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Abstract

This paper explores the behavior of present-biased agents,
that is, agents who erroneously anticipate the costs of fu-
ture actions compared to their real costs. Specifically, the
paper extends the original framework proposed by Akerlof
(1991) for studying various aspects of human behavior re-
lated to time-inconsistent planning, including procrastina-
tion, and abandonment, as well as the elegant graph-theoretic
model encapsulating this framework recently proposed by
Kleinberg and Oren (2014). The benefit of this extension is
twofold. First, it enables to perform fine grained analysis of
the behavior of present-biased agents depending on the op-
timisation task they have to perform. In particular, we study
covering tasks vs. hitting tasks, and show that the ratio be-
tween the cost of the solutions computed by present-biased
agents and the cost of the optimal solutions may differ sig-
nificantly depending on the problem constraints. Second, our
extension enables to study not only underestimation of fu-
ture costs, coupled with minimization problems, but also all
combinations of minimization/maximization, and underesti-
mation/overestimation. We study the four scenarios, and we
establish upper bounds on the cost ratio for three of them
(the cost ratio for the original scenario was known to be un-
bounded), providing a complete global picture of the behav-
ior of present-biased agents, as far as optimisation tasks are
concerned.

Introduction
Present bias is the term used in behavioral economics to de-
scribe the gap between the anticipated costs of future ac-
tions and their real costs. A simple mathematical model of
present bias was suggested by Akerlof 1991. In this model
the cost of an action that will be perceived in the future is
assumed to be β times smaller than its actual cost, for some
constant β < 1, called the degree of present bias. The model
was used for studying various aspects of human behavior
related to time-inconsistent planning, including procrastina-
tion, and abandonment.

Kleinberg and Oren 2014; 2018 introduced an elegant
graph-theoretic model encapsulating Akerlof’s model. The
approach of Kleinberg and Oren is based on analyzing how
an agent navigates from a source s to a target t in a directed
edge-weighted graph G, called task graph. At any step, the
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agent chooses the next edge to traverse from the current ver-
tex v thanks to an estimation of the length of the shortest
path from v to t passing through each edge outgoing from v.
A crucial characteristic of the model is that the estimation
of the path lengths is present-biased. More specifically, the
model of Kleinberg and Oren includes a positive parame-
ter β < 1, the degree of present bias, and the length of a
path x0, . . . , xk from x0 = v to xk = t in G is evaluated
as ω0 + β

∑k−1
i=1 ωi where ωi denotes the weight of edge

(xi, xi+1), for every i ∈ {0, . . . , k − 1}. As a result, the
agent may choose an outgoing edge that is not on any short-
est path from v to t, modeling procrastination by underesti-
mating the cost of future actions to be performed whenever
acting now in some given way. With this effect cumulating
along its way from s to t, the agent may significantly diverge
from shortest s-t paths, which demonstrates the negative im-
pact of procrastination. Moreover, the cost ratio, which is the
ratio between the cost of the path traversed by an agent with
present bias and the cost of a shortest path, could be arbi-
trarily large. An illustrating example is depicted on Fig. 1,
borrowed from (Kleinberg and Oren 2018), and originally
due to Akerlof 1991. Among many results, Kleinberg and
Oren showed that any graph in which a present-biased agent
incurs significantly more cost than an optimal agent must
contain a large specific structure as a minor. This structure,
called procrastination structure, is specifically the one de-
picted on Fig. 1.
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Figure 2: Path problems that exhibit procrastination, abandonment, and choice reduction.

graph, it can be crucial to present the agent with a subgraph that includes not just P but also certain
additional nodes and edges that do not belong to P . We give a graph-theoretic characterization of
the possible subgraphs supporting e�cient traversal. Finally, for heterogeneous agents, we explore
a simple variant of the problem based on partitioning large tasks into smaller ones.

Before turning to these questions, we first discuss the basic graph-theoretic problem in more
detail, showing how instances of this problem capture the time-inconsistency phenomena discussed
earlier in this section.

2 The Graph-Theoretic Model

In order to argue that our graph-theoretic model captures a variety of phenomena that have been
studied in connection with time-inconsistency, we present a sequence of examples to illustrate some
of the di↵erent behaviors that the model exhibits. We note that the example in Figure 1 already
illustrates two simple points: that the path chosen by the agent can be sub-optimal; and that even
if the agent traverses an edge e with the intention of following a path P that begins with e, it may
end up following a di↵erent path P 0 that also begins with e.

For an edge e in G, let c(e) denote the cost of e; and for a path P in G, let ei(P ) denote the
ith edge on P . In terms of this notation, the agent’s decision is easy to specify: when standing at a
node v, it chooses the path P that minimizes c(e1(P )) + �

P
i>1 c(ei(P )) over all P that run from

v to t. It follows the first edge of P to a new node w, and then performs this computation again.
We begin by observing that Figure 2(a) represents a version of the Akerlof example from the

introduction. (For simplicity we assume that the delivery of the package is instantaneous, so h = 0.
Also recall that we use b to denote ��1.) Node t represents the state in which the agent has sent
the package, and node vi represents the state in which the agent has reached day i without sending
the package. The agent has the option of going directly from node s to node t, and this is the
shortest s-t path. But if (b � 1)c > bx, then the agent will instead go from s to v1, intending to
complete the path s-v1-t in the next time step. At v1, however, the agent decides to go to v2,
intending to complete the path v1-v2-t in the next time step. This process continues: the agent,
following exactly the reasoning in the example from the introduction, is procrastinating and not
going to t, and in the end its path goes all the way to the last node vn (n = 5 in the figure) before
finally taking an edge to t. (One minor change from the set-up in the introduction is the fact that
the present-bias e↵ect here holds more consistently, and is applied to x as well; this has no real
e↵ect on the underlying story.)

Extending the model to include rewards. Thus far we can’t talk about an agent who

5

Figure 1: Procrastination structure as displayed in (Klein-
berg and Oren 2018); Assuming x + βc < c, the path fol-
lowed by the agent is s, v1, . . . , v5, t; The ratio between the
length of the path followed by the agent and the shortest s-t
path can be made arbitrarily large by adding more nodes vk
with k ≥ 5.
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In this paper, we are interested in understanding what kind
of tasks performed by the agent result in large cost ratio.
Let us take the concrete example of an agent willing to ac-
quire the knowledge of a set of scientific concepts, by read-
ing books. Each book covers a certain number of these con-
cepts, and the agent’s objective is to read as few books as
possible. More generally, each book could also be weighted
according to, say, its accessibility to a general reader, or its
length. The agent’s objective is then to read a collection of
books with minimum total weight. Both the weight and the
collection of concepts covered by each book are known to
the agent a priori. This scenario is obviously an instance of
the (weighted) set-cover problem. Let us assume, for sim-
plicity, that the agent has access to a time-biased oracle pro-
viding it with the following information. Given the subset of
concepts already acquired by the agent when it queries the
oracle, the latter returns to the agent a set {b0, . . . , bk−1} of
books minimizing ω0 + β

∑k−1
i=1 ωi among all sets of books

covering the concepts yet to be acquired by the agent, where
ω0 ≤ ω1 ≤ · · · ≤ ωk−1 are the respective weights of the
books b0, . . . , bk−1. This corresponds to the procrastination
scenario in which the agent picks the easiest book to read
now, and underestimates the cost of reading the remaining
books later. Then the agent moves on by reading b0, and
querying the oracle for figuring out the next book to read
for covering the remaining uncovered concepts after having
read book b0.

The question is: by how much the agent eventually di-
verges from the optimal set of books to be read? This set-
cover example fits with the framework of Kleinberg and
Oren, by defining the vertex set of the task graph as the
set of all subsets of concepts, and placing an edge (u, v)
of weight ω from u to v if there exists a book b of weight ω
such that v is the union of u and the concepts covered by b. In
this setting, the agent needs to move from the source s = ∅
to the target t corresponding to the set of all the concepts to
be acquired by the agent. Under this setting, the question can
be reformulated as: under which circumstances the set-cover
problem yields a large cost ratio?

More generally, let us consider a minimization problem
where, for every feasible solution S of every instance of the
problem, the cost c(S) of S can be expressed as c(S) =∑
x∈S ω(x) for some weight function ω. This includes,

e.g., set-cover, min-cut, minimum dominating set, feedback-
vertex set, etc. We then define the biased cost cβ as

cβ(S) = ω(x∗) + β c(S r {x∗}), (1)
where x∗ = arg minx∈S ω(x). Given an instance I of the
minimization problem at hand, the agent aims at finding a
feasible solution S ∈ I minimizing c(S). It does so using
the following present-biased planning, where I0 = I .

Minimization scenario: For k ≥ 0, given an instance Ik,
the agent computes the feasible solution Sk with min-
imum cost cβ(Sk) among all feasible solutions for Ik.
Let x∗k = arg minx∈Sk

w(x). The agent stops whenever
{x∗0, x∗1, . . . , x∗k} is a feasible solution for I . Otherwise, the
agent moves to Ik+1 = Ikrx∗k, that is, the instance obtained
from Ik when one assumes x∗k selected in the solution.

This general scenario is indeed captured by the Kleinberg
and Oren model, by defining the vertex set of the graph task
graph as the set of all “sub-instances” of the instance I at
hand, and placing an edge (u, v) of weight w from u to v if
there exists an element x of weight ω such that v results
from u by adding x to the current solution. The issue is
to analyze how far the solution computed by the present-
biased agent is from the optimal solution. The first question
addressed in this paper is therefore the following.

Question 1. For which minimization tasks a large cost ratio
may appear?

In the models of Akerlof 1991 and Kleinberg and Oren
2018 the degree β of present bias is assumed to be less
than one. However, there are natural situations where under-
estimating the future costs does not hold. For example, in
their influential paper, Loewenstein, O’Donoghue, and Ra-
bin 2003 gave a number of examples from a variety of do-
mains demonstrating the prevalence of projection bias. In
particular, they reported an experiment by Jepson, Loewen-
stein, and Ubel 2001 who “asked people waiting for a kidney
transplant to predict what their quality of life would be one
year later if they did or did not receive a transplant, and then
asked those same people one year later to report their quality
of life. Patients who received transplants predicted a higher
quality of life than they ended up reporting, and those who
did not predicted a lower quality of life than they ended up
reporting”. In other words, there are situations in which peo-
ple may also overestimate the future costs. In the model of
Kleinberg and Oren 2018 overestimation bias corresponds
to the situation of putting the degree of present bias β > 1.
This brings us to the second question.

Question 2. Could a large cost ratio appear for minimiza-
tion problems when the degree of present bias β is more than
1?

Reformulating the analysis of procrastination, as stated in
Question 1, provides inspiration for tackling related prob-
lems. As a matter of fact, under the framework of Kleinberg
and Oren, procrastination is a priori associated to minimiza-
tion problems. We also investigate maximization problems,
in which a present-biased agent aims at, say, maximizing its
revenue by making a sequence of actions, each providing
some immediate gain that the agent maximizes while under-
estimating the incomes resulting from future actions. As a
concrete example, let us consider an instance of Knapsack.
The agent constructs a solution gradually by picking the item
x0 of highest value ω(x0) in a feasible set {x0, . . . , xk−1} of
items that is maximizing ω(x0)+β

∑k−1
i=1 ω(xi) for the cur-

rent sub-instance of Knapsack. In general, given an instance
I of a maximisation problem, we assume that the agent ap-
plies the following present-biased planning, with I0 = I:

Maximization scenario: Given an instance Ik for k ≥ 0,
the agent computes the feasible solution Sk with maxi-
mum cost cβ(Sk) among all feasible solutions for Ik —
where the definition of x∗ in Eq. (1) is replaced by x∗ =
arg maxx∈S w(x). With x∗k = arg maxx∈Sk

w(x), the agent
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stops whenever {x∗0, x∗1, . . . , x∗k} is an inclusion-wise max-
imal feasible solution for I , and moves to Ik+1 = Ik r x∗k
otherwise.

We are interested in analyzing how far the solution com-
puted by the present-biased agent is from the optimal so-
lution. More generally even, we aim at revisiting time-
inconsistent planning by considering both cases β < 1 and
β > 1, that is, not only scenarios in which the agent underes-
timates the cost of future actions, but also scenarios in which
the agent overestimates the cost of future actions. The last,
more general question addressed in this paper is therefore
the following.
Question 3. For which optimization tasks, and for which
time-inconsistency planning (underestimation, or overesti-
mation of the future actions), the solutions computed by a
present-biased agent are far from optimal, and for which
they are close?

For all these problems, we study the cost ratio % = c(S)
OPT

(resp., % = OPT
c(S) ) where S is the solution returned by the

present-biased agent, and OPT = c(SOPT) is the cost of an
optimal solution for the same instance of the considered
minimization (resp., maximization) problem.

Our Results
Focussing on agents aiming at solving tasks, and not just on
agents aiming at reaching targets in abstract graphs, as in
the generic model in (Kleinberg and Oren 2018), allows us
not only to refine the worst-case analysis of present-biased
agents, but also to extend this analysis to scenarios corre-
sponding to overestimating the future costs to be incurred
by the agents (by setting the degree β of present bias larger
than 1), and to maximisation problems.

Minimization & underestimation. In the original setting
of minimization problems, with underestimation of future
costs (i.e., β < 1), we show that the cost ratio % of an
agent performing k steps, that is, computes a feasible solu-
tion {x∗1, . . . , x∗k}, satisfies % ≤ k. This is in contrast to the
general model in (Kleinberg and Oren 2018), in which an
agent can incur a cost ratio exponential in k when returning
a k-edge path from the source to the target. Hence, in par-
ticular, our minimization scenarios do not produce the worst
cases examples constructed in (Kleinberg and Oren 2018),
i.e., obtained by considering travels from sources to targets
in arbitrary weighted graphs.

On the other hand, we also show that a “minor structure”
bearing similarities with the one identified in (Kleinberg and
Oren 2018) can be identified. Namely, if an agent incurs a
large cost ratio, then the minimization problem addressed
by the agent includes a large instance of a specific form of
minimization problem.

Min/maximization & under/overestimation. Interest-
ingly, the original setting of minimization problems, with
underestimation of future costs, is far from reflecting the
whole nature of the behavior of present-biased agents. In-
deed, while minimization problems with underestimation of

future costs may result in unbounded cost ratios, the worst-
case cost ratios corresponding to the three other settings can
be upper bounded, some by a constant independent of the
task at hand. Specifically, we show that:

• For any minimization problem with β > 1, the cost ratio
is at most β;

• For any maximization problem with β < 1, the cost ratio
is at most 1

β ;

• For any maximization problem with β > 1, the cost ratio
is at most βc, where c ≤ OPT is the cost of a solution
constructed by the agent.

Our results are summarized in Table 1.

minimization maximization
β < 1 ∞ 1/β [Thm 5(i)]

(Kleinberg and Oren 2018)
β > 1 β [Thm 4] (1 + log β) OPT

log OPT

[Cor 1]

Table 1: Upper bounds on the worst case ratio between the
solution cost returned by the present-biased agent and the
optimal solution OPT. The symbol ∞ means that the cost
ratio can be arbitrarily large, independently of the values of
β, and OPT.

Let us remark that, for minimization problems with β >
1, as well as for maximization problems with β < 1, we
have that the cost ratio is bounded by a constant. However,
for maximization problems with β > 1, the cost ratio can be
exponential in the cost of the computed solution. We show
that this exponential upper bound is essentially tight.

Approximated evaluations. Actually, in many settings,
discrete optimization problems are hard. Therefore, for eval-
uating the best feasible solution according to the biased cost
function cβ , an agent may have to solve computationally in-
tractable problems. Thus, in a more realistic scenario, we as-
sume that, instead of computing an optimal solution for cβ at
every step, the agent computes an α-approximate solution.

Fine-grained analysis. In contrast to the general model
in (Kleinberg and Oren 2018), the refined model of this pa-
per enables fine-grain analysis of the agents’ strategies, that
is, it enables identifying different behaviors of the agents as
a function of the considered optimisation problems. Specif-
ically, there are natural minimization problems for which
specific bounds on the cost ratio can be established.

To illustrate the interest of focusing on optimisation tasks,
we study two tasks in detail, namely set-cover and hitting
set, and show that they appear to behave quite differently.
For set-cover, we show that the cost ratio is at most d · OPT,
where d is the maximum size of the sets. For hitting set, we
show that the cost ratio is at most d! ( 1

β OPT)d, again for d
equal to the maximum size of the sets.
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Finally, we identify a simple restriction of the agent’s
strategy, which guarantees that the cost of the solution com-
puted by the agent is not more than β times the cost of an
optimal solution.

Related Work
Our work is directly inspired by the aforementioned con-
tribution of Kleinberg and Oren 2014, which was itself
motivated by the earlier work by Akerlof 1991. We refer
to (Kleinberg and Oren 2014, 2018) for a survey of ear-
lier work on time-inconsistent planning, with connections to
procrastination, abandonment, and choice reduction. Here-
after, we discuss solely (Kleinberg and Oren 2014), and the
subsequent work. Using their graph-theoretic framework,
Kleinberg and Oren reasoned about time-inconsistency ef-
fects. In particular, they provided a characterization of the
graphs yielding the worst-case cost-ratio, and they showed
that, despite the fact that the degree β of present bias can
take all possible values in [0, 1], it remains that, for any
given digraph, the collection of distinct s-t paths com-
puted by present-biased agents for all degrees of present
bias is of size at most polynomial in the number of nodes.
They also showed how to improve the behavior of present-
biased agents by deleting edges and nodes, and they pro-
vided a characterization of the subgraphs supporting effi-
cient agent’s behavior. Finally, they analyzed the case of a
collection of agents with different degrees of present bias,
and showed how to divide the global task to be performed
by the agents into “easier” sub-tasks, so that each agent per-
forms efficiently her sub-tasks.

As far as we are aware of, all contributions subsequent
to (Kleinberg and Oren 2014), and related to our paper,
essentially remain within the same graph theoretic frame-
work as (Kleinberg and Oren 2014), and focus on algorith-
mic problems related to this framework. In particular, Albers
and Kraft 2019 studied the ability to place rewards at nodes
for motivating and guiding the agent. They show hardness
and inaproximability results, and provide an approximation
algorithm whose performances match the inaproximabil-
ity bound. The same authors considered another approach
in (Albers and Kraft 2017a) for overcoming these hardness
issues, by allowing not to remove edges but to increase their
weight. They were able to design a 2-approximation algo-
rithm in this context. Tang et al. 2017 also proved hard-
ness results related to the placement of rewards, and showed
that finding a motivating subgraph is NP-hard. Gravin et
al. 2016a (see (Gravin et al. 2016b) for the full paper) ex-
tended the model by considering the case where the degree
of present bias may vary over time, drawn independently at
each step from a fixed distribution. In particular, they de-
scribed the structure of the worst-case graph for any dis-
tribution, and derived conditions on this distribution under
which the worst-case cost ratio is exponential or constant.

Kleinberg, Oren, and Raghavan 2016; 2017 revisited the
model in (Kleinberg and Oren 2014). In (Kleinberg, Oren,
and Raghavan 2016), they were considering agents estimat-
ing erroneously the degree β of present bias, either un-
derestimating or overestimating that degree, and compared
the behavior of such agents with the behavior of “sophisti-

cated” agents who are aware of their present-biased behav-
ior in future and take this into account in their strategies.
In (Kleinberg, Oren, and Raghavan 2017), they extended
the model by considering not only agents suffering from
present-biases, but also from sunk-cost bias, i.e., the ten-
dency to incorporate costs experienced in the past into one’s
plans for the future. Albers and Kraft 2017b considered a
model with uncertainty, bearing similarities with (Kleinberg,
Oren, and Raghavan 2016), in which the agent is solely
aware that the degree of present bias belongs to some set
B ⊂ (0, 1], and may or may not vary over time.

Procrastination Under Minimization Problems
This section includes a formal definition of inconsistent
planning by present-biased agents, and describes two ex-
treme scenarios: one in which a present-biased agent con-
structs worst case plannings, and one in which the plannings
generated by a present-biased agent are close to optimal.

Model and Definition
We consider minimization problems defined as triples
(I, F, c), where I is the set of instances (e.g., the set of all
graphs), F is a function that returns the set F (I) of feasible
solutions for every instance I ∈ I (e.g., the set of all edge-
cuts of any given graph), and c is a non-negative function re-
turning the cost c(I, S) of every feasible solution S ∈ F (I)
of every instance I ∈ I (e.g., the number of edges in a cut).
We focus solely on optimization problems for which

(i) a finite ground set SI 6= ∅ is associated to every instance
I ,

(ii) every feasible solution for I is a set S ⊆ SI , and

(iii) c(I, S) =
∑
x∈S ω(x) where ω : SI → N is a weight

function.

Moreover, we enforce two properties that are satisfied by
classical minimization problems. Specifically we assume
that:

• All considered problems are closed downward, that is, for
every considered minimization problem (I, F, c), every
I ∈ I, and every x ∈ SI , the instance I r {x} defined by
the feasible solutions Sr{x}, for every S ∈ F (I), is in I
with the same weight function ω as for I . This guarantees
that an agent cannot be stuck after having performed some
task x, as the sub-problem I r {x} remains solvable for
every x.

• All considered feasible solutions are closed upward, that
is, for every minimization problem (I, F, c), and every
I ∈ I, SI is a feasible solution, and, for every S ∈ F (I),
if S ⊆ S′ ⊆ SI then S′ ∈ F (I). This guarantees that an
agent performing a sequence of tasks x0, x1, . . . eventu-
ally computes a feasible solution.

Inconsistent planning can be rephrased in this framework as
follows.

Inconsistent planning. Let β < 1 be a positive con-
stant. Given a minimization problems (I, F, c), the biased
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cost cβ satisfies cβ(S) = ω(x) + β c(S r {x}) for ev-
ery feasible solution S of every instance I ∈ I , where
x = arg miny∈S ω(y). Given an instance I , the agent aims
at finding a feasible solution S ∈ I by applying a present-
based planning defined inductively as follows. Let I0 = I .
For every k ≥ 0, given the instance Ik, the agent computes
a feasible solution Sk with minimum cost cβ(Sk) among all
feasible solutions for Ik. Let xk = arg miny∈Sk

ω(y). The
agent stops whenever {x0, x1, . . . , xk} is a feasible solution
for I . Otherwise, it carries on the construction of the solution
by considering Ik+1 = Ik r {xk}.

Observe that inconsistent planning terminates. Indeed,
since the instances of the considered problem (I, F, c) are
closed downwards, Ik = I r {x0, . . . , xk−1} ∈ I for every
k ≥ 0, i.e., inconsistent planning is well defined. Moreover,
since the feasible solutions are closed upward, there exists
k ≥ 0 such that {x0, x1, . . . , xk} is a feasible solution for I .

The cost of inconsistent planning is defined as the ratio
% = c(S)

OPT
where S = {x0, x1, . . . , xk} is the solution re-

turned by the agent, and OPT = c(SOPT) is the cost of an
optimal solution SOPT for the same instance of the consid-
ered minimization problem.

Approximated evaluation. It can happen that the consid-
ered minimization problem is computationally hard, say NP-
hard, and the agent is unable to compute a feasible solu-
tion S of minimum cost cβ(S) exactly. Then the agent can
pick an approximate solution instead. For this situation, we
modify the above strategy of the agent as follows. Assume
that the agent has access to an α-approximation algorithmA
that, given an instance I , computes a feasible solution S∗ to
the instance such that cβ(S∗) ≤ αmin cβ(S), where mini-
mum is taken over all feasible solution S to I . For simplic-
ity, we assume throughout the paper that α ≥ 1 is a constant,
but our results can be generalized for the case, where α is a
function of the input size or OPT.

Again, the agent uses an inductive scheme to construct a
solution. Initially, I0 = I . For every k ≥ 0, given the in-
stance Ik, the agent computes a feasible solution Sk of cost
at most αmin cβ(S), where the minimum is taken over all
feasible solutions S of Ik. Then, exactly as before, the agent
finds xk = arg miny∈Sk

ω(y). If {x0, x1, . . . , xk} is a fea-
sible solution for I , then the agent stops. Otherwise, we set
Ik+1 = Ik r {xk} and proceed. The α-approximative cost
of inconsistent planning is defined as the ratio %α = c(S)

OPT

where S = {x0, x1, . . . , xk}. Clearly, the 1-approximative
cost coincides with %.

Worst-Case Present-Biased Planning
We start with a simple observation. Given a feasible solution
S for an instance I of a minimization problem, we say that
x ∈ S is superfluous in S if S r {x} is also feasible for I .
The ability for the agent to make superfluous choices yields
trivial scenarios in which the cost ratio % can be arbitrarily
large. This is for instance the case of an instance of set-cover,
defined as one set y = {1, . . . , n} of weight c > 1 covering
all elements, and n sets xi = {i}, each of weight 1, for

i = 1, . . . , n. Every solution Si = {xi, y} is feasible, for
i = 1, . . . , n, and satisfies cβ(Si) = 1 + βc. As a result,
whenever 1 + βc < c, the present-biased agent constructs
the solution S = {x1, . . . , xn}, which yields a cost ratio
% = n/c, which can be made arbitrarily large as n grows.
Instead, if the agent is bounded to avoid superfluous choices,
that is, to systematically choose minimal feasible solutions,
then only the feasible solutions {y} and {x1, . . . , xn} can be
considered. As a result, the agent will compute the optimal
solution SOPT = {y} if c < 1 + β(n− 1).

Unfortunately, bounding the agent to systematically
choose minimal feasible solutions, i.e., solutions with no su-
perfluous elements, is not sufficient to avoid procrastination.
That is, it does not prevent the agent from computing so-
lution with high cost ratio. This is for instance the case of
another instance of set-cover, that we denote by I(n)

SC for fur-
ther references.

Set-cover instance I
(n)
SC : specified by 2n subsets of

{1, . . . , n} defined as xi = {i} with weights 1, and yi =
{i, . . . , n} with weight c > 1, for i = 1, . . . , n.

The minimal feasible solutions of I
(n)
SC are {y1} of

weight c, {x1, . . . , xi, yi+1} of weight i + c for i =
1, . . . , n − 1, and {x1, . . . , xn} of weight n. Whenever
1 + βc < c, a time-biased agent bounded to make
non-superfluous choices only yet constructs the solution
{x1, . . . , xn} which yields a cost ratio % = n/c, which can
be made arbitrarily large as n grows. We need the following
lemma about biased solutions for minimization problems.

Lemma 1. Let α ≥ 1 and let S∗ be a feasible solution for
minimization problem, satisfying cβ(S∗) ≤ αmin cβ(S),
where the minimum is taken over all feasible solutions. Then

(i) ω(x) ≤ α · OPT for x = arg miny∈S∗ ω(y), and
(ii) c(S∗) ≤ α

β OPT.

Proof. Let S be an optimum solution. As β < 1, it follows
that ω(x) ≤ ω(x)+β ·ω(S∗\{x}) = cβ(S∗) ≤ α·cβ(S) ≤
α ·c(S) = α ·OPT, and this proves (i). To show (ii), note that
c(S∗) = ω(x)+ω(S∗ \{x}) = 1

β (βω(x)+βω(S∗ \{x})),
from which it follows that c(S∗) ≤ 1

β (ω(x) + βω(S∗ \
{x})) = 1

β cβ(S∗) ≤ α
β cβ(S) ≤ α

β c(S) = α
β OPT, which

completes the proof.

Lemma 1 has a simple consequence that also can be de-
rived from the results of Gravin et al. 2016b, Claim 5.1,
that we state as a theorem despite its simplicity, as it il-
lustrates one major difference between our model and the
model in (Kleinberg and Oren 2018).

Theorem 1. For every α ≥ 1 and every minimization prob-
lem, the α-approximative cost ratio %α cannot exceed α · k
where k is the number of steps performed by the agents to
construct the feasible solution {x1, . . . , xk} by following the
time-biased strategy.

Proof. By Lemma 1(i), at any step i ≥ 1 of the construction,
the agent adds an element xi ∈ SI in the current partial
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solution, and this element satisfies ω(xi) ≤ α cβ(SOPT) ≤
α c(SOPT) = α · OPT. Therefore, if the agent computes a
solution {x1, . . . , xk}, then the α-approximative cost ratio
for this solution satisfies %α =

∑k
i=1 ω(xi)/OPT ≤ αk, as

claimed.

Remark. The bound in Theorem 1 is in contrast to the
general model in (Kleinberg and Oren 2018), in which an
agent performing k steps can incur a cost ratio exponential
in k. This is because the model in (Kleinberg and Oren 2018)
enables to construct graphs with arbitrary weights. In partic-
ular, in a graph such as the one depicted on Fig. 1, one can
set up weights such that the weight of (v1, t) is a constant
time larger than the weight of (s, t), the weight of (v2, t)
is in turn a constant time larger than the weight of (v1, t),
etc., and still a present-biased agent starting from s would
travel via v1, v2, . . . , vk before reaching t. In this way, the
sum of the weights of the edges traversed by the agent may
become exponential in the number of traversed edges. This
phenomenon does not occur when focussing on minimiza-
tion tasks. Indeed, given a partial solution, the cost of com-
pleting this solution into a global feasible solution cannot ex-
ceed the cost of constructing a global feasible solution from
scratch.

It follows from Theorem 1 that I(n)
SC is a worst-case in-

stance. Interestingly, this instance fits with realistic procras-
tination scenarios in which the agent has to perform a task
(e.g., learning a scientific topic T ) by either energetically
embracing the task (e.g., by reading a single thick book on
topic T ), or starting first by an easier subtask (e.g., by first
reading a digest of a subtopic of topic T ), with the objective
of working harder later, but underestimating the cost of this
postponed hard work. The latter strategy may result in pro-
crastination, by performing a very long sequence of subtasks
x1, x2, . . . , xn.

In fact, I(n)
SC appears to be the essence of procrastination in

the framework of minimization problems. Indeed, we show
that if the cost ratio is large, then the considered instance I
contains an instance of the form I

(n)
SC with large n. More

precisely, we say that an instance I contains an instance J
as a minor if the ground set SJ associated to J is a collec-
tion of subsets of the ground set SI associated to I , that is
SJ ⊆ 2SI , and, for every S̄ ⊆ SJ , S̄ is feasible for J if and
only if S =

⋃
x̄∈S̄ x̄ is feasible for I . Moreover, the weight

function ω̄ for the elements of SJ must be induced by the one
for SI as ω̄(x̄) =

∑
x∈x̄ ω(x) for every x̄ ∈ SJ . Let J (n) be

any instance of a minimization problem such that its associ-
ated ground set is SJ(n) = {x1, . . . , xn} ∪ {y1, . . . , yn},
and the set of feasible solutions for J (n) is F (J (n)) ={
{y1}, {x1, y2}, {x1, x2, y3}, . . . , {x1, . . . , xn−1, yn},
{x1, . . . , xn}

}
. The following result sheds some light on

why the procrastination structure of Fig. 1 pops up.
Theorem 2 (∗1). Let I be an instance of a minimization
problem for which the present-biased agent with parame-
ter β ∈ (0, 1) computes a solution for I with cost α · OPT(I)

1The proofs of the statements labled (∗) are omitted.

for some α > 1. Then I contains J (n) as a minor for some
n ≥ α, and the present-biased agent with parameter β com-
putes a solution for J (n) with cost α · OPT(J (n)).

Quasi-Optimal Present-Biased Planning
In the previous section, we have observed that forcing the
agent to avoid superfluous choices, by picking minimal fea-
sible solutions only, does not prevent it from constructing
solutions that are arbitrarily far from the optimal. In this sec-
tion, we show that, by enforcing consistency in the sequence
of partial solutions constructed by the agent, such bad be-
havior does not occur. More specifically, given a feasible so-
lution S for I , we say that x is inconsistent with S if x /∈ S.
The following result shows that inconsistent choices is what
causes high cost ratio.

Theorem 3. An agent using an α-approximation algorithm
bounded to avoid inconsistent choices with respect to the
feasible solutions used in the past for constructing the cur-
rent partial solution returns an α/β-approximation of the
optimal solution. This holds independently from whether the
agent makes superfluous choices or not.

Proof. Let I be an instance of a minimization problem
(I, F, c). Let S = {x0, . . . , xk} be the solution constructed
by the agent for I , where xi is the element computed by the
agent at step i, for i = 0, . . . , k. Let Si be the feasible solu-
tion of Ii = I r {x0, . . . , xi−1} considered by the agent at
step i. Since the agent is bounded to avoid any inconsistent
choices with respect to the past, we have xi ∈ ∩ij=0Sj for
every i = 0, . . . , k because xi /∈ Sj for some j < i would
be an inconsistent choice. It follows that S ⊆ S0. Therefore,
c(S) ≤ c(S0). Since the agent uses an α-approximation al-
gorithm, by Lemma 1(ii), c(S0) ≤ α

β OPT and the claim fol-
lows.

Min/Maximization With
Under/Overestimation

We first investigate the cost ratio for minimization problems
for the case when β > 1. Similar bound was obtained by
Kleinberg et al. (see (Kleinberg, Oren, and Raghavan 2016,
Theorem 2.1)). However, their theorem is about sophisti-
cated agents and cannot be applied in our case directly.

Theorem 4 (∗). Solutions computed by present-biased
agents satisfy the following: For any minimization problem
with β > 1, the cost ratio is at most β.

Next, we consider maximization problems. The formal-
ism for these variants can be set up in a straightforward
manner by adapting the framework displayed in Section .
We establish the following worst-case bounds.

Theorem 5 (∗). Solutions computed by present-biased
agents satisfy the following:

(i) For any maximization problem with β < 1, the cost ratio
is at most 1

β ;

(ii) For any maximization problem with β > 1, the cost ratio
is at most βc, where c ≤ OPT is the cost of a solution
constructed by the agent.
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We also can write the bound for the cost ratio for β > 1 in
the following form to obtain the upper bound that depends
only on the value of OPT.

Corollary 1. For any maximization problem with β > 1,
the cost ratio is at most (1 + log β) OPT

log OPT
.

Proof. Let c be the cost of a solution constructed by the
agent. By Theorem 5, OPT ≤ cβc. Therefore, log OPT ≤
log c + c log β ≤

(
1 + log β)c, and OPT

c ≤ (1 +
log β) OPT

log OPT
.

For minimization problems with β > 1, and maximiza-
tion problems with β < 1, we have that the cost ratio is
bounded by a constant. This differs drastically with the case
of maximization problems with β > 1, when the cost ratio is
still bounded but the bound is exponential. This exponential
upper bound is however essentially tight, in the sense that
the exponent cannot be avoided.

Theorem 6 (∗). There are maximization problems for which
a present-biased agent with β > 1 returns a solution whose
cost ratio is at least 1

c β
c−1, where c is the cost of the solu-

tion constructed by the agent.

An example similar to the one in the proof of Theorem 6
can be constructed for the knapsack problem.

Covering and Hitting Problems
In Section , we have seen several instances of the set-cover
problem whose cost ratio cannot be bounded by any func-
tion of OPT. The same obviously holds for the hitting-set
problem. Recall that an instance of hitting-set is defined by
a collection Σ of subsets of a finite set V , and the objective
is to find the subset S ⊆ V of minimum size, or minimum
weight, which intersects (hits) every set in Σ. However, set-
cover problems, and hitting set problems behave differently
when the sizes of the sets are bounded. First, we consider
the d-set cover problem.

The d-set cover problem. Let d be a positive integer. The
task of the d-set cover problem is, given a collection Σ of
subsets with size at most d of a finite set V , and given a
weight function ω : Σ → N, find a set S ⊆ Σ of minimum
weight that covers V , that is,

⋃
X∈S X = V .

Theorem 7 (∗). Let α ≥ 1. For any instance of the d-set-
cover problem, the α-approximative cost ratio is at most α ·
d · OPT.

The d-hitting set problem. Let d be a positive integer. We
are given a collection Σ of subsets with size d of a finite set
V , a weight function ω : V → N. The task is to find a set
S ⊆ V of minimum weight that hits every set of Σ.

Theorem 8 (∗). Let α ≥ 1. For any instance of the d-
hitting-set problem, the α-approximative cost ratio is at most
αd! (αβ OPT)d.

Conclusion
We demonstrated that, by focussing on present-biased
agents solving tasks, specific detailed analysis can be carried
on for each considered task, which enables to identify very
different agent’s behavior depending on the tasks (e.g., set
cover vs. hitting set). Second, focussing on present-biased
agents solving tasks enables to generalize the study to over-
estimation, and to maximization, providing a global picture
of searching via present-biased agents. Yet, lots remain to be
done for understanding the details of this picture.

In particular, efforts could be made for studying other
specific classical problems in the context of searching by
a present-biased agent. This includes classical optimization
problems like traveling salesman (TSP), metric TSP, max-
imum matching, feedback vertex set, etc. Such study may
lead to a better understanding of the class of problems for
which present-biased agents are efficient, and the class for
which they act poorly. And, for problems for which present-
biased agents are acting poorly, it may be of high interest to
understand what kind of restrictions on the agent’s strategy
may help the agent finding better solutions.

Another direction of research is further investigation of
the influence of using approximation algorithms by agents,
as it is natural to assume that the agents are unable compute
the cost exactly. We made some initial steps in this direction,
but it seems that this area is almost unexplored. For exam-
ple, it can be noted that the upper bound for the cost ratio
in Theorem 4 can be rewritten under the assumption that
the agent uses an α-approximation algorithm. However, the
bound gets blown-up by the factor αs, where s is the size
of the solution obtained by the agent (informally, we pay
the factor α on each iteration). From the other side, the ex-
amples in Section show that this is not always so. Are there
cases when this exponential blow-up unavoidable? The same
question can be asked about maximization problems.
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