
line with the approach taken by Boixel and Endriss (2020),
where they encode the problem of finding a justification into
a constraint satisfaction problem in exponential time, and
then use the NP machinery of constraint satisfaction.

We now turn our attention to the NEXP-hardness of
the problem. To show that the problem EXISTS-JUST is
NEXP-hard, we will reduce from the NEXP-complete prob-
lem SUCCINCT-3COL (Veith 1997). Here, the problem
is to decide if a given undirected graph G = (V,E) is
3-colorable—that is, whether there exists a function χ :
V → {1, 2, 3} such that for each {v, v′} ∈ E it holds
that χ(v) 6= χ(v′). However, the graph is specified by a
representation that can be exponentially more succinct. We
assume that |V | = 2n for some n ∈ N and that V =

5199

{0, 1}n. The graph G is then given by a propositional logic
formula ϕG on the variables x1, . . . , xn, y1, . . . , yn that
specifies which vertices are connected by an edge in E
in the following way. Let v, v′ ∈ V be two vertices.
Then v, v′ are connected by an edge if ϕG(αv, αv′) evalu-
ates to true, where αv is the truth assignment that instan-
tiates the variables x1, . . . , xn according to v ∈ {0, 1}n
and αv′ is the truth assignment that instantiates the vari-
ables y1, . . . , yn according to v′ ∈ {0, 1}n. The input for the
problem SUCCINCT-3COL consists of a propositional for-
mula ϕG on the variables x1, . . . , xn, y1, . . . , yn that speci-
fies a graph G = (V,E) with 2n vertices, and the question
is whether G is 3-colorable.

Theorem 8. In the case where the axioms in the corpus A
are given as arbitrary sentences in the first-order language,
the problem EXISTS-JUST is NEXP-hard.

Proof. We show NEXP-hardness by giving a reduction from
SUCCINCT-3COL. Take an instance of SUCCINCT-3COL,
consisting of a graph G with 2n vertices represented suc-
cinctly by ϕG. We construct a corresponding instance
〈�N∗ , X

∗,A〉 of EXISTS-JUST as follows.
We introduce n individuals, and the set X = {r, g, b}

of alternatives. This gives rise to 6n possible preference
profiles. We will be interested in those profiles where
every agents ranks alternative r as their most preferred
alternative—the 2n profiles with this property we will call
interesting profiles. We associate each of the 2n vertex in G
with one of these interesting profiles. As target profile �N∗

we take one of the non-interesting profiles, and the target
outcome is X∗ = {r}. The set A = {A} contains a single
axiom A = (∀P p.∀P p1.∀P p2.∀N i. A1∧A2)∧ω({r},�N∗),
where the subformulas A1 and A2 are defined below.

The subformula A1 enforces that the outcome given to
each profile consists of a singleton. The intuition behind this
is that each vertex of G can only be assigned to a single
color. We let A1 = ω({r}, p) ∨ ω({g}, p) ∨ ω({b}, p).

The subformula A2 encodes that two adjacent
vertices in G cannot be associated with the same
color—and thus the two corresponding interesting
profiles cannot be assigned the same outcome: We
let A2 = top(r, i, p1) ∧ top(r, i, p2) ∧ AϕG

→∧
c∈{r,g,b}(¬ω({c}, p1) ∨ ¬ω({c}, p2)), where AϕG

is
used to determine whether vertices in G associated to
profiles p1 and p2 are adjacent. The subformula AϕG

is
obtained from ϕG by replacing each occurrence of xi by
pref(i, g, b, p1) and each occurrence of yi by pref(i, g, b, p2).
Finally, the subformula ω({r},�N∗) of A enforces that {r}
must be selected for profile �N∗ .

One can verify that the only relevant AN = {A} ⊆ A
satisfies the nontriviality condition if and only if G is 3-
colorable, and that the explanatoriness condition can be met
by an appropriate (minimal) AE.

Further Restrictions on the Language
The complexity results that we established in this paper all
indicate computational intractability—one worse than the
other. In general, when given an arbitrary set of first-order

sentences that express axioms, finding (and checking) justi-
fications for a given outcome requires nondeterministic ex-
ponential time (Theorems 5 and 8). If we restrict the lan-
guage and forbid the use of quantifiers—which makes the
language exponentially less succinct—the problem of find-
ing justifications remains intractable (Theorem 6).

For using the automated search for justifications in practi-
cal settings, worst-case running time (e.g., polynomial-time)
guarantees would be useful. The results in this paper are all
based on arbitrary logic sentences. To get tractability results,
one would have to look at various restrictions on the sets of
sentences that are given as axioms. Our results already give
some indications for what restrictions might (or might not)
work to get tractability results. For example, for the case of
quantifier-free axioms that refer to at most two profiles, we
can modify the proof of Theorem 8 to show that finding jus-
tifications is still NP-hard.

Corollary 9. In the case where each axiom in A is a
quantifier-free sentence that mentions at most two profiles,
the problem EXISTS-JUST is NP-hard.

On the other hand, if each axiom is quantifier-free and
mentions only a single profile, the problems EXISTS-JUST
and CHECK-JUST are polynomial-time computable. How-
ever, this is a very limited setting.

We believe that the most interesting and promising re-
stricted languages to consider are those that are based on
structural restrictions—e.g., using various types of width
measures on graphs (see, e.g., Cygan et al., 2015).

Conclusion
In the context of providing non-expert agents with justifica-
tions of collective decisions, we proved several intractability
results. In case of succinct representations of the normative
principles, checking the correctness of a given justification
or deciding whether there exists one are NEXP-hard prob-
lems. In the more favorable case where one has direct access
to all the instances of these normative principles, deciding
on the existence of a justification is already ΣP

2 -complete.
These results, summarised in Table 1, indicate that automat-
ically justifying any outcome using any normative principle
in real-life scenarios is not feasible across the board.

There are several directions for future research that one
could explore. For example, the ΣP

2 -completeness result of
Theorem 6 suggests that encoding the problem into Answer
Set Programming (ASP) might be a useful direction. For an-
other direction, as sketched in Section 5, it might be possible
to make this notion of justification useful in practice by de-
signing efficient solving strategies for settings with restric-
tions on the normative principles considered. For example,
finding justifications that only use intraprofile axioms (Fish-
burn 1987)—although of very limited appeal—can be done
tractably. A slightly more interesting restriction would be
to allow axioms that refer to at most two different profiles.
Many appealing axioms from social choice theory fit in this
category (e.g., anonymity, neutrality, strategyproofness). In
this case (possibly with some mild further restrictions), find-
ing a justification could be in NP and finding practically effi-
cient solving approaches for this case could be conceivable.

5200

References
Belahcene, K.; Chevaleyre, Y.; Labreuche, C.; Maudet, N.;
Mousseau, V.; and Ouerdane, W. 2018. Accountable Ap-
proval Sorting. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI-2018).
Belahcene, K.; Labreuche, C.; Maudet, N.; Mousseau, V.;
and Ouerdane, W. 2019. Comparing options with argu-
ment schemes powered by cancellation. In 28th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
19), 1537–1543. Macao, Macau SAR China. doi:10.24963/
ijcai.2019/213. URL https://hal.archives-ouvertes.fr/hal-
02133034.
Boixel, A.; and Endriss, U. 2020. Automated Justification of
Collective Decisions via Constraint Solving. In Proceedings
of the 19th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2020). IFAAMAS.
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procac-
cia, A. D., eds. 2016a. Handbook of Computational Social
Choice. Cambridge University Press.
Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia,
A. D. 2016b. Introduction to Computational Social Choice.
In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procac-
cia, A. D., eds., Handbook of Computational Social Choice,
chapter 1. Cambridge University Press.
Cai, J.; Gundermann, T.; Hartmanis, J.; Hemachandra, L. A.;
Sewelson, V.; Wagner, K. W.; and Wechsung, G. 1988. The
Boolean Hierarchy I: Structural Properties. SIAM J. Comput.
17(6): 1232–1252.
Cailloux, O.; and Endriss, U. 2016. Arguing about Voting
Rules. In Proceedings of the 15th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS-
2016). IFAAMAS.
Conitzer, V.; and Walsh, T. 2016. Barriers to Manipulation
in Voting. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang,
J.; and Procaccia, A. D., eds., Handbook of Computational
Social Choice, chapter 6. Cambridge University Press.
Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Marx, D.; Pilipczuk, M.; Pilipczuk, M.; and Saurabh, S.
2015. Parameterized Algorithms. Springer.
Davenport, A.; and Kalagnanam, J. 2004. A computational
study of the Kemeny rule for preference aggregation. In Pro-
ceedings of the 19th National Conference on Artifical Intel-
ligence (AAAI’04), volume 4, 697–702.
Dawar, A.; Gottlob, G.; and Hella, L. 1998. Capturing rel-
ativized complexity classes without order. Mathematical
Logic Quarterly 44(1): 109–122.
Endriss, U. 2020. Analysis of One-to-One Matching Mech-
anisms via SAT Solving: Impossibilities for Universal Ax-
ioms. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence (AAAI-2020).
Fishburn, P. C. 1987. Interprofile conditions and impossibil-
ity, volume 18. Taylor & Francis.
Hemaspaandra, E.; Spakowski, H.; and Vogel, J. 2005. The
complexity of Kemeny elections. Theoretical Computer Sci-
ence 349(3): 382–391.

Papadimitriou, C. H.; and Wolfe, D. 1986. The complexity
of facets resolved. J. of Computer and System Sciences 37:
2–13.
Papadimitriou, C. H.; and Yannakakis, M. 1982. The com-
plexity of facets (and some facets of complexity). In Pro-
ceedings of the Fourteenth Annual ACM Symposium on The-
ory of Computing - STOC ’82, 255–260. San Francisco, Cal-
ifornia, United States: ACM Press.
Peters, D.; Procaccia, A. D.; Psomas, A.; and Zhou, Z. 2020.
Explainable Voting. In Larochelle, H.; Ranzato, M.; Hadsell,
R.; Balcan, M. F.; and Lin, H., eds., Advances in Neural In-
formation Processing Systems, volume 33, 1525–1534. Cur-
ran Associates, Inc.
Stockmeyer, L. J. 1976. The polynomial-time hierarchy.
Theoretical Computer Science 3(1): 1–22.
Tang, P.; and Lin, F. 2009. Computer-aided Proofs of Ar-
row’s and other Impossibility Theorems. Artificial Intelli-
gence 173(11): 1041–1053.
Veith, H. 1997. Languages represented by Boolean formu-
las. Information Processing Letters 63(5): 251–256.
Wrathall, C. 1976. Complete Sets and the Polynomial-Time
Hierarchy. Theoretical Computer Science 3(1): 23–33.
Young, H. P. 1974. An Axiomatization of Borda’s Rule.
Journal of Economic Theory 9(1): 43–52.
Zwicker, W. S. 2016. Introduction to the Theory of Voting.
In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procac-
cia, A. D., eds., Handbook of Computational Social Choice,
chapter 2. Cambridge University Press.

5201

