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Abstract

In the classical discrete Colonel Blotto game—introduced
by Borel in 1921—two colonels simultaneously distribute
their troops across multiple battlefields. The winner of each
battlefield is determined by a winner-take-all rule, indepen-
dently of other battlefields. In the original formulation, each
colonel’s goal is to win as many battlefields as possible. The
Blotto game and its extensions have been used in a wide
range of applications from political campaign—exemplified
by the U.S presidential election—to marketing campaign,
from (innovative) technology competition to sports compe-
tition. Despite persistent efforts, efficient methods for find-
ing the optimal strategies in Blotto games have been elu-
sive for almost a century—due to exponential explosion in
the organic solution space—until Ahmadinejad, Dehghani,
Hajiaghayi, Lucier, Mahini, and Seddighin developed the
first polynomial-time algorithm for this fundamental game-
theoretical problem in 2016. However, that breakthrough
polynomial-time solution has some structural limitation. It
applies only to the case where troops are homogeneous with
respect to battlegruounds, as in Borel’s original formulation:
For each battleground, the only factor that matters to the win-
ner’s payoff is how many troops as opposed to which sets of
troops are opposing one another in that battleground.

In this paper, we consider a more general setting of the
two-player-multi-battleground game, in which multifaceted
resources (troops) may have different contributions to dif-
ferent battlegrounds. In the case of U.S presidential cam-
paign, for example, one may interpret this as different types
of resources—human, financial, political—that teams can in-
vest in each state. We provide a complexity-theoretical evi-
dence that, in contrast to Borel’s homogeneous setting, find-
ing optimal strategies in multifaceted Colonel Blotto games
is intractable. We complement this complexity result with
a polynomial-time algorithm that finds approximately opti-
mal strategies with provable guarantees. We also study a fur-
ther generalization when two competitors do not have zero-
sum/constant-sum payoffs. We show that optimal strategies
in these two-player-multi-battleground games are as hard to
compute and approximate as Nash equilibria in general non-
cooperative games and economic equilibria in exchange mar-
kets.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Electoral College, Political Campaigns, and
Multi-Battleground Resource Allocation

The president of the United States is elected by the Electoral
College, which consists of electors selected based on 51 con-
current elections. The number of electors each of the 50
states and D. C. can select is determined every 10 years by
the United States Census. All but two states1 use a winner-
take-all system, and in typical election without any third-
party candidate, the ticket that wins the majority votes in the
state earns the right to have their slate of electors from that
state chosen to vote in the Electoral College. Thus, in prin-
ciple, the team that receives the majority of electoral votes
wins the race and its main candidate is elected as president.

A presidential campaign is a competition across multiple
political battlegrounds, one in each state. During this pro-
cess, the team for each candidate must strategically allocate
their resources—campaign budgets, candidate’s time, on-
the-ground staff, policy decisions to name a few—to achieve
the ultimate goal, that is, to maximize the total number of
the electoral votes—their total payoff—on the election day.
Because the president is not directly elected by national
popular vote, any investment in the states highly biased to-
ward a party could be unwise and wasted. Candidates can
count on their stronghold states and focus their resources
on swing states to improve their chances of winning in the
Electoral College. The varying political landscapes high-
light the underlying fact that different battleground states
likely have different payoff functions—in response to cam-
paign’s resource allocation—in this (zero sum) two-player-
multi-battleground strategical game.

If the 2016 US Election is any guide,2 election predic-
tion is challenging, let alone political campaigns. Of course,
developing a comprehensive mathematical theory for po-
litical campaigns or analyzing the pros and cons of Elec-
toral College vs popular vote is beyond the scope of this
paper. Here, we will focus on game-theoretical strategies
for resource allocation motivated by political campaign as
a generalized framework for two-player-multi-battleground
games. We study the computational problems motivated

1Maine and Nebraska are the exceptions.
2Since the September 2020 submission of this paper, for which

the research started in the summer of 2018, another hotly contested
US Presidential Election was held.
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Figure 1: Swing states and strongholds in the U.S. presiden-
tial elections are illustrated. The measure used in this figure
is the number of elections in a row each state has voted for
the same party. Blue stands for Democrat and red stands for
Republican.

by the following basic questions: (1) How should a na-
tional campaign distribute its (finite) multifaceted resources
across multiple battleground states? (2) What is the outcome
of a zero-sum two-player-multi-battleground game? Due to
their generality, mathematical formulations of two-player-
multi-battleground games have broad applications beyond
political campaigns. For instance, one might see similar
types of competition between two companies developing
new technologies. These companies need to distribute their
resources/efforts—i.e., making R&D portfolio decision—
across different markets. The winner of each market would
become the market-leader and takes almost all benefits in
the corresponding market (Kovenock and Roberson 2010,
2012). As an example, consider the competition between
Samsung and Apple. Both invest in developing products like
cell-phones, tablets, and laptops, and all can have different
specifications, technological, and business challenges. Each
product has its own specific market and the most appealing
brand will lead that market. Again, a strategic planner with
limited resources would face a similar question: What would
be the best strategy for allocating the multifaceted resources
across different markets?

The Classical Colonel Blotto Game
The Colonel Blotto game, first introduced by Borel (1921),
provides a basic game-theoretical model for multi-
battleground competition3. Mathematically, each Colonel
Blotto game is defined by three parameters: (m,n, k), where
m and n denote the sizes of troops, respectively, commanded
by two opposing colonels, and k specifies the number of bat-
tlefields. In this game, the two colonels need to simultane-
ously distribute their troops acorss k independent battlefields
without knowing the action of their opponent. Each battle-
field is won by the colonel who allocates more troops than
the opponent. The final payoffs of the colonels, in the orig-
inal formulation of the game, are the numbers of the battle-

3This paper was later discussed in an issue of Econometria
(Borel 1953; Fréchet 1953a,b; von Neumann 1953).

fields they respectively win. The Colonel Blotto game can
be naturally extended with additional k positive parameters,
(µ1, ..., µk), one for each battlefield. In this case, colonels’
payoffs are the total weights of the battlefields they win.
Note that this weight vector does not alter colonels’ spaces
of mixed strategies, which are distributions over all feasible
troop allocations. Mathematically, these—known as pure
strategies—are all feasible k-way partitions of m and n.

The Colonel Blotto game is a zero-sum game, The
maxmin strategy of a player maximizes the minimum gain
that can be achieved. It is well known that in any two-player
zero-sum game, a maxmin strategy is also an optimal strat-
egy, since any other strategy may result in a lower payoff
against a rational opponent. Further, in any zero-sum game,
a pair of mixed strategies is a Nash equilibrium4 if and
only if both players are playing maxmin strategies. There-
fore, finding maxmin strategies results in finding the optimal
strategies for players as well as the game’s Nash equilibria.

Although the Colonel Blotto game was motivated by mil-
itary strategic planning, its principle is more general. The
original formulation and its extensions have been applied for
analyzing competitions in various contexts from sports, to
advertisement, and to politics (Myerson 1993; Laslier and
Picard 2002; Merolla, Munger, and Tofias 2005; Chowd-
hury, Kovenock, and Sheremeta 2009; Kovenock and Rober-
son 2010, 2012; Behnezhad et al. 2018a, 2019).

Algorithmic Advances for the Colonel Blotto Game
Classical Colonel Blotto game is an ultimate succinctly-
represented game. With merely three integer parameters, it
lays out a complex strategy space of size exponential in the
magnitude of these integers. Although zero-sum, the fact
that the game has an exponential number of pure strate-
gies in troop sizes and the number of battlefields makes
the problem of finding optimal strategies highly nontriv-
ial. Borel and Ville (1938) proposed the first solution for
three battlefields. Multiple attempts were made for solving
variants of the problem since 1921 (Tukey 1949; Blackett
1954, 1958; Bellman 1969; Shubik and Weber 1981; Wein-
stein 2005; Roberson 2006; Kvasov 2007; Hart 2008; Gol-
man and Page 2009; Kovenock and Roberson 2012). For
example, Gross and Wagner (1950) generalized the earlier
result to games with same troop sizes but arbitrary num-
ber of battlefields. Some considered special cases, especially
by relaxing the integer constraint to study a continuous ver-
sion where troops are divisible. Roberson (2006) computed
the optimal strategies in the continuous version when the
game is symmetric across the battlefields, i.e., they have the
same weight. Hart (2008) considered the discrete version
of these symmetric games, and found solutions for some
special cases. The major algorithmic breakthrough came—
after nearly a century—by Ahmadinejad, Dehghani, Haji-
aghayi, Lucier, Mahini, and Seddighin (2016). They first ex-
pressed the solution by an exponential-sized linear program,
and then devised a clever use of the Ellipsoid method to ob-

4A Nash equilibrium of a two-player game is a pair of players’
(mixed) strategies such that no player has incentive to make any
unilateral change.
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tain the first-known polynomial-time algorithm for finding
the optimal strategies in the discrete Colonel Blotto games.
Their work—deservedly—received a lot of attention (NSF
2016; Insider 2016; Scientific Computing 2016; EurokAlert
2016; ACM TechNews 2016; ScienceDaily 2016; Science
Newsline 2016; engadget 2016; MyInforms 2016).

Blotto Games with Multifaceted Resources
In this paper, we will focus on understanding the algorith-
mic and complexity challenges of strategical optimization
in multi-battleground competition with heterogeneous, mul-
tifaceted resources. Our research is motivated by a funda-
mental gap between the classical theoretical formulation
of Colonel Blotto games and practical multi-battleground
strategical planning, as exemplified by the US presidential
campaigns and industrial R&D decisions. In the real world,
strategists need to deal with multifaceted resources. This is
an area where the breakthrough solution of Ahmadinejad et
al. also has algorithmic limitation. Crucial to their algorithm,
they used the assumption that colonels’ troops are are homo-
geneous with respect to battlefields, as in the Borel’s origi-
nal formulation: The only factor that matters to the payoffs
in each battlefield is how many troops as opposed to which
subsets of troops are opposing one another in that battlefield.

In more realistic multi-battleground settings, battle-
grounds have their own features and resources have their
own effectiveness and utilities. Even in conventional mil-
itary campaigns, troop have their own specialization. The
battlefields may be located in different environments—e.g.,
land, air, and sea—and troop units are trained to combat
more efficiently in specific environments. Allocation of mil-
itary equipments are also battlefield sensitive, as they have
different affects depending on the environments they are be-
ing deployed. For instance, submarines can only be used
in the water, while tanks are land based. Similarly, politi-
cal campaigns require efficient and strategical management
of complex multifaceted resources. In US Presidential cam-
paigns, for instance, resources may include candidate’s time,
money, on-the-ground staff, policy flexibility, etc. Resources
have different utilities in different states. But there are over-
all constraints on resources. Thus, it is essential to incorpo-
rate data charactering resource fitness acorss battlefields in
the strategical planning.

In this paper, we study a family of natural generalization
of Colonel Blotto games over multifaceted resources. We
will refer to this family as multifacted Colonel Blotto games
or Multifaceted Blotto Games. In these settings, we incor-
porate “strength/fitness” data charactering the heterogeneity
of resources across battlegrounds. Mathematically, a multi-
faceted Colonel Blotto game is specified by three integers
(m, n, k), together with a strength matrix W with dimen-
sion (m+ n)× k and 2k utility functions {µA1 , ..., µAk } and
{µB1 , ....µBk }. We now discuss the nature of the strength ma-
trix and utility functions.

Throughout the paper, we will use the following con-
vention. Let A and B denote the two players (comman-
ders) of the game. The game is played over k battlegrounds.
Each player is in charge of a set of troops (resources). Let

T = [m + n] denote the set of troops, where A commands
troops [m] and B commands troops [m + 1 : m + n]. For
t ∈ T and b ∈ [k], let wt,b, the (t, b)th entry of strength ma-
trixW , denote t’s strength on battleground b. As their strate-
gical decisions, A and B simultaneously distribute their
troops across the battlegrounds, and the payoffs over each
battleground is determined based on two sets of troops as-
signed. Thus, a pure strategy of A is a k-way partition of set
[m], while a pure strategy of B is a k-way partition of set
[m+1,m+ n]. The total strength of each subset T ⊂ T on
battleground b ∈ [k] is denoted by wb(T ) =

∑
t∈T wt,b.

For strengths sA and sB , µAb (sA, sB) and µBb (sA, sB) de-
fine the utilities that A and B respectively receive when al-
locating total strengths sA and sB , respectively, over bat-
tleground b. In our paper, we mostly consider constant-sum,
monotone utility functions with non-negative values,5 which
generalize the linear summation in Borel’s classical setting
and its typical extensions.

We denote a pure strategy of player A by a variable X
whereXb specifies the set of troops assigned to battleground
b. Similarly, we use Y for B’s pure strategies. With these no-
tations, the final utilities of players at a pair of pure strategies
X and Y is then:{

µA(X,Y ) =
∑k
b=1 µ

A
b (wb(Xb), wb(Yb))

µB(X,Y ) =
∑k
b=1 µ

B
b (wb(Xb), wb(Yb))

We denote players’ mixed strategies by X and Y. Thus:{
µA(X,Y) = EX∼X,Y∼Y[µA(X,Y )]

µB(X,Y) = EX∼X,Y∼Y[µB(X,Y )]

Computational Challenge of Optimal Responses
As our main technical contributions, we present results
on both complexity difficulty and approximation feasibil-
ity of optimal decision making in allocating multifaceted re-
sources across multiple battlegrounds. First, we analyze the
computational challenge of a fundamental game-theoretical
task, namely, the computation of the best response to op-
ponent’s strategies in multifaceted Blotto game. A best re-
sponse is not only central as a concept to the Nash equilib-
rium, but also usually instrumental to equilibrium computa-
tion and game dynamics. In particular, the breakthrough al-
gorithms of (2016) compute the maxmin-strategy based on
best-responses against a polynomial number of iteratively
chosen strategies, and, therefore, crucially relied on the fact
that best-responses can be computed in polynomial time for
classical Colonel Blotto games. We show that, in contrast
to Borel’s homogeneous setting, the problem of finding best
responses to opponent’s strategy in the multifaceted Colonel
Blotto game is NP-complete. In fact, we prove that the com-
plexity challenge is stronger.

Theorem 1 (Optimal Multifaceted Resource Allocation
is Hard to Approximate). Unless NP = P, there is
no polynomial-time algorithm that can always find an

5A utility function µAb (sA, sB) (likewise µBb (sA, sB)) is
monotone if its value does not decrease either by increasing sA
(sB) or by decreasing sB (sA).
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O(
√
min(m,n))-approximate best response in the multi-

faceted Colonel Blotto game.

In particular, we prove that even against a pure strategy
Y of player B, it is intractable for player A to always find
an O(

√
m)-approximately optimal response, let alone a best

response to Y . The reader can find more details in Section 2
of the full version of the paper. Our proof sets up a reduction
from welfare maximization with single-minded bidders; the
intractability is then built on earlier results on approximation
hardness for the welfare maximization problem (Lehmann,
Oćallaghan, and Shoham 2002; Sandholm 1999).

“Fighting Harder than Ever”: Means to Achieve
Approximate Optimality In Multi-Battlegrounds
The computational challege in best responses provides a
strong complexity-theoretical evidence that optimal strate-
gies for the multifaceted Colonel Blotto game may be in-
tractable for polynomial time, and hence, approximation
becomes necessary. However, the intractability of best-
response approximation—as we have established in The-
orem 1— highlights the fundamental need to go beyond
traditional notion of approximate best responses and ap-
proximate optimal (maxmin) strategies in the multifaceted
Colonel Blotto game. Towards this end—like bi-criteria ap-
proximation concepts for other basic problems–our approx-
imation condition requires some over-allocation of multi-
faceted resources, echoing real-world winning spirits: The
Colonels need to “fight harder than ever” in order to
achieve guaranteed approximate optimality in the multi-
faceted Colonel Blotto game; candidates and teams must
leave it all on the field, and perhaps even more, to make more
out of their perceived multifaceted resources, in challenging
political campaigns.

We complement our complexity result on computation
and approximation of best responses (presented in Theo-
rem 1) with polynomial-time algorithms6 that find approxi-
mately optimal strategies with provable guarantees.

One of our main contributions—both conceptual and
technical—is a matching bi-criteria notions of approximate
best responses and approximate maxmin strategies in mul-
tifaceted general Blotto games. These matching notions
are derived based on our new technical result on applying
the Ellipsoid method to the exponentially large linear pro-
grams for equilibria in succinctly-defined games (includ-
ing multifaceted Blotto games). Our result extends the key
technical contribution of Ahmadinejad et al. (2016) of re-
ducing maxmin-strategy computation to finding exact best-
responses. The bi-criteria notions are part of an approxima-
tion theory for this fundamental reduction.

To quantify approximation quality, we use the following
convention and notations for constant-sum instances. (1) We
assume, without loss of generality, that the two players’ pay-
offs always sum up to 1, i.e.,, µB(X,Y) = 1− µA(X,Y).
(2) We may abuse the definition for X and Y and treat them

6We assume that the utility functions are described explicitly
in the input, and thus, our algorithms may be polynomial in terms
of maxf as well. Even if the utility functions are represented more
concisely, our algorithms are still pseudo-polynomial.

as functions: for an integer c, let Xb(c) denote the indi-
cator function specifying whether the total troop strength
of X in battleground b is equal to c. Similarly, Xb(c) de-
notes the probability that X has total strength of c in battle-
ground b. A similar notation is defined for Y and Y. (3) Let
maxf =

∑
wb([m + n]) denote the maximum total troop

strengths over any battleground.
We now define the notions of approximation. For a pair

of elasticity-approximation parameters α ≥ 1, β ≥ 1, we
say a strategy Y is an (α, β)-best-response to a strategy X
if its utility against X is at least a 1/β fraction of that of
the optimal best-response by allowing Y to use each troop
up to at most α times. Let X be a strategy that can each
troop up to at most α times. Let u be the X’s minimum
utility over opponent’s responses. For δ > 0, we say X is
(α, δ)-maxmin, if u is at most δ smaller than the minimum
utility of the optimal maxmin strategy against an opponent
who is allowed to use each troop up to α times. Note that
δ in (α, δ)-maxmin strategies is an additive factor, in con-
trast to β in (α, β)-best-response, which is a multiplicative
factor. In other words, the notion of (α, δ)-maxmin strate-
gies becomes the traditional maxmin strategies when α = 1
and δ = 0.7 For notational convenience, we allow α to at-
tain non-integer values: when a troop is used α times, we
may use it bαc times with its original strength plus one
more time with a new strength scaled by α − bαc. Note
that this relaxation makes the utility functions undefined in
some cases since the utility functions are defined only on in-
teger strengths. This is also the case when the strength of the
troops exceeds maxf in a battlefield. Nevertheless, we show
that we can bound an undefined utility by the monotonicity
of the utility functions, and also using these bounds does not
weaken our guarantees.

We prove the following theorem:8

Theorem 2 (Reduction in Huge Games with Approxima-
tion). Given a polynomial-time algorithm for finding (α, β)-
approximate best-responses for multifaceted Colonel Blotto
games, one can find an (α, 2 · (1− 1

β ))-approximate maxmin
solutions in polynomial time.

Although the focus of the present paper is on multi-
faceted Blotto games, our proof and reduction make no as-
sumption on the underlying game9. We believe that this
framework—in its general form—can be used to design ap-
proximate solutions for other huge constant-sum games with
succinctly representation. When α = β = 1, Theorem 2 be-

7A slightly different bi-criteria approximation notion is defined
in Behnezhad et al. (2018b) in the context of Security Games. In
their work, β is a multiplicative approximation factor in (α, β)-
maxmin strategies.

8Behnezhad et al. (2018b) uses the same framework to find bi-
criteria approximation of maxmin strategies, and thus their result
is similar in spirit to ours. However, as stated before, their defini-
tion of (α, β)-maxmin strategies is slightly different as β is a less
relaxed, multiplicative approximation factor in their work. Also,
their method is based on the structure of the pure strategies of the
attacker which is very simple for Security Games.

9Of course, a suitable notion of (α, β)-best-response should be
defined for the problem.
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comes the exact settting, where the reduction of Ahmadine-
jad et al. (2016) have already enabled polynomial-time so-
lutions to several huge games, notably dueling games (Im-
morlica et al. 2011), security games (Xu et al. 2014), etc.
However, any reduction relies on exact inner-loops of best-
responses have some fundamental algorithmic limitions, as
often times—much in like our multifaceted Blotto games—
best-responses are intractable, but can be efficiently approx-
imated.10 Note also as β approaches 1, the additive loss on
the payoff in the approximation is 2(1− 1

β ) which converges
to 0. This is the case for our approximate best-response solu-
tions for multifaceted Blotto games: the approximation fac-
tor of the utility of the solutions we present in Sections 4 and
5, in the full version, can be arbitrarily close to 1 while only
losing a constant factor for the multiplicity of the troops11.

Reduction with Approximation in Huge Games
Below, we give a proof sketch of Theorem 2 (the full version
contains a complete proof in Section 3). The proof relies on
a rigorous analysis of the inner-workings of the Ellipsoid
method for linear programs. Each huge constant-sum game
(e.g., a multifaceted Blotto game) has an LP encoding, with
exponentially many constraints, whose optimal solution cor-
responds to the game’s maxmin strategy. Reducing exact
LP-based solution to exact best-response computations is al-
ready a non-trivial technical undertaking; this is actually the
main contribution of Ahmadinejad et al. (2016).

In this proof, we show such reduction can go beyond ex-
act inner solutions. However, analyzing iterative algorithms
with inexact or approximate inner loops require careful anal-
yses of “propagation of imprecision.” To assist our readers,
we would like to first highlight a particular challenge. At the
high level, the reduction is based on the Ellipsoid method
whose separation oracle makes “black-box” best-response
queries. Approximate best-responses may introduce errors
to the separation oracle, which can affect the quality/validity
of the Ellipsoid method. In particular, the iterative procedure
may not transfer the “local guarantee” to a “global guaran-
tee” on the approximation of optimality.

In order to define an LP formulation for finding a maxmin
strategy, we first map each (possibly mixed) strategy X to a
point x̂ in Euclidean space, where x̂f,b denotes the probabil-
ity that X puts a subset of troops on battlefield b with total
strength f (here for readability and notational convenience
we put two subscripts for x̂). Note that this is not a one-to-
one mapping, or in other words, two different strategies may
be mapped to the same point. However the payoff of two
different strategies that are mapped to the same point is al-
ways the same no matter what the strategy of the opponent
is. Moreover, the utility function is bilinear, i.e., if the play-
ers play strategies x̂ and ŷ respectively, then the payoff of
player A can be computed by x̂TMŷ, for some matrix M .
Afterwards, we define LP (1) for finding the maxmin strate-
gies. Let S(A) and S(B) denote the set of feasible strate-
gies for player A and B respectively. LP (1) has a variable

10One example is compression duel game introduced by Immor-
lica et al. (2011).

11α is a constant.

x̂ and two sets of constraints. The first set of constraints (2)
assures that x̂ denotes a feasible strategy, which we call the
membership constraints, and the second set of constraints
(3) assures that player A achieves a payoff of at least U if
she plays x̂, which we call the payoff constraints. The objec-
tive is to maximizeU . This is a restatement of the framework
for finding maxmin strategies in large constant-sum games
by Ahmadinejad et al. (2016).

max . U (1)
s.t. x̂ ∈ S(A) (2)

µA(x̂, ŷ) ≥ U, ∀ŷ ∈ S(B) (3)

Both membership and payoff constraints are exponen-
tially many, thus one needs a separation oracle to be able
to use the Ellipsoid method for finding an optimal solution
to the LP. We treat the two sets of constraints separately. For
the membership constraints, we aim to see if there exists a
hyperplane that separates a point x̂ from all the points which
denote the pure strategies. Using an exact best-response al-
gorithm, one can determine whether such hyperplane exists
or not. However we do not have access to such an algorithm,
and instead we are given an (α, β)-best-response algorithm.

We prove that, roughly speaking, using an (α, β)-best-
response we can approximate S(A). In particular, if we are
asked whether a point x̂ is in S(A) or not, we may have
false positives (we report x̂ is in S(A) which is not really
the case), or have false negatives (we report x̂ is not in S(A),
but it actually belongs to S(A)). However, interestingly, in
both cases, we are still (approximately) not losing much.
We show that if we report that some x̂ is a feasible strat-
egy, then indeed x̂ is a feasible strategy if we are allowed to
use α copies of each troop. Moreover, if for some strategy
x̂ ∈ S(A), we cannot identify that x̂ is in S(A), we prove
that we can correctly identify that x̂

β is in S(A), where x̂
β

is the point denoting x̂ multiplied by the scalar 1
β . Since

the utility function is bilinear due to our mapping, for ev-
ery strategy ŷ, µA( x̂β , ŷ) = 1

βµ
A(x̂, ŷ). Thus, we only lose

a factor of 1
β if we do not correctly determine that x̂ is in

S(A).
We formulate the problem of finding a hyperplane that

separates x̂ from S(A) using an LP. We represent S(A) by
a polytope Z whose vertices are the set of points that de-
note the pure strategies for player A. Let Zα denote the set
of strategies when we are allowed to use α copies of each
troop. LP (4) describes a hyperplane that separates x̂ from
all points in Zα, where a = 〈a0, a1, . . . , ad〉 is the set of
variables of the LP denoting a hyperplane, and d denotes the
dimension of the space. If LP (4) has no feasible solution
then x̂ is inside the polytope, and thus it denotes a feasible
strategy if we are allowed to use α copies of each troop.

max . 0 (4)

s.t. a0 +
∑d

i=1
aix̂i ≥ 0 (5)

a0 +
∑d

i=1
aiẑi < 0, ∀ẑ ∈ Zα (6)
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LP (4), again, has exponentially many constraints. How-
ever, we may simplify set of constraints (6) if we can find the
ẑ that maximizes the term

∑d
i=1 aiẑi. Let ẑmax(a) denote

such ẑ. The main complexity of the problem is to find such
ẑmax(a), which requires having access to a polynomial-time
best-response algorithm. Instead, we find an approximate
strategy ẑ∗(a) using an (α, β)-best-response in Lemma 3.
The reader can find more details in the full version.

Lemma 3. Given a hyperplane a, there exists a polynomial-
time algorithm that finds a strategy ẑ∗(a), such that∑d
i=1 aiẑ

∗(a)i ≥ 1
β

∑d
i=1 aiẑmax(a)i, and ẑ∗(a) ∈ Zα.

Now, we approximately solve LP (4) by running the El-
lipsoid method along with an approximate separation oracle
which uses strategy ẑ∗(a) given by Lemma 3. We define the
set of points our algorithm accepts as S′(A). It is very in-
teresting that S′(A) is not necessarily convex according to
the definition, but roughly speaking, since we are using an
approximate separating oracle in the original LP (which is
convex), we still can obtain an approximation for the mem-
bership constraint. We believe that our analysis of S′(A) is
of independent interest and may find its application in other
works too.

Afterwards, we replace the payoff constraints by a con-
straint denoting that if player B plays an (α, β)-best-
response, then the payoff is not greater than U . Since in our
mapping, the utilities are bilinear, this constraint is linear
too. The resuling Linear Program is demonstrated in LP (7),
where Bα,β(x̂) denotes an (α, β)-best-response for strat-
egy x̂ in the revised payoff constraints (9). Note that LP (7)
finds a minmax strategy as opposed to LP (1) which finds a
maxmin strategy, but in constant-sum games finding a min-
max strategy is equivalent to finding a maxmin strategy.

min . U (7)
s.t. x̂ ∈ S(A) (8)

µB(x̂, Bα,β(x̂)) ≤ U (9)

We show that again using an approximate best-response,
we are able to guarantee achieving an approximate maxmin
strategy. Therefore, we show that any polynomial-time al-
gorithm for computing an (α, β)-best-response in the gen-
eralized Colonel Blotto game can be used as a subroutine
to design a polynomial-time algorithm for computing an
(α, 2− 2

β )-maxmin solution of the game.

Adapting to Heterogeneous Multi-Battlegrounds
In order better characterize the structural impact to the com-
plexity of approximate strategies, we also distinguish two
types of multi-battlegrounds. We call a multifaceted Blotto
game symmetric, if ∀t, b, b′, wt,b = wt,b′ and µAb = µAb′ ,
µBb = µBb′ . In other words, in the symmetric setting, while
troops may be heterogeneous, battlegrounds are homoge-
neous. In contrast, troops’ contributions in the general mul-
tifaceted setting may vary depending on battlegrounds.

We fisrt consider the general case, where finding feasi-
ble approximate best responses can be intractable. In bi-

criteria approximation, we show that relaxing the troop con-
straints by a constant factor enables us to achieve an O(1)-
approximation to the best-response’s payoff. We first design
a configuration program with a variable xS,b ∈ {0, 1} for
every pair of subset-of-troops and battleground, (S, b), indi-
cating whether S is assigned to b. The program maximizes
the total payoff subject to the following constraints: (i) ev-
ery troop is assigned to at most one battleground, and (ii) at
most one subset of troops is assigned to each battleground.
In order to obtain an LP, we consider the relaxation of the
program, where 0 ≤ xS,b ≤ 1 denotes the probability that
we assign S to b. The LP has 2mk variables. However, we
can find its optimal solution in polynomial time by applying
the Ellipsoid method to its dual LP.

Next, we round the fractional solution: We use the value
of the optimal fractional solution of the configuration LP
both as an upper bound for a best-response’s payoff, and
as a basis for assigning the troops to the battlegrounds. In
traditional approximation, we need to round the solution to
obtain a feasible assignment of troops to the battlgrounds.
Had the utilities been subadditive, we can use the techniques
of Dobzinski and Schapira (2006) and Feige (2009) provide
to round such a solution, while only losing a constant factor.
To highlight our challenges, we show that the utility func-
tions are neither subadditive nor superadditive. Instead, we
devise a two-phase rounding process as follows. First, for
every battleground, we choose a subset of troops according
to the probabilities in the fractional solution of the configu-
ration LP. The payoff of the rounded solution is equal to the
optimal payoff in expectation, but the rounded solution is
not necessarily feasible in that it is quite possible that some
troops are assigned to up toO( log k

log log k ) many battlegrounds.
Thus we need a second rounding step to make sure that every
troop is assigned to at most one battleground (or a constant
number of battlegrounds if we are allowed to use each troop
a constant number of times).

Then, we define a new utility function, such that if the
strength of the set that we have assigned to a battleground
is smaller than that of the optimal fractional solution, we
still obtain a proportionate fraction of its utility. The new
utility function is subadditive, but since the original LP and
consequently the optimal rounded solution is based on the
original utility function, still we may not be able to use
the techniques of Dobzinski and Schapira (2006) and Feige
(2009) to obtain a constant fraction of the payoff with the
new utility function. Moreover, a constant-factor approxima-
tion with the new utility function may not necessarily result
in a desirable approximation factor with the original util-
ity function. However, we show that one can use a different
rounding to obtain a constant fraction of the optimal solu-
tion with the new utility function, and afterwards violate the
troop constraints to obtain a constant-factor approximation
of the payoff with the original utility function. More pre-
cisely, we show that one can use at most O( ln(1/ε)ε ) copies
of each troop and obtain at least a 1

1−ε fraction of the opti-
mal solution; or in other words, there exists a polynomial-
time algorithm for (O( ln(1/ε)ε ), 1

1−ε )-best-response for the
multifaceted Colonel Blotto.
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Applyimg Theorem 2, we have:
Theorem 4. For any ε > 0, there exists a polynomial-time
algorithm which obtains an (O( ln(1/ε)ε ), ε)-maxmin strategy
for the multifaceted Colonel Blotto game.

Notice that Theorem 4 only loses ε in the utility while
violating the number of troops by a constant factor.

Better Solutions for Homogeneous Battlegrounds
When battlegrounds are homogeneous—even with hetero-
geneous resources—we can approach near optimality:
Theorem 5. For any ε > 0, there exists a polynomial-time
algorithm for computing a (1+ε, 0)-maxmin strategy in sym-
metric multifaceted Colonel Blotto games12

We prove that it is possible to compute a (1+ε, 1) approx-
imate best-response in two steps. First, we show that, with
mixed strategies, homogeneous battlegrounds imply the ex-
istence of homogeneous (approximate) best responses and
(approximate) equilibria: In these strategies, for any strength
level f , every battleground faces the same probability of re-
ceiving resources of strength f . Thus, battleground homo-
geneity reduces the dimensions of the search space for opti-
mal solutions from k · (maxf + 1) to (maxf + 1). 13

With this simplification, best-response becomes more
tractable: Given a list of (maxf + 1) coefficients as a vector
p, find a strategy point of a player that maximizes the out-
come when taking the dot product with p. We model this task
with the prize collecting knapsack problem, in which, we are
given a set of bag types B = {1, 2, . . . , |B|}where type i has
size vi and prize pi. Each type has unlimited copies that can
be used in the solution. We secure a prize pi if we fill a bag of
type i with a subset of items, of total size at least vi (there is
no upper bound on their total size). The goal is to partition
the items into k bags, some may have the same bag types,
such that the total prizes is maximized.

The notion of (α, β)-approximation can be extended to
prize collecting knapsack, where α denotes the multiplicity
of the items used in the solution and β denotes the loss in
optimality. It follows from definition that a solution for the
prize collecting knapsack problem immediately gives us a
best-response with almost the same quality. We show that if
we are allowed to use each item up to 1+εmany times (much
like using each troop 1 + ε many times in our strategy), we
can find a solution for the prize collecting knapsack prob-
lem, whose utility is at least that of the optimal solution had
we not violated the multiplicity of the items. We remark that
having multiplicities for the items is similar to (but stronger
than) scaling their sizes. Our solution works even when we
can only scale up the sizes of the items by a factor of 1 + ε.

Technically, our algorithm requires a careful execution
of dynamic programming (DP). We first discretize the item
sizes by powers of 1 + ε. With a potential loss of a factor
of (1 + ε), the discretization reduced the number of distinct

12The running time increases with the approximation quality.
13For the symmetric version of the conventional Colonel Blotto

game, faster and simpler algorithms are designed based on this ho-
mogeneity in (Behnezhad et al. 2017). Their work motivated ours
here.

sizes to logarithmic. Next, we apply DP in a recursive man-
ner. Ideally, in our DP, we would like to keep track of the set
of items that have not been used yet, but the bookkeeping
makes the DP table exponentially large. To overcome this
difficulty, we apply the following method. Fix a bag i with
size vi and assume that our algorithm is trying to find partial
solutions for bags of type i. The remaining items are divided
into 3 categories, based on their sizes: (1) Large items (Li):
items larger than vi. (2) Regular items (Ri): items between
εvi and vi. (3) Small items (Si): items smaller than εvi.

In our DP, we first sort the bag types based on their sizes
and thus when considering bags of size vi, we either have
never used any item with size more than vi in our solution,
or if we used k of them, these k items are the smallest items
with size more than vi. Therefore, the set of large items that
are available can be encoded with a single integer number.

Small items are also easy to handle since they are too
small in that all we need to know about them is their total
size rather than which subset of items. We show that if we
are allowed to lose a (1 + ε) factor in the sizes of the items,
information about their total size suffices to update the solu-
tion.

Regular items are difficult to keep track of, nonetheless,
the following observation makes it possible for us to re-
member which set is available very efficiently. Since we dis-
cretize the sizes of the items, there are only a constant num-
ber of different sizes between vi and εvi14. Thus, even if we
keep track of the number of the remaining items for each
type, still the size of the DP table is polynomially bounded.

The more challenging part of the algorithm is to handle
edge cases. Note that we start from the bag with the small-
est size and iterate over the bags according to their sizes in
our DP. Since the sizes of the bags increase, the status of
the items change in our algorithm. We show, with a careful
analysis, that we can manage to restrain the error for chang-
ing the status of the items throughout our algorithm. This
gives us a (1 + ε, 1)-approximate solution for finding best
responses in symmetric setting.

Beyond Zero-Sum and Linearity: A More General
Form of Two-Player Multi-Battlefield Games
Finally, we state two complexity results for more general-
ized forms of Colonel Blotto games. In all of the previous
work (including so far in the present one), algorithms pro-
posed rely on two properties: (1) the utility function at each
battleground is constant-sum, and (2) the total utility of the
players is linear. We show in Section 6 of the full version that
both these two assumptions are essential. More precisely,
equilibrium computation in Colonel Blotto game becomes
PPAD-hard if we drop either assumptions.
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