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Abstract

We study the problem of allocating a set of indivisible goods
among agents with subadditive valuations in a fair and ef-
ficient manner. Envy-Freeness up to any good (EFX) is the
most compelling notion of fairness in the context of indivis-
ible goods. Although the existence of EFX is not known be-
yond the simple case of two agents with subadditive valua-
tions, some good approximations of EFX are known to exist,
namely 1

2
-EFX allocation and EFX allocations with bounded

charity.
Nash welfare (the geometric mean of agents’ valuations) is
one of the most commonly used measures of efficiency. In
case of additive valuations, an allocation that maximizes Nash
welfare also satisfies fairness properties like Envy-Free up to
one good (EF1). Although there is substantial work on ap-
proximating Nash welfare when agents have additive valua-
tions, very little is known when agents have subadditive valu-
ations. In this paper, we design a polynomial-time algorithm
that outputs an allocation that satisfies either of the two ap-
proximations of EFX as well as achieves an O(n) approxi-
mation to the Nash welfare. Our result also improves the cur-
rent best-known approximation of O(n log n) and O(m) to
Nash welfare when agents have submodular and subadditive
valuations, respectively.
Furthermore, our technique also gives an O(n) approxima-
tion to a family of welfare measures, p-mean of valuations for
p ∈ (−∞, 1], thereby also matching asymptotically the cur-
rent best approximation ratio for special cases like p = −∞
while also retaining the remarkable fairness properties.

Introduction
Discrete fair division of resources is a fundamental prob-
lem in various multi-agent settings, where the goal is to
partition a set M of m indivisible goods among n agents
in a fair and efficient manner. Each agent i has a valua-
tion function vi : 2M → R≥0 that quantifies the amount
of utility i derives from every subset of goods. We assume
that vi’s are monotone, i.e., vi(A) ≤ vi(A ∪ {g}) for all
g ∈ M , normalized i.e., vi(∅) = 0 and subadditive, i.e.,
vi(A∪B) ≤ vi(A)+vi(B), for all A,B ⊆M . Subadditive
functions naturally arise in practice because they capture the
notion of complement-freeness (Lehmann, Lehmann, and
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Nisan 2006). Furthermore, they strictly contain submod-
ular functions1, which capture the notion of diminishing
marginal returns.

Among various choices, envy-freeness is the most nat-
ural fairness concept, where no agent i envies another
agent j’s bundle, i.e., partition of goods into n bundles
X1, X2, . . . , Xn so that for all agents i and j, we have
vi(Xi) ≥ vi(Xj). However, envy-free allocation do not al-
ways exist, e.g., consider allocating a single valuable good
among two agents. Its mild relaxation envy-freeness up to
any good (EFX) (Caragiannis et al. 2016) is arguably the
most compelling notion of fairness in discrete setting, where
no agent envies other’s allocation after the removal of any
good, i.e., for all agents i and j, we have vi(Xi) ≥ vi(Xj \
{g}) for all g ∈ Xj . While it is not known whether an EFX
allocation always exists or not beyond the simple case of
two agents under subadditive valuations, the following re-
laxations exist:

• 1
2 -EFX allocation X = 〈X1, X2, . . . , Xn〉 where
vi(Xi) ≥ 1

2 · vi(Xj \ {g}), for all g ∈ Xj (Plaut and
Roughgarden 2018). In this paper we will be referring to
a relaxed version of 1

2 -EFX namely, ( 12 − ε)-EFX alloca-
tion where vi(Xi) ≥ ( 12−ε) ·vi(Xj \{g}) for all g ∈ Xj .
A ( 12 − ε)-EFX allocation can also be computed in poly-
nomial time when agents have subadditive valuations.

• EFX allocation with bounded charity X =
〈X1, X2, . . . , Xn〉 where we do not allocate a set P
of goods (set P is donated to charity) where |P | < n
and vi(Xi) ≥ vi(P ), for all i ∈ [n] and the partial
allocation X is EFX (Chaudhury et al. 2020). There is
also a polynomial time algorithm to find an (1 − ε)-EFX
allocation with bounded charity for general valuations for
any ε > 0 (Chaudhury et al. 2019)2.

Another popular (and stronger) relaxation is envy-
freeness up to one good (EF1) (Budish 2011), where no
agent envies other’s allocation after the removal of some
good from the other’s bundle, i.e., vi(Xi) ≥ vi(Xj \ {g}),
for some g ∈ Xj . Clearly, EFX implies EF1. Although

1A function v(.) is submodular if v(A)+ v(B) ≥ v(A∪B)+
v(A ∩B), ∀A,B ⊆M .

2This is an updated version of the paper which goes beyond the
preliminary version published in SODA 2020
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the existence of EFX allocations still remains a major open
question, an EF1 allocation always exists for general valua-
tions and can be obtained in polynomial time (Lipton et al.
2004).

We note that none of the above algorithms provides, as
such, any efficiency guarantees. For efficiency, among many
choices, maximum Nash welfare, defined as the geometric
mean of agents’ valuations, serves as a focal point. In con-
trast to other popular welfare measures such as social wel-
fare and max-min welfare, Nash welfare is scale invariant,
i.e., scaling one agent’s valuation by any positive constant
does not change the outcome. In case of additive valua-
tions3, an allocation that maximizes Nash welfare is both
EF1 and Pareto optimal4 (Caragiannis et al. 2016). How-
ever, such an allocation does not provide the EF1 property
beyond additive (e.g., subadditive valuations (Caragiannis
et al. 2016)), and further, no meaningful guarantee in terms
of EFX even in the case of additive valuations (Amanatidis
et al. 2020). Furthermore, maximizing the Nash welfare is
a hard problem, and the best known approximation guaran-
tees areO(n log n) andO(m) for submodular (Garg, Kulka-
rni, and Kulkarni 2020) and subadditive (Nguyen and Rothe
2014) valuations, respectively. As is the case with the al-
gorithms providing fairness guarantees, these Nash welfare
approximation algorithms do not provide any fairness guar-
antees. Therefore, a natural question is:

Does there exist a polynomial-time algorithm that
provides the best known fairness guarantees as well as
the best known efficiency guarantees simultaneously?

In this paper, we answer this question affirmatively. We
design a simple algorithm that outputs an allocation that
provides (i) either of the best-known EFX approximations
mentioned above, (ii) EF1 guarantee, and (iii) O(n) ap-
proximation to the maximum Nash welfare. The latter also
improves the best-known approximation factor. Further, we
show that our algorithm can be easily adapted to obtain the
same guarantees for the entire family of p-mean welfare
measures Mp(X), defined as,

Mp(X) = (
∑
i

1
n (vi(Xi))

p)1/p for p ∈ (−∞, 1].

The p = −∞, 0, and 1 correspond to the well-studied cases
of max-min welfare, Nash welfare, and social welfare, re-
spectively. We note that this also matches the current best
approximation ratio for the max-min welfare (Khot and Pon-
nuswami 2007) while also retaining the above mentioned
fairness guarantees.

One crucial difference between Nash welfare and p-mean
welfare when p 6= 0 is that p-mean is no longer scale invari-
ant. Therefore, it is not intuitive that the allocation that max-
imizes welfare will be fair when our fairness measures are

3A valuation function v(.) is additive if vi(S) =∑
j∈S vi({j}), ∀S.
4An allocation X ′ = (X ′

1, . . . , X
′
n) Pareto dominates an-

other allocation X = (X1, . . . , Xn) if vi(X ′
i) ≥ vi(Xi), ∀i and

vk(X
′
k) > vk(Xk) for some k. An allocation X is Pareto optimal

if no allocation X ′ dominates X .

relaxations of envy-freeness.5 However, we manage to give
a polynomial time algorithm that achieves a good approxi-
mation (independent of the number of goods in the instance)
to the p-mean welfare while still retaining all the fairness
properties.

Technical Overview
In this section, we briefly sketch our main result and overall
approach. We first state the main result of our paper
Theorem 1. Given a discrete fair division instance with a
set [n] of n agents, a set M of m indivisible goods, where
each agent i has a subadditive valuation function vi : 2M →
R≥0, for any ε > 0, we can find in polynomial time

• a partition 〈X1, X2, . . . , Xn〉 ofM such thatX is ( 12−ε)-
EFX and Mp(X) ≥ 1−2ε

8(n+1) ·Mp(X
∗), and

• a partition 〈X1, X2, . . . , Xn, P 〉 of M such that X is
(1−ε)-EFX with bounded charity andMp(X) ≥ 1−ε

4(n+1) ·
Mp(X

∗),

where X∗ is the allocation with maximum p-mean value.

We now briefly sketch our main techniques: Let us con-
sider the scenario that a given instance admits an envy-
free allocation, i.e., a partition of the goods into n bundles
X1, X2, . . . , Xn such that for all pairs of agents i and j we
have vi(Xi) ≥ vi(Xj). In that case for each agent i we have

n · vi(Xi) ≥
∑
j∈[n]

vi(Xj)

≥ vi(∪j∈[n]Xj) (by subadditivity)

= vi(M)

This implies that vi(Xi) ≥ 1
n · vi(M). Since in any optimal

allocation no agent can get a valuation more than vi(M), we
can conclude that each agent has a bundle worth 1

n times
his bundle at optimum. This would immediately give us
an n approximation for generalized p-mean welfare. How-
ever, most instances may not admit an envy-free allocation.
Naturally, we then look into the closest relaxation of envy-
freeness that is known to exist in the context of indivisible
goods6. ( 12 -EFX (Plaut and Roughgarden 2018) and EFX
with bounded charity7 (Chaudhury et al. 2020)). So let us
consider the 1

2 -EFX allocation: Here we can partition the
given instance into n bundles X1, X2, . . . , Xn such that for
all pairs of agents i and j we have vi(Xi) ≥ 1

2vi(Xj \ {g})
for all g ∈ Xj . Let us first look into all the bundles

5Consider a special case when p = −∞. Here the p-mean wel-
fare is equal to the valuation of the agent with smallest valuation.
In particular, consider the scenario with two agents and n goods
where agent 1 has a valuation of 1 for each good and agent 2 has a
valuation of ε < 1

n
for each good. The allocation that maximizes

the p-mean welfare here will give exactly one good to agent 1 and
n−1 goods to agent 2, which is very far from satisfying any relax-
ation of envy-freeness.

6In our algorithm we consider relaxed variants of these notions
like ( 1

2
− ε)-EFX and (1 − ε)-EFX with bounded charity, but for

clarity in this section we keep the original notions
7defined in Section
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Xj that are not singleton, i.e., |Xj | ≥ 2: We have that
vi(Xi) ≥ 1

2 · vi(Xj \ {g}) for all g ∈ Xj , implying that

vi(Xi) ≥ 1
2 · max

(
vi(Xj \ {g}), vi({g})

)
(as |Xj | ≥ 2).

Thus,

n · vi(Xi) ≥
∑
|Xj |≥2

1

2
· 1
2
·
(
vi(Xj \ {g}) + vi({g})

)
≥ 1

4
·
∑
|Xj |≥2

vi(Xj)

(by subadditivity)

≥ 1

4
· vi(∪|Xj |≥2Xj) (1)

(by subadditivity)

Let S be the set of all the goods in singleton bundles inX ,
i.e., S = {g | there is a Xj = {g}}. Then from (1) we have
the guarantee that for every agent vi(Xi) ≥ 1

4n · vi(M \ S).
Therefore, in any 1

2 -EFX allocation every agent has an 1
4n

fraction of his valuation on the goods he receives fromM \S
in the optimal allocation, i.e., vi

(
X∗i ∩ (M \ S)

)
where

X∗ = (X∗1 , . . . , X
∗
n) is the allocation that has the highest

generalized p-mean welfare. The only problem is how to al-
locate the goods in the set S appropriately.

The only scenario where an incorrect allocation of the
goods in S causes a significant decrease in the p-mean wel-
fare is when there are agents who have a substantially high
valuation for some goods in S. However, we could very well
be in a scenario where there are only a few goods in S (say
less than n

3 ) which are very valuable to many agents and
then we may not be able to give every agent a bundle that
he values 1

n times the whole set S.8 Therefore we need to
compare our allocation with the allocation that maximizes
the p-mean welfare.

We briefly sketch how we overcome this barrier. The good
aspect of the situation is that the number of goods in S is
small, i.e., |S| ≤ n. Let Hi denote the set of n goods that
are valued by agent i the most, i.e., all goods in Hi are more
valuable than any good outside Hi. Now we find a single
good allocation (where each agent gets exactly one good) of
the high valued goods, namely the set H = ∪i∈[n]Hi, op-
timally to the agents assuming that we can give each agent
at least 1

n times their valuation for the low valued goods,
namely the setM \Hi. That is, we find a single good alloca-
tion, where every agent i gets exactly one high valued good
hi ∈ Hi, that maximizes

∑
i∈[n]

(
vi({hi})+ 1

nvi(M \Hi)
)p

(such allocations can be found efficiently with matching al-
gorithms). Let us call the current single good allocation Y .
Note that Y is trivially EFX as every agent has exactly one
good (therefore Y is also 1

2 -EFX). We then run the 1
2 -EFX

8A very simple scenario is to divide n goods among n agents
with identical additive valuations, where all agents have a valuation
of 1 for a single good and ε � 1

n
for the rest of the goods. In

any division there will be n − 1 agents who do not get 1
n

of their
valuation on the set of n goods

algorithm starting with Y as the initial partial 1
2 -EFX allo-

cation. The intuition being that the low valued goods appear
in non-singleton bundles and the high valued goods occur in
singleton bundles in the final 1

2 -EFX allocation, but we have
allocated the high valued goods correctly (up to a factor of
1
n as we computed a single good allocation, while the opti-
mum need not necessarily give every agent exactly one high
valued good) as we started out with an optimal allocation of
the high valued goods. Since the low valued goods occur in
non-singleton bundles we are indeed able to give every agent
1
n times their valuation for the low valued goods.

Related Work
Fair division has been extensively studied for more than
seventy years since the seminal work of Steinhaus (Stein-
haus 1948). A complete survey of all different settings and
the fairness and efficiency notions used is well beyond the
scope of this paper. We limit our attention to fair divi-
sion of indivisible goods (as mentioned in Section ). There
have been extensive studies on relaxations of envy-freeness
like EF1 (Budish et al. 2017; Barman et al. 2018; Lipton
et al. 2004; Caragiannis et al. 2016) and EFX (Chaudhury
et al. 2020; Caragiannis, Gravin, and Huang 2019; Plaut
and Roughgarden 2018) and relaxations of proportionality
like maximin shares (MMS) (Budish 2011; Bouveret and
Lemaı̂tre 2016; Amanatidis et al. 2017; Barman and Kr-
ishnamurthy 2017; Kurokawa, Procaccia, and Wang 2018;
Ghodsi et al. 2018; Garg, McGlaughlin, and Taki 2019;
Garg and Taki 2019) and proportionality up to one good
(PROP1) (Conitzer, Freeman, and Shah 2017; Barman and
Krishnamurthy 2019; Garg and McGlaughlin 2019).

While there is a significant interest in finding fair allo-
cations, there has also been a lot of interest in guarantee-
ing efficient fair allocations. A common measure of eco-
nomic efficiency is Pareto-Optimality9. (Caragiannis et al.
2016) showed that when agents have additive valuations,
any allocation that maximizes the Nash welfare is guaran-
teed to be Pareto-optimal (efficient) and EF1 (fair). Hence
the Nash welfare is also a good measure of efficiency of
fair allocations. Unfortunately, finding an allocation with
the maximum Nash welfare is APX-hard (Lee 2017). How-
ever, approximation algorithms for Nash welfare under dif-
ferent types of valuations have received significant atten-
tion recently, e.g., (Cole and Gkatzelis 2018; Cole et al.
2017; Anari et al. 2017; Garg, Hoefer, and Mehlhorn 2018;
Anari et al. 2018; Barman, Krishnamurthy, and Vaish 2018;
Chaudhury et al. 2018; Garg, Kulkarni, and Kulkarni 2020;
Babaioff, Ezra, and Feige 2020; Benabbou et al. 2020).

Independent Work
Independently of our work, (Barman et al. 2020) also find
an O(n)-approximation algorithm for the generalized p-
mean welfare when agents have subadditive valuations. On
a high level, both algorithms, first carefully allocate a single
highly valuable good to each agent and then carefully allo-
cate the remaining goods. However, the procedures used to

9Defined in Section
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determine the initial (the single highly valuable good allo-
cation) and the final allocations are significantly different.
Also, contrary to the allocation determined by the algorithm
in (Barman et al. 2020), we are able to obtain guarantees on
the fairness of our allocation, namely the properties of EF1
and the two relaxations of EFX.

In the same paper, (Barman et al. 2020) show that it re-
quires an exponential number of value queries to provide any
sublinear approximation for the generalized p-mean welfare
under subadditive valuations. Therefore, in polynomial time,
our algorithm yields an allocation that satisfies the best re-
laxations of EFX known for subadditive valuations, and also
achieves the best approximation for the generalized p-mean
welfare possible in polynomial time.

Preliminaries
Any discrete fair division instance I is a tuple 〈[n],M,V〉
comprising of a set of n agents ([n]), a set of m goods (M )
and a set of valuation functions V = {v1, v2, . . . , vn}. The
valuation function vi : 2M → R≥0 tries to capture agent i’s
utility for each subset of goods. Throughout this paper we
will be dealing with the case where all the valuation func-
tions are

• normalized: vi(∅) = 0 for all i ∈ [n],

• monotone: vi(A ∪ {g}) ≥ vi(A) for all i ∈ [n] and A ⊂
M , and

• subadditive: for any sets A,B ⊆ M we have vi(A) +
vi(B) ≥ vi(A ∪B) for all i ∈ [n].

For ease of notation we use vi(g) instead of vi({g}) and
vi(A \ g) instead of vi(A \ {g})

Generalized p-mean welfare: Given an allocation X the
p-mean welfare of X (parametrized by p) is defined by

Mp(X) =
( 1
n

∑
i∈[n]

vi(Xi)
p
) 1
p

This captures a wide range of fairness and efficiency mea-
sures that have been used frequently in the literature: Nash
welfare for p = 0, max-min welfare (also known as the egal-
itarian welfare) for p = −∞ and social welfare for p = 1.
Barman and Sundaram (Barman and Sundaram 2020) also
mention that,

“generalized means with p ∈ (−∞, 1] exactly con-
stitute the family of welfare functions that satisfy the
Pigou-Dalton transfer principle and a few other key ax-
ioms.”

In the same paper they show that when agents have identical
valuations, there is an algorithm that provides anO(1) factor
approximation to the p-mean welfare.

EFX Allocations and Relaxations: EFX is arguably the
strongest notion of fairness in the context of indivisible
goods. Formally,

Definition 2. An allocation X = 〈X1, X2, . . . , Xn〉 is said
to be an EFX allocation if for all pairs of agents i and j, we
have vi(Xi) ≥ vi(Xj \ g) for all g ∈ Xj .

Although the existence of complete EFX allocations is
not known yet, there have been results pertaining to the ex-
istence of certain relaxations of EFX. We state two major
relaxations here. Plaut and Roughgarden (Plaut and Rough-
garden 2018) introduced the notion of approximate EFX or
equivalently α-EFX:

Definition 3. An allocation X is α-EFX with α ∈ (0, 1) if
and only if for all pairs of agents i and j we have vi(Xi) ≥
α · vi(Xj \ g) for all g ∈ Xj .

(Plaut and Roughgarden 2018) showed that 1
2 -EFX al-

locations exist and can be computed in pseudo-polynomial
time. With a very minor change in their algorithm10 we can
obtain an ( 12 − ε)-EFX allocation in polynomial time.

Another relaxation introduced by (Chaudhury et al. 2020)
is EFX with bounded charity:

Definition 4. A partial allocation X is an EFX allocation
with bounded charity with the set of unallocated goods P
such that

• X is EFX,
• |P | < n, and
• vi(Xi) ≥ vi(P ) for all i ∈ [n].

The updated version of the paper (Chaudhury et al. 2019)
gives a polynomial time algorithm to determine (1−ε)-EFX
allocation with bounded charity.11

Throughout the paper we will outline algorithms that find
allocations with high welfare and are flexible with the fair-
ness that the allocations satisfy, i.e., we can get ( 12 −ε)-EFX
allocations with high welfare or (1−ε)-EFX allocations with
bounded charity and high welfare. Therefore we now intro-
duce some common notation for ease of referring to both
these relaxations of EFX at the same time:

Definition 5. An allocation X is an (α, c)-EFX allocation
with α ∈ (0, 1) and c ∈ {0, 1} if and only if

• X is α-EFX and EF1,
• |P | < n, and
• vi(Xi) ≥ vi(P ) for all i ∈ [n].
• P = ∅ if c = 1.12

Therefore an (α, 1)-EFX allocation would refer to an α-
EFX (which is also EF1) allocation and a (α, 0)-EFX alloca-
tion would refer to an α-EFX allocation with bounded char-
ity. In particular we would only be interested in (( 12 −ε), 1)-
EFX allocation and (1− ε, 0)-EFX allocation.

Similarly, we also introduce the notion of an (α, c)-EFX
algorithm:

10Just run the same algorithm replacing the violation condition
from 1

2
-EFX to ( 1

2
− ε)-EFX

11Just relax the first condition in Definition 4 to “X is (1 − ε)-
EFX”

12c serves as an indicator to whether the allocation is complete
or not.
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Definition 6. An (α, c)-EFX algorithm takes as input any
partial α-EFX allocation X and outputs an (α, c)-EFX al-
location Y as the final allocation such that

• the valuation of every agent in the final allocation is at
least as high as his valuation in the initial allocation, i.e.,
vi(Yi) ≥ vi(Xi), and

• if there exists an agent i such that |Yi| = 1 and Yi 6= Xi,
then vi(Yi) > vi(Xi).

In particular an (α, c)-EFX algorithm outputs a final
(α, c)-EFX allocation that preserves (if not improves) all the
welfare guarantees of the initial α-EFX allocation. Both the
existing algorithms for determining an ( 12 − ε, 1)-EFX al-
location (a trivial modification of the algorithm in (Plaut
and Roughgarden 2018)) and (1 − ε, 0)-EFX (Chaudhury
et al. 2019) allocation are an ( 12 − ε, 1)-EFX algorithm and
an (1− ε, 0)-EFX algorithm respectively.

Algorithm
In this section, we show that we can determine an (α, c)-
EFX allocation with an O(n) approximation on the p-mean
welfare. The algorithm is very simple and it has just two
phases: In the first phase we try to determine a reasonable
allocation of high valued goods (we call this allocation Y )
and then in the second phase we just run an (α, c)-EFX al-
gorithm with the remaining set of goods (we call our final
allocation Z).

Allocating the high valued goods Y : We first formally
define the notion of high valued goods for an agent: For
each agent i let us order the goods inM as

{
gi1, g

i
2, . . . , g

i
m

}
such that vi(gi1) ≥ vi(g

i
2) ≥ · · · ≥ vi(g

i
m). Let Hi ={

gi1, g
i
2, . . . , g

i
n

}
. We refer to Hi to be the set of high val-

ued goods for agent i. Also for each good gik and an agent
i we define rank i(g

i
k) = k. Notice that if for any agent i

rank i(g) < rank i(g
′), then vi(g) ≥ vi(g′).

We now outline how we compute the initial allocation
Y . We construct the complete bipartite graph G = ([n] ∪
M, [n] × M) with the weight of the edge from agent i to
good g, wig being

• n · vi(g) + vi(M \Hi) if p = −∞,

• log
(
n · vi(g) + vi(M \Hi)

)
if p = 0 and

•
(
n · vi(g) + vi(M \Hi)

)p
otherwise.

Depending on the value of p we choose an appropriate
matching mechanism to determine Y : Y is determined such
that ∪i∈[n](i, Yi) is

• a maximum weight matching in G if p ≥ 0,

• a minimum weight perfect matching in G if p < 0 and
p 6= −∞,

• a max-min matching13 in G if p = −∞.

13This is a matching that maximizes the weight of the smallest
edge in the matching.

Let Y be the allocation outputted by the corresponding
matching subroutine. Also let Y = ∪i∈[n]Yi. We modify
the allocation Y slightly such that ∪i∈[n](i, Yi) still remains
the optimum matching, but no agent will prefer a good out-
side Y to the good allocated to him in Y (Yi), i.e., we
wish to determine an allocation Y such that for all agent
i ∈ [n] and all g /∈ Y we have that rank i(Yi) < rank i(g).
To achieve this, as long as there is an agent i ∈ [n] and
a good g /∈ Y such that rank i(g) < rank i(Yi) we set
Yi ← {g}. Note that such an operation does not decrease
the optimum value of the matching: vi(g) ≥ vi(Yi) (as
rank i(g) < rank i(Yi)) and hence wig ≥ wiYi

for p = −∞
and p ∈ [0, 1], while wig ≤ wiYi

for p < 0 and p 6= −∞.
This implies that the objective value of the matching does
not decrease when p ∈ [0, 1] and p = −∞ and the objec-
tive value of the matching does not increase when p < 0
and p 6= −∞. Therefore, ∪i∈[n](i, Yi) still stays an op-
timum matching, but

∑
i∈[n] rank i(Yi) strictly decreases.

Since n ≤
∑
i∈[n] rank i(Yi) ≤ nm, after O(nm) iterations

we will have an allocation Y such that ∪i∈[n](i, Yi) is still
an optimum matching, but for all agents i ∈ [n] and for all
goods g /∈ Y we have rank i(Yi) < rank i(g).

The complete algorithm is outlined in Algorithm 1 (Se-
lection of the allocation Y is captured in steps 1 to 5).

Lemma 7. For all i ∈ [n] we have Yi ⊂ Hi. Furthermore,
for all

• g /∈ Hi, and
• g /∈ Y,

we have vi(Yi) ≥ vi(g).

Proof. We first show that Yi ⊂ Hi. We prove the same by
contradiction. Assume otherwise, i.e., Yi 6⊂ Hi. In that case
note that there is always a good g ∈ Hi\Y (as |Hi| = |Y| =
n and there is a good in Y (namely Yi) which is not in Hi).
By the definition of Hi it is clear that rank i(g) < rank i(g

′)
for all g′ /∈ Hi. Thus we have rank i(g) < rank i(Yi) when
g /∈ Y, which is a contradiction. Therefore Yi ⊂ Hi. This
also immediately shows that for all g /∈ Hi we have vi(g) ≤
vi(Yi) (as Yi ⊂ Hi and any good inHi is at least as valuable
as any good outside Hi to agent i).

The proof of the last statement of the lemma is immediate.
We have that rank i(Yi) < rank i(g) for all g /∈ Y, immedi-
ately implying that vi(Yi) ≥ vi(g).

Run (α, c)-EFX algorithm on the remaining goods:
Once we determined the initial allocation Y , we run an
(α, c)-EFX algorithm on the remaining goods starting with
Y as the initial allocation (Y is a feasible initial allocation as
it is trivially an α-EFX allocation as every agent has exactly
a single good). Let Z be the final (α, c)-EFX allocation. As
mentioned earlier in Section the singleton sets allocated to
the agents are the barriers to proving our desired approxima-
tion for any (α, c)-EFX allocation. However since we started
with a good initial allocation (namely Y ), we first show that
we have some nice properties about the singleton sets in the
final allocation Z.
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Observation 8. If |Z`| = 1 for any ` ∈ [n], then we have
Z` ⊂ Y.

Proof. Since Z is obtained by running an (α, c)-EFX algo-
rithm starting with Y as the initial allocation, we have for
every agent i that vi(Zi) ≥ vi(Yi) (from the definition of
(α, c)-EFX algorithm). Note that if for any agent i we have
Zi 6= Yi, and |Zi| = 1, then vi(Zi) > vi(Yi) (from the def-
inition of (α, c)-EFX algorithm). Now consider the agent `
such that |Z`| = 1. If Z` = Y`, then we immediately have
Z` ⊂ Y. So now consider the case when Z` 6= Y`. Then
we have v`(Z`) > v`(Y`). By Lemma 7 we know that no
good outside Y can be more valuable to agent ` than Y`.
Therefore Z` ⊂ Y.

Now we show a lower bound on the final valuation of an
agent in terms of the low valued goods.

Observation 9. We have vi(Zi) ≥ αvi(M\Y)
2(n+1) for all i ∈ [n].

Proof. Fix an agent i. Now consider any agent j such thatZj
is not a singleton. Since Z is an α-EFX allocation, we have
that vi(Zi) ≥ α·vi(Zj \g) for all g ∈ Zj . Since |Zj | ≥ 2 we
can say that vi(Zi) ≥ α ·max (vi(Zj \ g), vi(g)). Therefore
we have,

vi(Zi) ≥
α · (vi(Zj \ g) + vi(g))

2

≥ α · vi(Zj)
2

( by subadditivity)

Let S = ∪|Z`|=1Z`. By Observation 8 we know that S ⊆
Y. Note that even if Z is a partial allocation (if c = 0 in the
(α, c)-EFX allocation Z) and there exists a set of goods P
unallocated, we have vi(Zi) ≥ vi(P ) (since Z is an (α, c)-
EFX allocation) . Therefore we have,

(n+ 1− |S|)vi(Zi) ≥ α
2

∑
|Zj |≥2

vi(Zj) + vi(P )

≥ α
2 vi

( ⋃
|Zj |≥2

Zj ∪ P
)

( by subadditivity)
= α

2 vi(M \ S)
≥ α

2 vi(M \ Y )

( since S ⊆ Y)

Therefore we have vi(Zi) ≥ α
2(n+1−|S|)vi(M \ Y) ≥

α
2(n+1)vi(M \Y).

Now we show a lower bound on vi(Zi) in terms of the
initial allocation Y and the set of low-valued goods for agent
i, i.e., M \Hi.

Lemma 10. For all i ∈ [n] we have vi(Zi) ≥ α
4(n+1) ·

(
n ·

vi(Yi) + vi

(
M \Hi

))
.

Algorithm 1 Determining an (α, c)-EFX allocation with
O(n) approximation on optimum p-mean.

1: Construct G = 〈[n] ∪M, [n]×M〉 with

wig =


n · vi(g) + vi(M \Hi) if p = −∞
log
(
n · vi(g) + vi(M \Hi)

)
if p = 0(

n · vi(g) + vi(M \Hi)
)p

otherwise

2: Set Y such that

∪i∈[n](i, Yi) =



Max-Min-Matching(G)
if p = −∞

Min-Weight-Perfect-Matching(G)
if p < 0 and p 6= −∞

Max-Weight-Matching(G)
otherwise

3: while ∃i ∈ [n] and ∃g /∈ Y such that rank i(g) <
rank i(Yi) do

4: Yi ← {g}.
5: Set Z ← (α, c)-EFX

(
〈Y1, . . . , Yn〉,

(
M \ ∪i∈[n]Yi

))

Proof. Proof can be found in the full version of the paper
(Lemma 10 in (Chaudhury, Garg, and Mehta 2020)).

The final allocation is the set Z which is obtained by run-
ning an (α, c)-EFX algorithm starting with Y as the initial
allocation. Therefore our final allocation is an (α, c)-EFX
allocation. We will now show the approximation guarantees
that the algorithm achieves. The section that follows, proves
that the allocation Z has a Nash-welfare that is α

4(n+1) times
Nash-welfare achieved by the optimal allocation.

We now discuss the case where p = 0 and Mp(X) =(∏
i∈[n] vi(Xi)

) 1
n . Let X∗ be the allocation with the high-

est p-mean value and let g∗i be agent i’s most valuable good
in X∗i . Like in the earlier sections we will show in this sec-
tion that Mp(Z) ≥ α

4(n+1) ·Mp(X
∗). First observe that by

Lemma 10, we have that for all i ∈ [n], vi(Zi) ≥ α
4(n+1) ·(

n · vi(Yi)+ vi
(
M \Hi

))
. Therefore,

(∏
i∈[n] vi(Zi)

) 1
n

is greater than or equal to,( ∏
i∈[n]

α

4(n+ 1)
·
(
n · vi(Yi) + vi

(
M \Hi

))) 1
n

=
α

4(n+ 1)
·
( ∏
i∈[n]

(
n · vi(Yi) + vi

(
M \Hi

)) 1
n

Recall that Y was chosen such that (i, Yi) is a maxi-
mum weight matching in the bipartite graph G = ([n] ∪
M, [n] ×M) where the weight of an edge from agent i to
good g, wig = log

(
n · vi(g) + vi(M \ Hi)

)
. Note that
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∪i∈[n](i, g∗i ) is a feasible matching in G. Thus we have∑
i∈[n] log

(
n · vi(Yi) + vi(M \ Hi)

)
≥
∑
i∈[n] log

(
n ·

vi(g
∗
i )+vi(M \Hi)

)
. This implies that

∏
i∈[n]

(
n ·vi(Yi)+

vi(M \Hi)
)
≥
∏
i∈[n]

(
n·vi(g∗i )+vi(M \Hi)

)
. Therefore

we have,
(∏

i∈[n] vi(Zi)

) 1
n

to be greater than or equal to

α

4(n+ 1)
·
( ∏
i∈[n]

(
n · vi(Yi) + vi(M \Hi)

)) 1
n

≥ α

4(n+ 1)
·
( ∏
i∈[n]

(
n · vi(g∗i ) + vi(M \Hi)

)) 1
n

≥ α

4(n+ 1)
·
( ∏
i∈[n]

(
n · vi(g∗i )+

vi
(
X∗i ∩ (M \Hi)

))) 1
n

≥ α

4(n+ 1)
·
( ∏
i∈[n]

(
vi(X

∗
i ∩Hi)+

vi
(
X∗i ∩ (M \Hi)

))) 1
n

(as |Hi| = n)

≥ α

4(n+ 1)
·
( ∏
i∈[n]

vi(X
∗
i )
) 1
n

( by subadditivity)

This shows that Mp(Z) ≥ α
4(n+1) ·Mp(X

∗) when p = 0. In
the full version of the paper (Chaudhury, Garg, and Mehta
2020), we show that with a very similar proof, we can prove
Mp(Z) ≥ α

4(n+1) ·Mp(X
∗) for all p ∈ [−∞, 1]. The fol-

lowing theorem summarizes the main result of our paper.
Theorem 11. Given any instance 〈[n],M,V〉, in polynomial
time we can determine an allocation Z such that

• Z is either (1 − ε, 0)-EFX allocation or ( 12 − ε, 1)-EFX
allocation for any positive ε and

• Mp(Z) ≥ α
4(n+1)Mp(X

∗).

where X∗ is the allocation with maximum p-mean welfare.

Proof. The proof can be found in the full version of
the paper (Theorem 12 in (Chaudhury, Garg, and Mehta
2020)).

Remark: Theorem 11 also suggests that we can find a
4(n+1)
1−ε approximation to the p-mean welfare in polynomial

time. Also, it can be verified that a minor variant of our ap-
proach (changing the weights of the edges of the complete
bipartite graph G([n] ∪ B, [n] × B) appropriately - step 1

of Algorithm 1) gives a O(n) approximation on weighted
generalized p-mean, defined as WM p(X) =

(∑
i∈[n] ηi ·

vi(Xi)
p
) 1
p .
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