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Abstract

Federated learning is a setting where agents, each with access
to their own data source, combine models learned from lo-
cal data to create a global model. If agents are drawing their
data from different distributions, though, federated learning
might produce a biased global model that is not optimal for
each agent. This means that agents face a fundamental ques-
tion: should they join the global model or stay with their local
model? In this work, we show how this situation can be nat-
urally analyzed through the framework of coalitional game
theory.
Motivated by these considerations, we propose the following
game: there are heterogeneous players with different model
parameters governing their data distribution and different
amounts of data they have noisily drawn from their own dis-
tribution. Each player’s goal is to obtain a model with mini-
mal expected mean squared error (MSE) on their own distri-
bution. They have a choice of fitting a model based solely on
their own data, or combining their learned parameters with
those of some subset of the other players. Combining models
reduces the variance component of their error through access
to more data, but increases the bias because of the hetero-
geneity of distributions.
In this work, we derive exact expected MSE values for prob-
lems in linear regression and mean estimation. We use these
values to analyze the resulting game in the framework of he-
donic game theory; we study how players might divide into
coalitions, where each set of players within a coalition jointly
construct model(s). We analyze three methods of federation,
modeling differing degrees of customization. In uniform fed-
eration, the agents collectively produce a single model. In
coarse-grained federation, each agent can weight the global
model together with their local model. In fine-grained federa-
tion, each agent can flexibly combine models from each other
agent in the federation. For each method, we constructively
analyze the stable partitions of players into coalitions.

Introduction
Imagine a situation as follows: a hospital is trying to evaluate
the effectiveness of a certain procedure based on data it has
collected from procedures done on patients in their facilities.
It seems likely that certain attributes of the patient influences
the effectiveness of the procedure, so the hospital analysts
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opt to fit a linear regression model with parameters θ̂. How-
ever, because of the limited amount of data the hospital has
access to, this model has relatively high error. Luckily, other
hospitals also have data from implementations of this same
procedure. However, for reasons of privacy, data incompati-
bility, data size, or other operational considerations, the hos-
pitals don’t wish to share raw patient data. Instead, they they
opt to combine their models by taking a weighted average
of the parameters learned by each hospital. If there are M
hospitals and hospital i has ni samples, the combined model
parameters would look like:

θ̂f =
1∑M
i=1 ni

M∑
i=1

θ̂i · ni

The situation described above could be viewed as a styl-
ized model of federated learning. Federated learning is a
distributed learning process that is currently experiencing
rapid innovations and widespread implementation (Li et al.
2020; by: Peter Kairouz and McMahan 2021). It is used in
cases where data is distributed across multiple agents and
cannot be combined centrally for training. For example, fed-
erated learning is implemented in word prediction on cell
phones, where transferring the raw text data would be infea-
sible given its large size (and sensitive content). The motivat-
ing factor for using federated learning is that access to more
data will reduce the variance in a learned model, reducing
its error.

However, there could be a downside to using federated
learning. In the hospital example, it seems quite reason-
able that certain hospitals might have different true gener-
ating models for their data, based on the differences in pa-
tient populations or variants of the procedure implementa-
tion, for example. Two dissimilar hospitals that are federat-
ing together will see a decrease in their model’s error due to
model variance, but an increase in their error due to model
bias. This raises some fundamental questions for each partic-
ipating hospital - or, more generally, each agent i consider-
ing federated learning. Which other agents should i federate
with in order to minimize its error? Will those other agents
be interested in federating with i? Does there exist some sta-
ble arrangement of agents into federating clusters, and if so,
what does that arrangement look like?

Numerous works have explored the issue of heteroge-
neous data in federated learning - we discuss specifically
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how they relate to ours in a later section. Often the goal
in these lines of work is to achieve equality in error rates
guaranteed to each agent, potentially by actively collecting
more data or using transfer learning to ensure the model
better fits local data. However, to our knowledge, there has
not yet been work that systematically looks at the participa-
tion questions inherent in federated learning through the lens
of game theory — especially the theory of hedonic games,
which studies the formation of self-sustaining coalitions.

In a hedonic game, players are grouped together into clus-
ters or coalitions: the overall collection of coalitions is called
a coalition structure. Each player’s utility depends solely
on the identity of the other players in its coalition. A com-
mon question in hedonic games is the stability of a coali-
tion structure. A coalition structure Π is core-stable (or “in
the core”) if there does not exist a coalition C so that every
player in C prefers C to its coalition in Π. A coalition struc-
ture is strictly core stable if there does not exist a coalition
C so that every player in C weakly prefers C to its coalition
in Π, and at least one player ∈ C strictly prefers C to Π. A
coalition structure is individually stable if there does not ex-
ist a coalition C ∈ Π so that a player i 6∈ C prefers C ∪ {i}
to its arrangement in Π and all players in C weakly prefer
C ∪ {i} to C (Bogomolnaia and Jackson 2002).

To explain the analogy of federated learning to hedonic
games, we first consider that each agent in federated learn-
ing is a player in a hedonic game. A player is in coalition
with other players if it is federating with them. Its cost is its
expected error in a given federating cluster, which depends
only on the identity of other players in its federating cluster.
Players are assumed to be able to move between federating
clusters only if doing so would benefit itself and not harm
other players in the cluster it is moving to: notably, we allow
players to freely leave a cluster, even if doing so would harm
the players in the cluster it leaves behind.

The present work: Analyzing federated learning through
hedonic game theory1 In this work, we use the frame-
work of hedonic games to analyze the stability of coalitions
in data-sharing applications that capture key issues in fed-
erated learning. By working through a sequence of deliber-
ately stylized models, we obtain some general insights about
participation and stability in these kinds of applications.

For the first case, we analyze uniform federation. In this
simplest case, a federating cluster produces a single model,
which each player uses. For uniform federation, first we con-
sider the case where all players have the same number of
data points. We show that in this game, when the number
of data points n is fairly small, the only core-stable coali-
tion structure is to have all players federating together, in
the “grand coalition”. When n is large, the only core-stable
coalition structure is to have all players separate (doing lo-
cal learning). There exists a point case of intermediate n size
where all coalition structures are core-stable. Next, we ana-
lyze the case where all players have either one of two sizes
(“small” or “large”). The analysis is more complicated, but

1For the full paper, please refer to (Donahue and Kleinberg
2020).

we demonstrate constructively that there always exists an in-
dividually stable partition of players into clusters.

Besides uniform federation, we also analyze two other
forms of federation. For coarse-grained federation, the fed-
erating cluster still produces a single model, but each player
can weight the global model with their local model, allowing
some personalization. For coarse-grained federation, when
all players have the same number of samples, we show that
the grand coalition (all players federating together) is al-
ways the only core stable arrangement. For the small/large
case, we produce a simple, efficient algorithm to calculate a
strictly core-stable arrangement. Additionally, we show that,
for this federation method, the grand coalition is always in-
dividually stable (no player wishes to unilaterally defect).

Finally, for fine-grained federation, each player is allowed
to take the local models of other players in the federation
and combine them using whichever weights they choose to
produce a model customized for their use. With fine-grained
federation, we show that the grand coalition is always core
stable.

We are only able to produce these hedonic game theory
results because of our derivations of exact error values for
the underlying inference problems. We calculate these val-
ues for all three methods of federation, and for agents fed-
erating in two situation: 1) a mean estimation problem and
2) a linear regression problem. The error values depend on
the number of samples each agent has access to, with the ex-
pectation taken over the values of samples each agent draws
as well as the possible different true parameters of the data
each player is trying to model. Our results are completely in-
dependent of the generating distributions used, relying only
weakly on two parameters.

The results in this paper are theoretical and do not depend
on any experiments or code. However, while writing the
paper, we found it useful to write and work with code to
check conjectures. Some of that code is publicly available at
github.com/kpdonahue/model_sharing_games.

Before moving to the main technical content, the next
section will walk through a motivating example, followed
by a review of related literature and a description of our
model and assumptions. Beyond technical assumptions, re-
cent work (Cooper and Abrams (2021)) has highlighted
the importance of describing normative assumptions re-
searchers make: we also include a summary of the most im-
portant normative assumptions of our analysis in our ethics
statement after the main text.

Related Works
Incentives and federated learning: Blum et al. (2017) de-
scribes an approach to handling heterogeneous data where
more samples are iteratively gathered from each agent in a
way so that all agents are incentivized to participate in the
grand coalition during federated learning. Duan et al. (2021)
builds a framework to schedule data augmentation and re-
sampling. Yu, Bagdasaryan, and Shmatikov (2020) demon-
strates empirically that there can be cases where individu-
als get lower error with local training than federated and
evaluates empirical solutions. Wang et al. (2020) analyzes
the question of when it makes sense to split or not to split
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Coalition structure erra(·) errb(·) errc(·)
{a}, {b}, {c} 2 2 2
{a, b}, {c} 1.5 1.5 2
{a, b, c} 1.3 1.3 1.3

Table 1: The expected errors using uniform federation of
players in each coalition when all three players have 5 sam-
ples each, with parameters µe = 10, σ2 = 1. Each row de-
notes a different coalition partition: for example, {a, b}{c}
indicates that players a and b are federating together while c
is alone.

Coalition structure erra(·) errb(·) errc(·)
{a}, {b}, {c} 2 2 0.4
{a, b}, {c} 1.5 1.5 0.4
{a}, {b, c} 2 1.72 0.39
{a, b, c} 1.55 1.55 0.41

Table 2: The expected errors using uniform federation of
players in each coalition when players a and b have 5 sam-
ples each and player c has 25 samples, with parameters
µe = 10, σ2 = 1.

datasets drawn from different distributions. Finally, Blum
et al. (2021) analyzes notions of envy and efficiency with
respect to sampling allocations in federated learning.

Transfer learning: Mansour et al. (2020) and Deng, Ka-
mani, and Mahdavi (2020) both propose theoretical meth-
ods for using transfer learning to minimize error provided
to agents with heterogeneous data. Li et al. (2019) and Mar-
tinez, Bertran, and Sapiro (2020) both provide methods to
produce a more uniform level of error rates across agents
participating in federated learning.

Clustering and federated learning: Sattler, Muller, and
Samek (2020) and Shlezinger, Rini, and Eldar (2020) pro-
vide an algorithm to “cluster” together players with similar
data distributions with the aim of providing them with lower
error. They differ from our approach in that they consider
the case where there is some knowledge of each player’s
data distribution, where we only assume knowledge of the
number of data points. Additionally, their approach doesn’t
explicitly consider agents to be game-theoretic actors in
the same way that this one does. Interestingly, Guazzone,
Anglano, and Sereno (2014) uses a game theoretic frame-
work to analyze federated learning, but with the aim of min-
imizing energy usage, not error rate.

Motivating Example
To motivate our problem and clarify the types of analyses
we will be exploring, we will first work through a simple
mean estimation example. (The Github repository contains
numerical calculations and full tables for this section.) Cal-
culating the error each player can expect requires two pa-
rameters: µe, which reflects the average error each player
experiences when sampling data from its own personal dis-
tribution, and σ2, which reflects the average variance in the
true parameters between players. In this section we will use

Coalition structure erra(·) errb(·) errc(·)
{a}, {b}, {c} 0.4 0.4 0.4
{a, b}, {c} 0.7 0.7 0.4
{a, b, c} 0.8 0.8 0.8

Table 3: The expected errors using uniform federation of
players in each coalition when players a, b, c each have 25
samples, with parameters µe = 10, σ2 = 1.

µe = 10, σ2 = 1, but will discuss later how to handle when
they may be imperfectly known.

First, we will analyze uniform federation, with three play-
ers, a, b, and c. We will first assume that each player has
5 samples from their local data distribution: Table 1 gives
the error each player can expect in this situation. Arrange-
ments equivalent up to renaming of players are omitted. Ev-
ery player sees its error minimized in the “grand coalition”
πg where all three players are federating together. This im-
plies that the only arrangement that is stable (core-stable or
individually stable) is πg .

Next, we assume that player c increases the amount of
samples it has from 5 to 25: Table 2 demonstrates the er-
ror each player can expect in this situation. Here, the play-
ers have different preferences over which arrangement they
would most prefer. The “small” players a and b would
most prefer {a, b}{c}, whereas the “large” player c would
most prefer {a}, {b, c} or (identically) {b}, {a, c}. However
out of all of these coalition structures, only {a, b}, {c} is
stable (either core stable or individually stable). Note that
{a}, {b, c} is not stable because the coalition C = {a, b} is
one where each player prefers C to its current situation.

Thirdly, we will assume that all three players have 25 sam-
ples: this example is shown in Table 3. As in Table 1, the
players have identical preferences. However, in this case, the
players minimize their error by being alone. Overall, stabil-
ity results from this example are part of a broader pattern we
will analyze in later sections.

Next, we will explore the two other methods of federation:
coarse-grained and fine-grained. Both offer some degree of
personalization, with varying levels of flexibility.

Table 4 shows an example using coarse federation with
four players: three have 30 samples each, and the fourth
player has 300 samples. We assume the weights wj are set
optimally for each player. For conciseness, some columns
and rows are omitted. Note that both player types get lower
error in πg than they would with local learning: that is, πg
is individually stable (stable against defections of any player
alone). However, it is also clear that πg is not core stable:
in particular, the three small players would get lower error
in {a, b, c} than in πg . These results will be examined the-
oretically in later sections: with optimal weighting, coarse-
grained federation will always have an individually stable πg
that is not necessarily core stable.

Finally, we examine fine-grained federation. Table 5 ana-
lyzes the same case as coarse-grained federation previously,
but with optimally-weighted fine-grained federation. The
full error table shows that πg is core stable because each
player minimizes their error in this arrangement. This result
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Coalition structure erra(·) errd(·)
{a}, {b}, {c}, {d} 0.333 0.0333
{a, b, c}, {d} 0.278 0.0333
{a, b, c, d} 0.280 0.0326

Table 4: The expected errors using optimal coarse-grained
federation when players a, b, c each have 30 samples, while
player d has 300 samples, with parameters µe = 10, σ2 = 1.

Coalition structure erra(·) errd(·)
{a}, {b}, {c}, {d} 0.333 0.0333
{a, b, c}, {d} 0.278 0.0333
{a, b, c, d} 0.269 0.0325

Table 5: The expected errors using optimal fine-grained fed-
eration when players a, b, c each have 30 samples, while
player d has 300 samples, with parameters µe = 10, σ2 = 1.

will hold theoretically: when optimal fine-grained federation
is used, πg always minimizes error for every player and is
thus core stable.

In later sections we will give theoretical results that ex-
plain this example more fully, but understanding the core-
stable partitions here will help to build intuition for more
general results.

Model and Assumptions
This section introduces our model. We assume that there is
a fixed set of [M ] players, and player j has a fixed number
of samples, nj . Though the number of samples is fixed, it is
possible to analyze a varying number of samples by investi-
gating all games involving the relevant number of samples.
Each player draws their true parameters i.i.d. (independent
and identically distributed) (θj , ε

2
j ) ∼ Θ. ε2j represents the

amount of noise in the sampling process for a given player.
In the case of mean estimation, θj is a scalar representing

the true mean of player j. Player j draws samples i.i.d. from
its true distribution: Y ∼ Dj(θj , ε2j ). Samples are drawn
with variance ε2j around the true mean of the distribution.

In the case of linear regression, θj is a D-dimensional
vector representing the coefficients on the true classifica-
tion function, which is also assumed to be linear. Each
player draws nj input datapoints from their own input dis-
tribution Xj ∼ Xj such that Ex∼Xj [xTx] = Σj . They
then noisily observe the outputs, drawing values i.i.d. Yj ∼
Dj(XT

j θj , ε
2
j ), where ε2j again denotes the variance of how

samples are drawn around the true mean.
There are three methods of federation. In uniform fed-

eration, a single model is produced for all members of the
federating coalition:

θ̂f =
1∑M
i=1 ni

M∑
i=1

θ̂i · ni

In coarse-grained federation, each player has a parameterwj
that it uses to weight the global model with its own local

model, producing an averaged model:

θ̂wj = wj · θ̂j + (1− wj) ·
1

N

M∑
i=1

θ̂i · ni

forwj ∈ [0, 1]. Note thatwj = 0 corresponds to unweighted
federated learning and wj = 1 corresponds to pure local
learning. Finally, with fine-grained federation, each player j
as a vector of weights vj that they use to weight every other
player’s contribution to their estimate:

θ̂vj =
M∑
i=1

vjiθ̂i

for
∑M
i=1 vji = 1. Note that we can recover the w weight-

ing case with vjj = w +
(1−w)·nj

N and vji = (1 − w) ·
ni

N . Coarse-grained and fine-grained federation each have
player-specific parameters (w, v) that can be tuned. When
those parameters are set optimally for the given player, we
refer to the models as “optimal” coarse-grained or fine-
grained federation. We will prove in later sections how to
calculate optimal weights.

We denote µe = E(θi,ε2i )∼Θ[ε2i ]: the expectation of the er-
ror parameter. In the mean estimation case, σ2 = V ar(θi)
represents the variance around the mean. In the linear regres-
sion case, σ2

d = V ar(θdi ) for d ∈ [D].
We assume that each player knows how many samples it

has access to. It may or may not have access to the data itself,
but it does not know how its values (or its parameters) differ
from the mean. For example, it does not know if the data it
has is unusually noisy or if its true mean lies far from the
true mean of other players.

All of the stability analysis results depend on the param-
eters µe and σ2. However, the reliance is fairly weak: often
the player only needs to whether the number of samples they
have nj is larger or smaller than the ratio µe

σ2 .
Much of this paper analyzes the stability of coalition

structures. Analyzing stability could be relevant because
players can actually move between coalitions. However,
even if players aren’t able to actually move, analyzing the
stability of a coalition tells us something about its optimal-
ity for each set of players.

Expected Error Results
This paper’s first contribution is to derive exact expected val-
ues for the MSE of players under different situations. The
fact that these values are exact allows us to precisely reason
about each player’s incentives in later sections. We will state
the theorems here and provide the proofs in the full version
(Donahue and Kleinberg 2020).

The approach for this section was first to derive expected
MSE values for the most general case and then derive val-
ues for other cases as corollaries. The most general case is
linear regression with fine-trained federation. First, we note
that we can derive coarse-grained or uniform federation by
setting the vji weights to the appropriate values. Next, we
note that mean estimation is a special case of linear regres-
sion. For intuition, consider a model where a player draws

5306



an x value that is deterministically 1, then multiplies it by
an unknown single parameter θj , then then takes a measure-
ment y of this mean with noise ε2j . This corresponds exactly
to the mean estimation case, where a player has a true mean
θj and observes y as a sample, with noise ε2j . We can use this
representation to simplify the error terms, with more details
given in the full version (Donahue and Kleinberg 2020).

First, we give the expected MSE for local estimation:
Theorem 0.1. For linear regression, the expected MSE of
local estimation for a player with nj samples is

µe · tr
[
ΣjEXj∼Xj

[(
XT
j Xj

)−1
]]

If the distribution of input values Xj is a D-dimensional
multivariate normal distribution with 0 mean, then, the ex-
pected MSE of local estimation can be simplified to:

µe
nj −D − 1

D

In the case of mean estimation, the error term can be simpli-
fied to:

µe
nj

Next, we calculate the expected MSE for fine-grained fed-
eration:
Theorem 0.2. For linear regression with fine-grained feder-
ation, the expected MSE of federated estimation for a player
with nj samples is:

Lj +

∑
i6=j

v2
ji +

∑
i6=j

vji

2
 · D∑

d=1

Ex∼Xj
[(xd)2] · σ2

d

where Lj is equal to:

µe

M∑
i=1

v2
ji · tr[ΣjEY∼D(θi,ε2i )

[
(XT

i Xi)
−1
]

If the distribution of input valuesXi is aD-dimensional mul-
tivariate normal distribution with 0 mean, this can be sim-
plified to:

µe

M∑
i=1

v2
ji ·

D

ni −D − 1

In the case of mean estimation, the entire error term can be
simplified to:

µe

M∑
i=1

v2
ji ·

1

ni
+

∑
i6=j

v2
ji +

∑
i6=j

vji

2
 · σ2

Finally, we derive as corollaries the expected MSE for the
uniform federation and the coarse-grained case.
Corollary 0.3. For uniform linear regression, the expected
MSE of federated estimation for a player with nj samples
is:

Lj +

∑
i6=j n

2
i + (N − nj)2

N2

D∑
d=1

Ex∼Xj
[(xd)2] · σ2

d

where Lj is equal to:

µe

M∑
i=1

n2
i

N2
tr[ΣjEY∼D(θi,ε2i )

[
(XT

i Xi)
−1
]

or, if the distribution of input values Xi is a D-dimensional
multivariate normal distribution with 0 mean, can be simpli-
fied to

µe

M∑
i=1

n2
i

N2

D

ni −D − 1

In the case of mean estimation, the entire error term can be
simplified to:

µe
N

+

∑
i6=j n

2
i + (N − nj)2

N2
σ2

where N =
∑M
i=1 ni.

Corollary 0.4. For coarse-grained linear regression, the ex-
pected MSE of federated estimation for a player with nj
samples is:

Lj+(1−w)2 ·
∑
i6=j n

2
i + (N − nj)2

N2

D∑
d=1

Ex∼Xj
[(xd)2]·σ2

d

where Lj is equal to:

µe · (1− w)2 ·
M∑
i=1

n2
i

N2
tr[ΣjEY∼D(θi,ε2i )

[
(XT

i Xi)
−1
]

+

µe

(
w2 + 2

(1− w)w · nj
N

)
·tr[ΣjEY∼D(θi,ε2i )

[
(XT

j Xj)
−1
]

or, if the distribution of input values Xi is a D-dimensional
multivariate normal distribution with 0 mean, can be simpli-
fied to

µe · (1− w)2 ·
M∑
i=1

n2
i

N2

D

ni −D − 1

+µe ·
(
w2 + 2 · (1− w) · w · nj

N

)
· D

ni −D − 1
In the case of mean estimation, the entire error term can be
simplified to:

µe

(
w2

nj
+

1− w2

N

)
+

∑
i6=j n

2
i + (N − nj)2

N2
·(1−w)2σ2

where N =
∑M
i=1 ni.

The exact MSE for linear regression follows a very sim-
ilar form to that for mean estimation. In all cases, the bias
component (the term involving σ2

d) is in the exact same form
and could be directly modified to mean estimation by using
(σ2)′ =

∑D
d=1 Ex∼Xj

[(xd)2] · σ2
d. The variance component

(the term involving µe) fits the exact form of mean estima-
tion in the limit where nj >> D. In this case, the error can
be modified to fit mean estimation by using µ′e = D·µe. This
approximation is good when there are many more samples
than the dimension of the linear regression problem under
investigation: for most cases of model fitting, this assump-
tion is reasonable.

For the rest of the paper, we will use the nj >> D as-
sumption: consequentially, all of our results apply equally
to linear regression and mean estimation.
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Uniform Federation
In this section, we analyze the stability of coalition struc-
tures in the case that uniform federation is used. We consider
two cases: 1) where all players have the same number of dat-
apoints n and 2) where all players have either a “small” or
“large” number of points. We will use πl to refer to the coali-
tion partition where all players are alone and πg to refer to
the grand coalition. Proofs from this section are given in the
full version (Donahue and Kleinberg 2020).

All Players Have the Same Number of Samples
In this case, the analysis simplifies greatly:
Lemma 0.5. If all players have the same number of samples
n, then:
• If n < µe

σ2 , players minimize their error in πg .
• If n > µe

σ2 , players minimize their error in πl.
• If n = µe

σ2 , players are indifferent between any arrange-
ment of players.

Proof. In the case that all players have the same number of
samples, we can use ni = n to simplify the error term:

µe
M · n

+ σ2M − 1

M

In order to see whether players would prefer a larger group
(higher M ) or a smaller group (smaller M ), we take the
derivative of the error with respect to M :

− µe
M2 · n

+
σ2

M2
=
σ2 · n− µe
n ·M2

This is positive when n > µe

n : a player gets higher error the
more players it is federating with. This is negative when n <
µe

σ2 : a player gets lower error the more players it is federating
with. This is 0 when n = µe

σ2 , which implies players should
be indifferent between different arrangements. Plugging in
for n = µe

σ2 in the error equation gives µe·σ2

M ·µe
+σ2M−1

M = σ2

which is equivalent to the error a player would get alone:
µe

n = µe·σ2

µe
= σ2.

As a corollary, we can classify the core stable arrange-
ments cleanly:
Corollary 0.6. For uniform federation, if all players have
the same number of samples n, then:
• If n < µe

σ2 , πg is the only partition that is core-stable.
• If n > µe

σ2 , πl is the only partition that is core-stable.
• If n = µe

σ2 , any arrangement of players is core-stable.

Small & Large Player Case
In this section, we add another layer of depth by allowing
players to come in one of two “sizes”. “Small” players have
ns samples and “large” ones have n` samples, with ns < n`.
We demonstrate that versions of the game in this pattern al-
ways have a stable partition by constructively producing an
element that is stable. Note that this is not true in general
of hedonic games. As discussed in Bogomolnaia and Jack-
son (2002), there are multiple instances where a game might
have no stable partition.

To characterize this space, we divide it into cases de-
pending on the relative size of ns, n`. We will use the no-
tation π(s, `) to denote a coalition with s small players and
` large players, out of a total of S and L present. We will use
π(s1, `1) �S π(s2, `2) to mean that the small players prefer
coalition π(s1, `1) to π(s2, `2) and π(s1, `1) �L π(s2, `2)
to mean the same preference, but for large players.

Case 1: ns, n` ≥ µe

σ2 The first case is when ns is large:
it turns out that each player minimizes their error by using
local learning, which means that πl is in the core. The lemma
below is more general than the small/large case, but implies
that when ns > µe

σ2 , πl is the only element in the core and
when ns = µe

σ2 then any arrangement where the large players
are alone are is in the core.

Lemma 0.7. For uniform federation, if ni > µe

σ2 for all i ∈
[M ], then πl is the unique element in the core.
If ni ≥ µe

σ2 for all i ∈ [M ], with nk > µe

σ2 for at least
one player k, then any arrangement where the players with
samples nk > µe

σ2 are alone is in the core.

Case 2: ns, n` ≤ µe

σ2 Next, we consider the case where
both the small and large players have a relatively small num-
ber of samples. In this situation, it turns out that the grand
coalition is core stable.

Theorem 0.8. For uniform federation, if n` ≤ µe

σ2 and ns <
n`, then the grand coalition πg is core stable.

Case 3: ns < µe

σ2 , n` > µe

σ2 Finally, we consider the case
where the small players have a number of samples below
the µe

σ2 boundary, while the large players have a number of
samples above this threshold.

Theorem 0.9. Assume uniform federation with n` > µe

σ2 .
Then, there exists an arrangement of small and large play-
ers that is individually stable and a computationally efficient
algorithm to calculate it.

The proof of Theorem 0.9 is constructive: it gives an exact
arrangement that is individually stable. One natural question
is whether this arrangement is also core stable. The answer
to this question is “no”: we show that this arrangement can
fail to be core stable. This avenue is explained more in the
full version (Donahue and Kleinberg 2020).

Coarse-grained Federation
In this section, we analyze coarse-grained federation. As a
reminder, in this situation, each player has a parameter wj
that it uses to weight the global model with its own local
model.

θ̂wj = wj · θ̂j + (1− wj) ·
1

N

M∑
i=1

θ̂i · ni

for wj ∈ [0, 1]. All proofs from this section are given in the
full version (Donahue and Kleinberg 2020).

Note that the wj value is a parameter that each player can
set independently. The lemma below analyzes the optimal
value of wj and tells us that each player would prefer feder-
ation, in some form, to being alone.
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Lemma 0.10. For coarse-grained federation, the minimum
error is always achieved when wj < 1, implying that feder-
ation is always preferable to local learning.

Corollary 0.11. For coarse-grained federation, when wj is
set optimally, the grand coalition πg is always individually
stable.

Specifically, this means that no player wishes to unilater-
ally deviate from πg . However, this does not mean that each
player prefers the grand coalition πg to some other federat-
ing coalition. For example, refer to the Motivating Example
section for a case where the grand coalition πg is not core
stable.

In the rest of this section, we will analyze the stability
of coalition structures in the that the w parameters are set
optimally (optimal coarse-grained federation). First, we will
find it useful to get the closed-form value for expected MSE
of a player using optimal coarse-grained federation:

Lemma 0.12. A player using optimal coarse-grained feder-
ation has expected MSE:

µe · (N − nj) + (
∑
i6=j n

2
i + (N − nj)2) · σ2

(N − nj) ·N + nj · (
∑
i6=j n

2
i + (N − nj)2) · σ2

µe

where N =
∑M
i=1 ni.

All Players Have the Same Number of Samples
Lemma 0.13 is the analog to Lemma 0.5 in the previous
section. Here, the results differ: with optimal coarse-grained
federation, the grand coalition πg is always the only stable
arrangement, no matter how small or large n is relative to
µe

σ2 .

Lemma 0.13. For mean estimation with coarse-grained fed-
eration, if nj = n, then πg is the only element in the core.

Proof. Using the error term derived in Lemma 0.12, plug-
ging in for ni = n and simplifying gives:

µ2
e

n·M + µe · σ2

µe + n · σ2

As M increases, the error (numerator) decreases always -
so πg is where each player minimizes their error and is thus
core stable.

Small & Large Player Case
In this subsection, we similarly extend results for the “small”
and “large” case that was introduced in the previous sec-
tion. The analysis turns out to be much simpler than in the
uniform federation case, and also produce stronger results:
strict core stability, rather than individual stability.

Theorem 0.14. If optimal coarse-grained federation is
used, then:

• If πg �S π(S, 0) (small player weakly prefers π(S, 0)),
then {π(S, 0), π(0, L)} is strictly core stable.

• If πg �S π(S, 0) (small player strictly prefers πg), then
πg is strictly core stable.

Fine-grained Federation
In this section, we analyze fine-grained federation. As a
reminder, with this method, each player j as a vector of
weights vj that they use to weight every other player’s con-
tribution to their estimate.

θ̂vj =
M∑
i=1

vjiθi

for
∑M
i=1 vji = 1.

We calculate the optimal v weights for player j’s error.
Lemma 0.15. Define Vi = σ2+ µe

ni
. Then, the value of {vji}

that minimizes player j’s error is:

vjj =
1 + σ2

∑
i6=j

1
Vi

1 + Vj
∑
i6=j

1
Vi

vjk =
1

Vk
· Vj − σ2

1 + Vj
∑
i6=j

1
Vi

k 6= j

The proof of this lemma is given in the full version (Don-
ahue and Kleinberg 2020).

From this analysis, a few properties become clear. To start
with, vjj and vjk are always strictly between 0 and 1. This
implies the following lemma:
Corollary 0.16. With optimal fine-grained federation, πg is
optimal for each player.

Proof. Suppose by contradiction that some other coalition
π′ gave player j a lower error. WLOG, assume this coali-
tion omitted player k. In this case, the v weights for π′ can
be represented as a length M vector with 0 in the kth entry.
However, set of weights is achievable in πg: it is always an
option to set a player’s coefficient vjk equal to 0. This con-
tradicts the use of vj as an optimal weighting, so it cannot
be the case that any player gets lower error in a different
coalition.

Similarly, the fact that πg is optimal for every player im-
plies that it is in the core, and that it is the only element in
the core.

Conclusions and Future Directions
In this work, we have drawn a connection between a simple
model of federated learning and the game theoretic tool of
hedonic games. We used this tool to examine stable parti-
tions of the space for two variants of the game. In service of
this analysis, we computed exact error values for mean es-
timation and linear regression, as well as for three different
variations of federation.

We believe that this framework is a simple and useful
tool for analyzing the incentives of multiple self-interested
agents in a learning environment. There are many fascinat-
ing extensions. For example, completely characterizing the
core (including whether it is always non-empty) in the case
of arbitrary number of samples {ni} is an obvious area of in-
vestigation. Besides this, it could be interesting to compute
exact or approximate error values for cases beyond mean es-
timation and linear regression.
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