
Mind the Gap: Cake Cutting With Separation

Edith Elkind,1 Erel Segal-Halevi,2 Warut Suksompong3

1 Department of Computer Science, University of Oxford
2 Department of Computer Science, Ariel University

3 School of Computing, National University of Singapore

Abstract

We study the problem of fairly allocating a divisible resource,
also known as cake cutting, with an additional requirement
that the shares that different agents receive should be suf-
ficiently separated from one another. This captures, for ex-
ample, constraints arising from social distancing guidelines.
While it is sometimes impossible to allocate a proportional
share to every agent under the separation requirement, we
show that the well-known criterion of maximin share fairness
can always be attained. We then establish several computa-
tional properties of maximin share fairness—for instance, the
maximin share of an agent cannot be computed exactly by
any finite algorithm, but can be approximated with an arbi-
trarily small error. In addition, we consider the division of a
pie (i.e., a circular cake) and show that an ordinal relaxation
of maximin share fairness can be achieved.

1 Introduction
The end of the year is fast approaching, and members of
a city council are busy planning the traditional New Year’s
fair on their city’s main street. As usual, a major part of their
work is to divide the space on the street among interested
vendors. Each vendor naturally has a preference over poten-
tial locations, possibly depending on the proximity to cer-
tain attractions or the estimated number of customers visit-
ing that space. Additionally, this year is different from pre-
vious years due to the social distancing guidelines issued by
the government—vendors are required to be placed at least
two meters apart. How should the city council allot the space
so that all vendors feel fairly treated and at the same time ev-
eryone stays safe and sound under the new guidelines?

The problem of fairly allocating a heterogeneous divisi-
ble good among a set of agents in a fair manner has a long
history and is commonly known as cake cutting (Brams and
Taylor 1996; Robertson and Webb 1998; Procaccia 2016).
A typical fairness criterion in cake cutting is proportional-
ity, which means that each agent should receive her propor-
tionally fair share—specifically, this amounts to 1/n of the
agent’s value for the whole cake, where n denotes the total
number of agents. For any set of agents with arbitrary valua-
tions, a proportional allocation in which each agent receives
a single connected piece is guaranteed to exist. Better still,

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such an allocation can be found by a simple and efficient
algorithm (Dubins and Spanier 1961).

In this paper, we initiate the study of cake cutting with
separation requirements. Besides the social distancing ex-
ample that we mentioned, our setting captures the task of
allocating machine processing time, where we need time to
erase data from the previous process before the next process
can be started, as well as land division, where we want space
between different plots in order to avoid cross-fertilization.
When separation is imposed, it is no longer the case that pro-
portionality can always be satisfied—an extreme example is
when all agents place their entire value on a small piece of
length less than the minimum gap required. A similar failure
of proportionality has notably been observed in the alloca-
tion of indivisible items (without separation), and a solution
that has been proposed and widely studied in that context
is maximin share fairness (Budish 2011; Kurokawa, Procac-
cia, and Wang 2018). Maximin share fairness requires each
agent to receive her “maximin share”, which is the best share
that the agent can secure by dividing the items into n bun-
dles and getting the worst bundle. In this work, we demon-
strate that maximin share fairness is an appropriate substi-
tute for proportionality in cake cutting with separation, and
analyze it from a computational perspective. To the best of
our knowledge, this is the first use of maximin share fairness
in connected cake cutting.

1.1 Our Results
As is commonly done in cake cutting, we assume that the
cake is represented by an interval and each agent is to be
allocated a single subinterval of the cake. We further require
the pieces of any two agents to be separated by distance at
least s, where s > 0 is a given separation parameter.

In Section 3, we begin by proving that an allocation that
gives every agent at least her maximin share always ex-
ists, meaning that maximin share fairness can be guaranteed.
Such an allocation can be found by a simple algorithm pro-
vided that the algorithm knows the maximin share of each
agent. Unfortunately, we show that no finite algorithm can
compute the maximin share of an agent exactly in the stan-
dard Robertson-Webb model—this impossibility holds even
when n = 2 and the agents have piecewise constant val-
uations. Nevertheless, we design an algorithm that approx-
imates the maximin share up to an arbitrarily small error,

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5330



Task Cake Cutting Pie Cutting

Decide whether MMSi = r Yes (Cor. 3.7) No (Thm. 4.2)
Decide whether MMSi > r Yes (Thm. 3.6) No (Thm. 4.2)
Decide whether MMSi ≥ r Yes (Thm. 3.4) No∗ (Thm. 4.5)

Compute the maximin share of an agent No (Thm. 3.2) No (Cor. 4.6)
Approximate the maximin share up to ε Yes (Cor. 3.5) Yes (Thm. 4.7)

Compute a maximin partition of an agent No (Cor. 3.3) No (Cor. 4.6)
Approximate a maximin partition up to ε Yes (Cor. 3.5) Yes (Thm. 4.7)

Table 1: Summary of the tasks that can and cannot be accomplished by finite algorithms in the Robertson-Webb model for
cake cutting and pie cutting. All negative results hold even if the valuations of the agents are piecewise constant (but not given
explicitly). The result with an asterisk holds when we do not allow the number of queries that the algorithm makes to depend
on the separation parameter s.

which also allows us to compute an allocation wherein each
agent obtains an arbitrarily close approximation of her max-
imin share. In addition, we present algorithms that decide
whether the maximin share of an agent is greater than, less
than, or equal to a given value, and show that if the agents
have piecewise constant valuations that are given explicitly
as part of the input, then we can exactly compute their max-
imin shares, and therefore a maximin allocation, in polyno-
mial time.

In Section 4, we consider the allocation of a “pie”, which
is a one-dimensional circular cake and serves to model, for
example, the shoreline of an island or daily time slots for
using a facility. In contrast to cake cutting, maximin share
fairness cannot necessarily be guaranteed in pie cutting, and
even the commonly studied cardinal multiplicative approx-
imation cannot be obtained. Therefore, we focus instead on
an ordinal relaxation of the maximin share, which allows
each agent to partition the pie into k pieces for some pa-
rameter k > n. We show that when k = n + 1, the result-
ing notion—called the 1-out-of-(n+1) maximin share—can
be satisfied. We then investigate computational properties of
maximin share fairness in pie cutting and demonstrate simi-
larities and differences with cake cutting. For instance, while
we can still approximate the maximin share of an agent, de-
ciding whether the maximin share is equal to a given value
is no longer possible for any finite algorithm.

A summary of our results can be found in Table 1.

1.2 Related Work
Cake cutting has long been studied by mathematicians and
economists, and more recently attracted substantial interest
from computer scientists, as it suggests a plethora of com-
putational challenges. In particular, a long line of work in
the artificial intelligence community in recent years has fo-
cused on cake cutting and its variants (Brânzei et al. 2016;
Alijani et al. 2017; Bei et al. 2017; Menon and Larson
2017; Bei, Huzhang, and Suksompong 2018; Segal-Halevi
2018; Arunachaleswaran, Barman, and Rathi 2019; Gold-
berg, Hollender, and Suksompong 2020; Hosseini, Igarashi,
and Searns 2020; Bei and Suksompong 2021).

In order to prevent agents from receiving a collection of

tiny pieces, it is often assumed that each agent must re-
ceive a connected piece of the cake (Dubins and Spanier
1961; Stromquist 1980; Su 1999; Bei et al. 2012; Cechlárová
and Pillárová 2012; Cechlárová, Doboš, and Pillárová 2013;
Aumann and Dombb 2015; Arunachaleswaran et al. 2019;
Goldberg, Hollender, and Suksompong 2020). Indeed, when
we divide resources such as time or space, non-connected
pieces (e.g., disconnected time intervals or land plots) may
be hard to use, or even totally useless. Note that we im-
pose the connectivity constraint not only on the allocation
but also in the definition of the maximin share benchmark.
Similar conventions have been used in the context of indi-
visible items, where the items are vertices of an undirected
graph and every agent must be allocated a connected sub-
graph (Bouveret et al. 2017; Lonc and Truszczynski 2020).1

Most previous works on cake cutting did not explicitly
consider the maximin share. This is because a proportional
allocation is also a maximin allocation, since each agent’s
maximin share is always at most 1/n of the agent’s value for
the entire cake. In particular, without separation constraints,
classic algorithms for proportional cake cutting (Steinhaus
1948; Dubins and Spanier 1961; Even and Paz 1984) at-
tain maximin share fairness. The maximin share becomes
interesting when a proportional allocation does not exist, for
example, when the cake is a collection of disconnected in-
tervals and each agent should receive a bounded number of
connected pieces. Segal-Halevi (2021, Appendix B) briefly
considered maximin share fairness in this setting.

2 Preliminaries
In cake cutting, the cake is represented by the interval [0, 1].
The set of agents is denoted by N = [n], where [k] :=
{1, 2, . . . , k} for any positive integer k. The preference of
each agent i is represented by an integrable density func-
tion fi : [0, 1] → R≥0, which captures how the agent val-
ues different parts of the cake. A piece of cake is a finite
union of disjoint intervals of the cake; it is said to be con-
nected if it consists of a single interval. Agent i’s value for

1Bei et al. (2021) explored the relations between the constrained
and unconstrained versions of the maximin share in that context.

5331



a piece of cake X is given by vi(X) :=
∫
x∈X fi(x)dx.

For 0 ≤ x ≤ y ≤ 1, we simplify notation and write
vi(x, y) = vi([x, y]). As is standard in cake cutting, we
assume that the density functions are normalized so that
vi(0, 1) = 1 for all i ∈ N . A valuation function is said
to be piecewise constant if it is represented by a piecewise
constant density function. An allocation of the cake is de-
noted by a vector A = (A1, . . . , An), where each Ai is a
piece of cake, and Ai and Aj are disjoint for all i 6= j. The
piece Ai is allocated to agent i.

Let s ∈ (0, 1
n−1 ) be the separation parameter. We will

be interested in allocations that are connected—each Ai is a
connected piece—and moreover have the property that any
two pieces are separated by length at least s; we call such al-
locations s-separated. We define partitions and s-separated
partitions in a similar manner, with the difference being that
for partitions, we have a set P = {P1, . . . , Pn} instead of a
vector A = (A1, . . . , An). The min-value of partition P for
agent i is defined as minn

j=1 vi(Pj). Assume without loss of
generality that the pieces P1, . . . , Pn are in increasing or-
der from left to right, and denote by Γn,s the set that con-
sists of all s-separated partitions of the cake. Note that an s-
separated allocation or partition is incomplete since some of
the cake necessarily remains unallocated. An instance con-
sists of the agents, cake, density functions, and separation
parameter.

A standard method for a cake-cutting algorithm to access
agents’ valuations is through queries in the model of Robert-
son and Webb (1998), which supports two types of queries:

• EVALi(x, y): Asks agent i to evaluate the interval [x, y]
and return the value vi(x, y).

• CUTi(x, α): Asks agent i to return the leftmost point y
such that vi(x, y) = α, or state that no such point exists.

We now define the main fairness criterion of our paper.

Definition 2.1. The maximin share of agent i is defined as
MMSn,s

i := supP∈Γn,s
minj∈[n] vi(Pj). When n and s are

clear from context, we omit them from the notation and write
MMSi instead of MMSn,s

i .

Let Γ′n,s ⊆ Γn,s be the set of s-separated partitions of
[x, y] such that every pair of consecutive pieces is separated
by length exactly s. We claim that the definition of the max-
imin share can be simplified by replacing Γn,s with Γ′n,s;
intuitively, for every partition in which the distance between
some adjacent pieces is larger than s, there is a partition with
at least the same min-value in which the distance between
all adjacent pieces is exactly s. We also claim that the supre-
mum in the definition can be replaced with a maximum, i.e.,
a maximizing partition always exists.

Proposition 2.2. For every agent i, the following holds:
MMSn,s

i = maxP∈Γ′
n,s

minj∈[n] vi(Pj).

The proof of Proposition 2.2, as well as all other omitted
proofs, can be found in the full version of our paper (Elkind,
Segal-Halevi, and Suksompong 2020).

From now on, we will work with this new definition of
the maximin share. An s-separated partition is said to be a
maximin partition for agent i if every piece in the partition

yields value at least MMSn,s
i . Proposition 2.2 implies that

every agent has at least one maximin partition. Similarly, an
s-separated allocation is said to be a maximin allocation if
every agent i receives value at least MMSn,s

i from the allo-
cation.

3 Cake Cutting
In this section, we consider cake cutting with separation,
both in the Robertson-Webb query model and in a model
where the agents’ valuations are given explicitly.

3.1 Robertson-Webb Query Model
We begin by showing that the maximin share is an appropri-
ate fairness criterion in our setting: it is always possible to
fulfill this criterion for every agent using a quadratic num-
ber of queries in the Robertson-Webb model. Our algorithm
is similar to the famous Dubins-Spanier protocol for find-
ing proportional allocations when separation is not required
(Dubins and Spanier 1961): we process the cake from left to
right and, at each stage, allocate a subsequent piece of cake
to an agent who demands the smallest piece.

Theorem 3.1. For any instance, there exists a maximin al-
location. Moreover, given the maximin share of each agent,
such an allocation can be computed using O(n2) queries in
the Robertson-Webb model.

Proof. We ask each agent i to mark the leftmost point xi
such that v(0, xi) = MMSi. The agent who marks the left-
most xi is allocated the piece [0, xi] (with ties broken ar-
bitrarily); we then remove this agent along with the piece
[xi, xi + s], and recurse on the remaining agents and cake.
If there is only one agent left, that agent receives all of the
remaining cake. Since we make n−j cut queries when there
are n−j agents left (and no eval queries), our algorithm uses∑n−1

j=0 (n− j) = O(n2) queries.
We now prove the correctness of the algorithm. Consider

any agent i and her maximin partition. If agent i receives
the first piece allocated by the algorithm, she receives value
MMSi. Else, the allocated piece is no larger than the first
piece of her maximin partition. Since the algorithm inserts a
separator of length exactly s, the right endpoint of the first
separator is either the same or to the left of the correspond-
ing point in agent i’s maximin partition. Applying a similar
argument repeatedly, we find that if agent i is not allocated
any of the first n − 1 pieces, then the remaining cake con-
tains the nth piece of the agent’s partition. Hence, agent i
receives a value of at least MMSi in this case too.

The algorithm in Theorem 3.1 crucially relies on knowing
the maximin share of each agent. Unfortunately, we show
next that this knowledge is impossible to achieve in finite
time, even if the valuations are piecewise constant but are
not given explicitly as part of the input. Our result is similar
in spirit to the non-finiteness results for connected envy-free
cake cutting (Stromquist 2008), equitability (Cechlárová and
Pillárová 2012; Procaccia and Wang 2017) and average-
proportionality (Segal-Halevi and Nitzan 2019). However,
all previous impossibility results relied on the fact that there

5332



are two or more agents with possibly different valuations. In
contrast, our impossibility result is attained even for a single
agent who wants to cut the cake into two s-separated pieces.

Theorem 3.2. There is no algorithm that can always com-
pute the maximin share of an agent by asking the agent a
finite number of Robertson-Webb queries. This holds even
when n = 2 and the agent’s valuation is piecewise constant
and strictly positive (but is not given explicitly).

Proof. Let v be the agent’s valuation function and let
g(x) := v(0, x). By assumption the density function is
strictly positive, so g(x) is strictly increasing in the range
x ∈ [0, 1−s]. We will refer to this property as monotonicity.
Similarly, h(x) := v(x + s, 1) = 1 − g(x + s) is strictly
decreasing in the same range. Since both functions are con-
tinuous and g(0) = h(1−s) = 0, there exists a unique point
x0 ∈ [0, 1 − s] such that g(x0) and h(x0) are equal; the
value g(x0) = h(x0) is the agent’s maximin share. Equiva-
lently, the maximin share is the unique value g(x0) such that
g(x0) + g(x0 + s) = 1.

For simplicity we assume that the algorithm only asks
queries of the form EVAL(0, x)—which should return the
value of g(x)—and CUT(0, α)—which should return the
value of g−1(α). Every standard query can be imple-
mented using two such simplified queries, so this assump-
tion changes the total number of queries by a factor of at
most 2.

During the run, there is always a finite set of points
x ∈ [0, 1] for which the algorithm knows the value of g(x);
we say that such points are recorded. Initially only points 0
and 1 are recorded. Given a point x ∈ [0, 1], we denote by
x− the largest recorded point that is at most x, and by x+

the smallest recorded point that is at least x (if x itself is
recorded, then x− = x+ = x).

Assume for contradiction that there exists an algorithm
for finding the maximin share using finitely many queries.
We will show how an adversarial agent can answer the
queries made by the algorithm so that after any finite number
of queries, for any value that the algorithm may answer as
the agent’s maximin share, there exists a piecewise constant
valuation function consistent with the answers for which the
maximin share is different from the algorithm’s answer. This
is sufficient to obtain the desired contradiction.

When asked EVAL(0, x), if x is recorded then the adver-
sary replies g(x); else, the adversary chooses a value for
g(x) satisfying the following properties:

(i) Monotonicity is preserved, i.e., g(x−) < g(x) < g(x+).
(ii) If the point x+ s is recorded, then g(x) 6= 1− g(x+ s).

(iii) If the point x− s is recorded, then g(x) 6= 1− g(x− s).

Since condition (i) allows infinitely many values to choose
from, and each of the conditions (ii) and (iii) rules out at
most one value, the adversary can make a choice satisfying
these conditions.

When asked CUT(0, α), if there is a recorded point y such
that g(y) = α then the adversary replies y; else, the adver-
sary chooses a point y satisfying the following properties:

(i) Monotonicity is preserved, i.e., g(y−) < α < g(y+).

(ii) None of the points y − s, y + s, and y is recorded.

Again, the former condition allows infinitely many points,
and the latter forbids only a finite number of them.

Since the algorithm is finite, it must eventually return
some number r ∈ [0, 1] as the agent’s maximin share. Now,
in order to falsify the algorithm’s answer, the adversary vol-
untarily answers two more queries by the same rules as
above: a CUT(0, r) query, returning a point yr such that
g(yr) = r, and an EVAL(0, yr + s) query. Now both yr
and yr + s are recorded. The answering rules guarantee that
g(yr) + g(yr + s) 6= 1, and therefore g(yr) = r cannot be
the correct MMS value.2

Finally, to complete the valuation function, the adversary
simply makes the density function between any two consec-
utive recorded points uniform. Hence the valuation is piece-
wise constant, but the corresponding maximin share is dif-
ferent from r, completing the proof.

Given a maximin partition of an agent, we can compute
the agent’s maximin share by simply taking the minimum
among the agent’s values for the pieces in the partition.
Moreover, for two agents with identical valuations, an allo-
cation in which each agent receives at least their (common)
maximin share corresponds to a maximin partition for the
common valuation. Theorem 3.2 therefore yields the follow-
ing corollary, which also implies that an allocation whose
existence is guaranteed by Theorem 3.1 cannot be computed
without the knowledge of the agents’ maximin shares.

Corollary 3.3. There is no finite algorithm in the Robertson-
Webb model that can always (a) compute a maximin parti-
tion of a single agent, or (b) compute a maximin allocation
for n agents. This holds even when n = 2 and the agents’
valuations are piecewise constant (but not given explicitly).

Despite these negative results, we show next that it is pos-
sible to get an arbitrarily good approximation of the max-
imin share, partition, and allocation.

Theorem 3.4. Given an agent i and a number r > 0, it is
possible to decide whether MMSi ≥ r (and, if so, compute
a partition with value at least r for agent i) using at most n
queries in the Robertson-Webb model.

Proof. The idea is similar to that in Theorem 3.1. Ask the
agent to mark the leftmost point x such that v(0, x) = r,
make [0, x] one of the pieces in a potential partition, add a
separator [x, x + s], and repeat starting from x + s. If there
is still value at least r left after n− 1 iterations, answer yes;
else, answer no. It is clear that at most n queries are used.

If the algorithm answers yes, then it finds a partition with
value at least r, so MMSi ≥ r. Conversely, suppose that
MMSi ≥ r, and consider a maximin partition. The right
endpoint of the first piece in this partition is either the same
or to the right of our first marked point x. In addition, since
our algorithm inserts a separator of length exactly s, the right
endpoint of our first separator is no further to the right than

2If yr + s > 1 then the adversary cannot ask EVAL(0, yr + s),
but then g(yr) cannot be the correct MMS value anyway, since
making a cut at yr would make the rightmost piece empty.

5333



the corresponding point in the maximin partition. Applying a
similar argument n−1 times, we find that the right endpoint
of our (n − 1)st separator is no further to the right than the
corresponding point in the maximin partition. Since the final
piece of the partition has value at least MMSi, our remaining
piece also has value at least MMSi ≥ r. Hence the algorithm
answers yes, as claimed.

Combining the algorithm in Theorem 3.4 with binary
search allows us to approximate the maximin share.
Corollary 3.5. Given an agent i and a number ε > 0, it is
possible to find a number r for which MMSi − ε ≤ r ≤
MMSi (together with a partition with min-value at least r
for agent i) using O(n log(1/ε)) Robertson-Webb queries.

If instead of the exact MMSi, we are given a number
ri ≤ MMSi for each agent i, the algorithm for computing
a maximin allocation in Theorem 3.1 still computes an allo-
cation in which agent i receives value at least ri; the proof
is essentially the same as before. It therefore follows from
Corollary 3.5 that for any ε > 0, we can compute an alloca-
tion in which agent i receives value at least MMSi− ε using
at most O(n2 + n log(1/ε)) queries.

Next, we consider the question of deciding whether the
maximin share of an agent is strictly greater than a given
number r. At first glance, it may seem that to this end, we
can simply run the algorithm from Theorem 3.4 and an-
swer yes exactly when the value left after n− 1 iterations is
strictly greater than r. While this modification indeed works
if the density function is positive throughout the cake, it
may fail when intervals with zero value are present. Con-
cretely, suppose that vi(0, 1/3) = 0.4, vi(1/3, 2/3) = 0,
vi(2/3, 1) = 0.6, and the value is distributed uniformly
within each interval. Moreover, s = 1/3 and we want to de-
cide whether MMS2,s

i > 0.4. Even though there is leftover
value at the right end of the cake when we run the algorithm,
which may tempt us to believe that the maximin share can
go above 0.4, the zero-valued middle part in fact renders this
belief false.

This example suggests a simple modification to the al-
gorithm from Theorem 3.4: instead of marking the leftmost
point such that the value of the resulting piece is r, we should
mark the rightmost point with this property. Indeed, we have
MMSi > r if and only if after executing this modified algo-
rithm we are left with a positive-value piece. In particular, in
the first iteration of the algorithm, we want to mark the right-
most point x such that v(0, x) = r. Unfortunately, and per-
haps surprisingly, this task cannot be done using the queries
available via the Robertson-Webb model.3 Nevertheless, we
can get around this issue by instead going over the cake from
right to left. Then in the first iteration we want the leftmost
point x such that v(x, 1) = r. This is equivalent to finding
the leftmost point x such that v(0, x) = 1− r, which can be
done with a standard cut query.
Theorem 3.6. Given an agent i and a number r > 0, it
is possible to decide whether MMSi > r using at most n
queries in the Robertson-Webb model.

3See the full version of our paper for details (Elkind, Segal-
Halevi, and Suksompong 2020).

Theorems 3.4 and 3.6 immediately imply the following:
Corollary 3.7. Given an agent i and a number r > 0, it
is possible to decide whether MMSi = r using at most 2n
queries in the Robertson-Webb model.

3.2 Explicit Piecewise Constant Valuations
Now, suppose that all agents have piecewise constant valu-
ations and, moreover, these valuations are given explicitly.
That is, for an agent i ∈ N we are given a list of break-
points (p0, p1, . . . , ps) with p0 = 0, ps = 1, and a list of
densities (γ1, . . . , γs), so that for each j ∈ [s] and each
x ∈ [pj−1, pj ] the valuation function vi of agent i satis-
fies vi(0, x) =

∑j−1
`=1 γ`(p` − p`−1) + γj(x− pj−1); more-

over, all breakpoints and densities are rational numbers, rep-
resented as fractions whose numerators and denominators
are given in binary. Note that it is straightforward to imple-
ment both types of Robertson-Webb queries in this model,
so every problem that can be solved in polynomial time
in the Robertson-Webb model can also be solved in poly-
nomial time in this model. It turns out that using the ex-
plicit representation offers additional benefits: we can com-
pute the agents’ maximin shares exactly rather than approxi-
mately. This is in contrast to Theorem 3.2, which shows that
this task is impossible if the piecewise constant valuations
are not given explicitly and have to be queried through the
Robertson-Webb model.
Theorem 3.8. Given an agent i with a piecewise constant
valuation function given explicitly, we can compute MMSn,s

i
in time polynomial in the size of the input.

At a high level, the proof of Theorem 3.8 proceeds by
formulating a linear program whose solution corresponds to
MMSi. The challenge is that in order to have a linear pro-
gram that returns a correct answer, we need to find out the
intervals to which each endpoint of a maximin partition be-
longs. To accomplish this, we proceed from left to right, de-
termining the interval for one endpoint at a time.

Combined with Theorem 3.1, Theorem 3.8 implies that
when agents have piecewise constant valuations given ex-
plicitly, we can compute a maximin allocation efficiently (cf.
Corollary 3.3).
Corollary 3.9. For agents with piecewise constant valua-
tions given explicitly, a maximin allocation can be computed
in time polynomial in the size of the input.

4 Pie Cutting
In the canonical model of cake cutting the cake is assumed
to be linear. By contrast, in this section we assume that it is
circular. In other words, our resource is represented by the
interval [0, 1] with the two endpoints identified with each
other. The respective division problem is known in the lit-
erature as pie cutting; its applications include dividing the
shoreline of an island among its inhabitants and splitting
a daily cycle for using a facility (Thomson 2007; Brams,
Jones, and Klamler 2008; Barbanel, Brams, and Stromquist
2009).

The definitions of s-separated partitions and allocations
can be readily adjusted to pie cutting—the only difference

5334



is that, due to the circular structure, there are n separators
in pie cutting rather than n − 1 (so we can assume that
s < 1/n). Note that, since the pie is one-dimensional, dis-
tances are measured along the circumference of the pie. We
denote by Πn,s the set of s-separated partitions with re-
spect to the pie, and by Π′n,s ⊆ Πn,s the subset of par-
titions for which every pair of consecutive pieces is sepa-
rated by length exactly s. The maximin share can then be
defined similarly to how it is defined in cake cutting (Def-
inition 2.1); just as in Proposition 2.2, we can show that
MMSn,s

i = maxP∈Π′
n,s

minj∈N vi(Pj).
However, in pie cutting, unlike in cake cutting, a max-

imin allocation does not necessarily exist. This is evident
in the example in Figure 1, where s > 1/4 and 0 < ε <
min{s− 1/4, 1/2− s}, and Alice values pieces of length ε
centered at the top and bottom of the pie while Bob values
similar pieces on the left and right. Since s < 1/2− ε, both
agents have a maximin share of 1/2. However, since the dis-
tance between any point in Alice’s piece and any point in
Bob’s piece is at most 1/4 + ε < s, no s-separated alloca-
tion gives both agents a positive value. Hence, not only is
there no maximin allocation in this instance, but we cannot
even ensure any positive (multiplicative) approximation to
the maximin share.

Alice Bob

ε

ε

ε ε

Figure 1: Example of a pie cutting instance with no maximin
allocation. Each of the two agents uniformly values the bold
part of the pie, s > 1/4, and 0 < ε < min{s−1/4, 1/2−s}.

Given this negative result, it may seem unclear whether
any meaningful fairness guarantee can be achieved in pie
cutting with separation. However, it turns out that we can
obtain positive results if, instead of using cardinal approx-
imations of the maximin share, we relax the criterion in an
ordinal manner. Specifically, when each agent computes her
maximin share, we allow partitioning into k pieces, where k
is a parameter greater than n—we refer to the resulting no-
tion as the 1-out-of-k maximin share and write MMSk,s

i or
simply MMSk

i for the share of agent i. Ordinal approxima-
tions were introduced by Budish (2011), who considered the
case k = n+ 1.4 It turns out that this relaxation is precisely
what we need for pie cutting.

4One way to think about this relaxation is that we pretend that
there are k > n agents when computing the maximin share. 1-out-
of-k maximin share is a special case of the `-out-of-k maximin
share notion introduced by Babaioff, Nisan, and Talgam-Cohen
(2019) and further studied by Segal-Halevi (2020), which takes the
` pieces of minimum value in a partition into k pieces.

Theorem 4.1. For any pie cutting instance with n agents,
there exists an allocation in which every agent i receives
a piece of value at least MMSn+1

i . Moreover, given the 1-
out-of-(n+ 1) maximin share of each agent, such an alloca-
tion can be computed usingO(n2) queries in the Robertson-
Webb model.

The idea behind our algorithm is similar to that of the
analogous result for cake cutting (Theorem 3.1). The differ-
ence is that, because of the circular structure, when we start
proceeding over the pie from a certain point (which we take
to be the point 0), we may destroy one of the pieces in each
agent’s partition. This is why we need n + 1 pieces in the
partition rather than n.

Proof. We ask each agent i to mark the leftmost point xi
such that v(0, xi) = MMSn+1

i . The agent who marks the
leftmost xi is allocated the piece [0, xi] (with ties broken ar-
bitrarily); we then remove this agent along with the piece
[xi, xi + s], and recurse on the remaining agents and pie.
If there is only one agent left, we still allocate to that agent
a piece worth MMSn+1

i (as opposed to the entire remain-
ing pie). Since we make n − j cut queries when there are
n − j agents left (and no eval queries), our algorithm uses∑n−1

j=0 (n− j) = O(n2) queries.
We now prove the correctness of the algorithm. Consider

any agent i and her 1-out-of-(n + 1) maximin partition.
When we turn the pie into a cake by cutting at the point 0
(equivalently, the point 1), we may break one of the pieces
in the partition. Nevertheless, at least n pieces remain intact.
If agent i receives the first piece allocated by the algorithm,
she receives value MMSn+1

i . Else, the allocated piece is no
larger than the first intact piece of her maximin partition.
Since the algorithm inserts a separator of length exactly s,
the right endpoint of the first separator is no further to the
right than the left endpoint of the agent’s second intact piece.
Applying a similar argument repeatedly, we find that if agent
i is not allocated any of the first n − 1 pieces, then after
removing the (n − 1)st piece and the following separator,
the remaining cake contains the nth intact piece of agent i’s
partition as well as a positive amount of the (n + 1)st piece
(which may be intact or not). In particular, after allocating a
piece of value MMSn+1

i to the agent, the separator between
the nth and (n + 1)st pieces still remains. This means that
there is a gap of length at least s between the first and last
pieces of our allocation, and therefore the allocation is s-
separated.

Theorem 4.1 can be generalized to guarantee each agent
her k-out-of-(kn + 1) maximin share, for any integer
k ≥ 1. As an example where this can be useful, sup-
pose s = 1/6 and n = 2, and consider an agent who
values the regions [0, 1/30], [6/30, 7/30], [12/30, 13/30],
[18/30, 19/30], [24/30, 25/30] uniformly at 1/5 each (and
has no value for the remaining pie). Then her 2-out-of-5
MMS is 2/5, which is higher than her 1-out-of-3 MMS. On
the other hand, if she values the regions [0, 1/6], [2/6, 3/6],
[4/6, 5/6] uniformly at 1/3 each, then her 1-out-of-3 MMS
is 1/3, which is higher than her 2-out-of-5 MMS. Interest-
ingly, the following algorithm allows each agent i to get the

5335



ki-out-of-(kin+1) MMS for her optimal ki: Reduce the pie
into a cake by breaking it in an arbitrary point (say, the point
0). This destroys, for each agent i, at most a single part in her
(kin + 1)-maximin partition. Thus, at least kin parts (with
their adjacent separators) remain intact. A procedure similar
to the one described in Theorem 4.1 then guarantees each
agent at least kin/n = ki of these parts.

For cake cutting, there exists an algorithm that, given an
agent i and a number r, decides whether MMSi > r and
whether MMSi = r (Theorem 3.6 and Corollary 3.7). In
contrast, for pie cutting this is not the case.
Theorem 4.2. Fix any k ≥ 2. For pie cutting, there is no fi-
nite algorithm in the Robertson-Webb model that can decide,
for any agent i and real number r, whether MMSk

i > r or
whether MMSk

i = r, even when the valuation of this agent
is piecewise constant (but not given explicitly).

Theorem 4.2 leaves open the question of whether it is pos-
sible to decide whether MMSk

i ≥ r for a given r.
Open question 4.3. For pie cutting, does there exist a fi-
nite algorithm in the Robertson-Webb model that, given an
integer k ≥ 2 and a real number r > 0, decides whether
MMSk

i ≥ r?
So far we have found two partial answers. First, we have

a positive result for the special case r = 1/k. Note that we
always have MMSk

i ≤ 1/k, and, moreover, MMSk
i = 1/k

only if there is a partition where each separator has value 0.
These observations turn out to be very useful for the analysis
of the case r = 1/k.
Theorem 4.4. For pie cutting, there exists an algorithm that,
given an agent i and any k ≥ 2, decides whether MMSk

i ≥
1/k (and if so, computes a maximin partition) using O(k/s)
queries in the Robertson-Webb model.

The number of queries made by the algorithm in Theo-
rem 4.4 scales linearly with 1/s. This is in contrast to The-
orem 3.4 for cake cutting, where the number of queries is
independent of s. We show that for pie cutting the number
of queries must depend on s; this result holds even for k = 2
and r = 1/k.
Theorem 4.5. Let c be any constant not depending on s. For
pie cutting, there is no algorithm using at most c Robertson-
Webb queries that, given an agent i, can always decide
whether MMS2

i ≥ 1/2, even when the agent’s valuation is
piecewise constant (but not given explicitly).

We now turn to the problem of computing the maximin
share and a maximin partition of a pie. Theorem 4.2 obvi-
ously rules out the possibility of exact computation:
Corollary 4.6. Fix any k ≥ 2. For pie cutting, there is no
finite algorithm in the Robertson-Webb model that, given an
agent i, can either (a) compute MMSk

i , or (b) compute a
maximin partition into k pieces for i. This holds even when
the valuation of this agent is piecewise constant (but not
given explicitly).

Despite these negative results, we show that it is possible
to approximate the maximin share of an agent up to an arbi-
trary error. The idea is to mark points on the pie so that any

piece between two adjacent marks has value at most ε/2,
and, for each piece between two (not necessarily adjacent)
marks, try to construct an s-separated partition with min-
value equal to the value of this piece, by means of a greedy
algorithm.

Theorem 4.7. Fix any k ≥ 2. For pie cutting, given an
agent i and a number ε > 0, it is possible to find a number
r such that MMSk

i − ε ≤ r ≤ MMSk
i , along with an s-

separated partition with min-value r, using O(1/ε) queries
in the Robertson-Webb model.

An interesting question is whether it is possible to make
the dependence on 1/ε logarithmic instead of linear, as is
possible for cake cutting (Corollary 3.5).

Open question 4.8. In pie cutting, is it possible to compute
an ε-approximation of MMSk

i using O(poly(k, log(1/ε))
Robertson-Webb queries?

5 Conclusion and Future Work
In this paper, we have initiated the study of cake cutting
under separation requirements, and established several ex-
istence and computational results on maximin share fairness
in this setting. Even though the cake in cake cutting is typ-
ically represented by an interval, certain applications of di-
visible resource allocation may require different represen-
tations. Indeed, this is the motivation behind the model of
pie cutting that we have addressed in Section 4. Other re-
cent works have studied models capturing the division of
land (Segal-Halevi et al. 2017; Segal-Halevi, Hassidim, and
Aumann 2020) as well as road networks (Bei and Suksom-
pong 2021); one could investigate the effects of separation
in these settings.

While the canonical maximin share is a reasonable fair-
ness requirement when agents have equal entitlements to the
resource, in certain situations the agents may be endowed
with different entitlements (Chakraborty et al. 2020; Cseh
and Fleiner 2020). Various extensions of the maximin share
have been proposed (Aziz, Chan, and Li 2019; Babaioff,
Nisan, and Talgam-Cohen 2019; Farhadi et al. 2019), and
it may be interesting to study them in the context of cake
cutting with separation. For different entitlements, a con-
nected cake allocation may not exist even without separation
(Segal-Halevi 2019; Crew, Narayanan, and Spirkl 2020).

Another avenue for future work is to consider other fair-
ness criteria in light of separation constraints. Besides pro-
portionality and maximin share fairness, two important cri-
teria are envy-freeness—every agent believes that her piece
is at least as valuable as any other allocated piece—and eq-
uitability—each agent receives the same value for his own
piece. While these notions can be trivially satisfied by not al-
locating any of the cake, it would be interesting to determine
whether they can be fulfilled subject to natural desiderata
such as allocating the maximum possible amount of cake.

At a higher level, separation requirements represent one
type of constraints that arise in a number of applications
of cake cutting. Examining the interplay between such con-
straints and fairness considerations is an important direction
that will likely lead to fruitful research.

5336



Acknowledgments
This work was partially supported by the European Research
Council (ERC) under grant number 639945 (ACCORD), by
the Israel Science Foundation under grant number 712/20,
and by an NUS Start-up Grant. We would like to thank the
anonymous reviewers for their valuable comments.

References
Alijani, R.; Farhadi, M.; Ghodsi, M.; Seddighin, M.; and
Tajik, A. S. 2017. Envy-free mechanisms with minimum
number of cuts. In Proceedings of the 31st AAAI Confer-
ence on Artificial Intelligence (AAAI), 312–318.

Arunachaleswaran, E. R.; Barman, S.; Kumar, R.; and Rathi,
N. 2019. Fair and efficient cake division with connected
pieces. In Proceedings of the 15th Conference on Web and
Internet Economics (WINE), 57–70.

Arunachaleswaran, E. R.; Barman, S.; and Rathi, N. 2019.
Fair division with a secretive agent. In Proceedings of
the 33rd AAAI Conference on Artificial Intelligence (AAAI),
1732–1739.

Aumann, Y.; and Dombb, Y. 2015. The efficiency of fair
division with connected pieces. ACM Transactions on Eco-
nomics and Computation 3(4): 23:1–23:16.

Aziz, H.; Chan, H.; and Li, B. 2019. Weighted maxmin
fair share allocation of indivisible chores. In Proceedings
of the 28th International Joint Conference on Artificial In-
telligence (IJCAI), 46–52.

Babaioff, M.; Nisan, N.; and Talgam-Cohen, I. 2019. Fair
allocation through competitive equilibrium from generic in-
comes. In Proceedings of the 2nd ACM Conference on Fair-
ness, Accountability, and Transparency (ACM FAT*), 180.

Barbanel, J. B.; Brams, S. J.; and Stromquist, W. 2009. Cut-
ting a pie is not a piece of cake. American Mathematical
Monthly 116(6): 496–514.

Bei, X.; Chen, N.; Hua, X.; Tao, B.; and Yang, E. 2012. Op-
timal proportional cake cutting with connected pieces. In
Proceedings of the 26th AAAI Conference on Artificial In-
telligence (AAAI), 1263–1269.

Bei, X.; Chen, N.; Huzhang, G.; Tao, B.; and Wu, J. 2017.
Cake cutting: Envy and truth. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 3625–3631.

Bei, X.; Huzhang, G.; and Suksompong, W. 2018. Truth-
ful fair division without free disposal. In Proceedings of
the 27th International Joint Conference on Artificial Intelli-
gence (IJCAI), 63–69.

Bei, X.; Igarashi, A.; Lu, X.; and Suksompong, W. 2021.
The price of connectivity in fair division. In Proceedings of
the 35th AAAI Conference on Artificial Intelligence (AAAI).
Forthcoming.

Bei, X.; and Suksompong, W. 2021. Dividing a graphical
cake. In Proceedings of the 35th AAAI Conference on Arti-
ficial Intelligence (AAAI). Forthcoming.

Bouveret, S.; Cechlárová, K.; Elkind, E.; Igarashi, A.; and
Peters, D. 2017. Fair division of a graph. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence (IJCAI), 135–141.

Brams, S. J.; Jones, M. A.; and Klamler, C. 2008. Propor-
tional pie-cutting. International Journal of Game Theory
36(3–4): 353–367.

Brams, S. J.; and Taylor, A. D. 1996. Fair Division: From
Cake-Cutting to Dispute Resolution. Cambridge University
Press.

Brânzei, S.; Caragiannis, I.; Kurokawa, D.; and Procaccia,
A. D. 2016. An algorithmic framework for strategic fair
division. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence (AAAI), 418–424.

Budish, E. 2011. The combinatorial assignment problem:
Approximate competitive equilibrium from equal incomes.
Journal of Political Economy 119(6): 1061–1103.

Cechlárová, K.; Doboš, J.; and Pillárová, E. 2013. On the
existence of equitable cake divisions. Information Sciences
228: 239–245.

Cechlárová, K.; and Pillárová, E. 2012. On the computabil-
ity of equitable divisions. Discrete Optimization 9(4): 249–
257.

Chakraborty, M.; Igarashi, A.; Suksompong, W.; and Zick,
Y. 2020. Weighted envy-freeness in indivisible item alloca-
tion. In Proceedings of the 19th International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS),
231–239.

Crew, L.; Narayanan, B.; and Spirkl, S. 2020. Dispropor-
tionate division. Bulletin of the London Mathematical Soci-
ety 52(5): 885–890.

Cseh, A.; and Fleiner, T. 2020. The complexity of cake cut-
ting with unequal shares. ACM Transactions on Algorithms
16(3): 29:1–29:21.

Dubins, L. E.; and Spanier, E. H. 1961. How to cut a cake
fairly. American Mathematical Monthly 68(1): 1–17.

Elkind, E.; Segal-Halevi, E.; and Suksompong, W. 2020.
Mind the gap: Cake cutting with separation. arXiv preprint
arXiv:2012.06682 .

Even, S.; and Paz, A. 1984. A note on cake cutting. Discrete
Applied Mathematics 7(3): 285–296.

Farhadi, A.; Ghodsi, M.; Hajiaghayi, M. T.; Lahaie, S.; Pen-
nock, D.; Seddighin, M.; Seddighin, S.; and Yami, H. 2019.
Fair allocation of indivisible goods to asymmetric agents.
Journal of Artificial Intelligence Research 64: 1–20.

Goldberg, P. W.; Hollender, A.; and Suksompong, W. 2020.
Contiguous cake cutting: Hardness results and approxima-
tion algorithms. Journal of Artificial Intelligence Research
69: 109–141.

Hosseini, H.; Igarashi, A.; and Searns, A. 2020. Fair divi-
sion of time: Multi-layered cake cutting. In Proceedings of
the 29th International Joint Conference on Artificial Intelli-
gence (IJCAI), 182–188.

5337



Kurokawa, D.; Procaccia, A. D.; and Wang, J. 2018. Fair
enough: Guaranteeing approximate maximin shares. Jour-
nal of the ACM 64(2): 8:1–8:27.
Lonc, Z.; and Truszczynski, M. 2020. Maximin share allo-
cations on cycles. Journal of Artificial Intelligence Research
69: 613–655.
Menon, V.; and Larson, K. 2017. Deterministic, strate-
gyproof, and fair cake cutting. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 352–358.
Procaccia, A. D. 2016. Cake cutting algorithms. In Brandt,
F.; Conitzer, V.; Endriss, U.; Lang, J.; and Procaccia, A. D.,
eds., Handbook of Computational Social Choice, chapter 13,
311–329. Cambridge University Press.
Procaccia, A. D.; and Wang, J. 2017. A lower bound for eq-
uitable cake cutting. In Proceedings of the 18th ACM Con-
ference on Economics and Computation (EC), 479–495.
Robertson, J.; and Webb, W. 1998. Cake-Cutting Algo-
rithms: Be Fair if You Can. Peters/CRC Press.
Segal-Halevi, E. 2018. Redividing the cake. In Proceed-
ings of the 27th International Joint Conference on Artificial
Intelligence (IJCAI), 498–504.
Segal-Halevi, E. 2019. Cake-cutting with different entitle-
ments: How many cuts are needed? Journal of Mathematical
Analysis and Applications 480(1): 123382.
Segal-Halevi, E. 2020. Competitive equilibrium for almost
all incomes: Existence and fairness. Autonomous Agents and
Multi-Agent Systems 34(1): 26:1–26:50.
Segal-Halevi, E. 2021. Fair multi-cake cutting. Discrete
Applied Mathematics 291: 15–35.
Segal-Halevi, E.; Hassidim, A.; and Aumann, Y. 2020.
Envy-free division of land. Mathematics of Operations Re-
search. 45(3): 896–922.
Segal-Halevi, E.; and Nitzan, S. 2019. Fair cake-cutting
among families. Social Choice and Welfare 53(4): 709–740.
Segal-Halevi, E.; Nitzan, S.; Hassidim, A.; and Aumann,
Y. 2017. Fair and square: Cake-cutting in two dimensions.
Journal of Mathematical Economics 70(8): 1–28.
Steinhaus, H. 1948. The problem of fair division. Econo-
metrica 16(1): 101–104.
Stromquist, W. 1980. How to cut a cake fairly. American
Mathematical Monthly 87(8): 640–644.
Stromquist, W. 2008. Envy-free cake divisions cannot be
found by finite protocols. Electronic Journal of Combina-
torics 15: #R11.
Su, F. E. 1999. Rental harmony: Sperner’s lemma in fair
division. American Mathematical Monthly 106(10): 930–
942.
Thomson, W. 2007. Children crying at birthday parties.
Why? Economic Theory 31(3): 501–521.

5338


