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Abstract

We study the power and limitations of the Vickrey-Clarke-
Groves mechanism with monitoring (VCGmon) for cost min-
imization problems with objective functions that are more
general than the social cost. We identify a simple and nat-
ural sufficient condition for VCGmon to be truthful for gen-
eral objectives. As a consequence, we obtain that for any
cost minimization problem with non-decreasing objective µ,
VCGmon is truthful, if the allocation is Maximal-in-Range
and µ is 1-Lipschitz (e.g., µ can be the Lp-norm of the
agents’ costs, for any p ≥ 1 or p = ∞). We apply
VCGmon to scheduling on restricted-related machines and ob-
tain a polynomial-time truthful-in-expectation 2-approximate
(resp. O(1)-approximate) mechanism for makespan (resp.
Lp-norm) minimization. Moreover, applying VCGmon, we
obtain polynomial-time truthful O(1)-approximate mecha-
nisms for some fundamental bottleneck network optimization
problems with single-parameter agents. On the negative side,
we provide strong evidence that VCGmon could not lead to
computationally efficient truthful mechanisms with reason-
able approximation ratios for binary covering social cost min-
imization problems. However, we show that VCGmon results
in computationally efficient approximately truthful mecha-
nisms for binary covering problems.

Introduction
The effective use of resources is an important goal of any
digital system. For example, operating systems allocate the
hardware (e.g., RAM memory, CPU time, etc.) to the pro-
cesses under execution to guarantee “good” performance.
However, there are cases in which the hardware is not di-
rectly available. Consider, for example, a cloud computing
service provider P . Ideally, P would like to allocate cus-
tomer tasks to the cloud resources so as to provide the “best”
possible service. Relevant scenarios include the allocation
of programs (a.k.a., jobs) to machines; of packets to routers
or, more generally, the selection of a subset of resources
that would complete the customer’s task. The definition of
“best” service might vary and range from interactivity (i.e.,
the maximum completion time of customers’ tasks is mini-
mized) to batch performance (i.e., the total completion time
is minimized). The aforementioned optimization problems
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are known as machine scheduling, bottleneck network opti-
mization and total (a.k.a. social) cost optimization, respec-
tively; typically, the objective for the first two is interactivity,
whilst the third is an example of batch optimization.

The question of how P should allocate resources opti-
mally in these (and other similar) contexts is fundamental
and has received significant attention by multiple research
communities, see, e.g., (Liao 2014; Leyton-Brown 2003;
Lombardi and Milano 2012) and the references therein. In
modern digital infrastructure, dominated by outsourcing and
distributed resource allocation, a notable additional obstacle
for P is the fact that the resources are often controlled by
self-interested entities, a.k.a. selfish agents, operating them
according to their own goals (e.g., to avoid resource over-
loading), not necessarily aligned with P ’s objective. This
is the standard setting of Algorithmic Mechanism Design
(Nisan et al. 2007), where we seek incentive compatibility,
in addition to the algorithmic objectives of computational
efficiency and optimal resource allocation. Specifically, we
aim at truthful mechanisms, that run in polynomial-time and
approximate as well as possible the objective function at
hand. A truthful mechanism guarantees that it is in each
agent’s interest to report to the mechanism her own private
information (i.e., the features of the hardware they control),
commonly termed type. In our examples above, a type could
be the speed of a machine for a particular job to execute; the
latency of a router, and, more generally, the hardware cost to
execute a customer’s task.

Unfortunately, for none of the problems of inter-
est it is known how to design such mechanisms. The
renown Vickrey-Clarke-Groves (VCG) mechanisms, see,
e.g., (Nisan et al. 2007, Chapter 9), are about the only gen-
eral technique known to obtain truthfulness. They require
the computation of the optimum social cost solution, imply-
ing obvious limitations for their use. More specifically, for
NP-hard social cost optimization problems, VCG does not
run in polynomial-time, unless P = NP (when, as in our
case, there is no suitable “Maximal-in-Range” approxima-
tion). Moreover, even when they can be implemented in a
computationally efficient way, VCG mechanisms can return
bad approximations to the min-max objective of machine
scheduling and bottleneck network optimization (Nisan and
Ronen 2001), because their truthfulness crucially depends
on social cost optimization.
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In this work, we investigate to which extent we can
overcome these limitations of VCG mechanisms through
monitoring (Kovács, Meyer, and Ventre 2015; Koutsoupias
2014). The idea is to let the mechanism designer (a.k.a. the
principal) exert some control on the agents during the ex-
ecution of the mechanism. Already in their seminal paper,
(Nisan and Ronen 2001) considered a model wherein agents
overbidding their cost could be monitored and forced to pay
as much. This assumption is reasonable, when the principal
has the power to appropriately decrease the agents’ utility,
if during the execution of the mechanism, she realizes that
some agents have over-reported their cost. This is exactly
the situation in which P is; if, for example, an agent ex-
aggerates the time her machine takes to execute a certain
job, then P can keep the machine busy that long by, e.g.,
charging the difference to the agent. Unlike (Nisan and Ro-
nen 2001) (see also compensation-and-penalty mechanisms
in (Shoham and Leyton-Brown 2009, Sec. 10.6.1)), we do
not assume any punishment for underbidding and do not
compute payments based on the actual costs incurred by the
agents during the implementation of the chosen outcome;
our only assumption is that the principal is able to monitor
over-reported costs.

Monitoring is by now well-established in Algorithmic
Mechanism Design. The difference between monitoring and
the so-called verification is discussed by (Penna and Ventre
2014). Kovács, Meyer, and Ventre (2015) study mechanisms
with monitoring where the principal is the operating sys-
tem and the agents are computational processes. Different
payment schemes for mechanisms with monitoring are stud-
ied in (Serafino, Ventre, and Vidali 2020). The monitoring
paradigm is also studied in absence of transfers in (Koutsou-
pias 2014; Giannakopoulos, Koutsoupias, and Kyropoulou
2016), and in the context of truthfulness with bounded ratio-
nality in (Ferraioli and Ventre 2017; Kyropoulou and Ventre
2019).
Our Contributions. Motivated by applications of mecha-
nism design to scheduling and resource allocation problems,
where monitoring of over-reported costs is natural and easy
to implement, we investigate the power and the limitations
of the Vickrey-Clarke-Groves mechanism with monitoring
(VCGmon) for cost minimization problems with objective
functions that are more general than the social cost.

We start with identifying two natural algorithmic proper-
ties, cf. (2) and (3) below, which together provide a simple
necessary and sufficient condition for VCGmon to be truth-
ful for any objective function µ (i.e., µ is not necessarily the
social cost). At the conceptual level, conditions (2) and (3)
are subtle extensions of the classic monotonicity property,
which has been extensively studied in the context of truthful
mechanisms (Saks and Yu 2005; Nisan et al. 2007), and im-
pose an additional continuity property on the algorithm. As a
nice analogue of the VCG theorem, in our context, we prove
that Maximal-in-Range (MIR) algorithms satisfy these con-
ditions if the objective function µ is 1-Lipschitz (e.g., µ can
be the Lp-norm of the agent costs, for any p ≥ 1 or p =∞).

To establish the generality of our approach, we apply our
truthful VCG mechanisms with monitoring to three broad
classes of minimization problems: scheduling on unrelated

machines, bottleneck network optimization and binary cov-
ering problems with social cost. For each of these classes, we
prove essentially tight positive and corresponding negative
results on the approximate optimality of such mechanisms.
Our positive results are polynomial-time truthful approxi-
mate mechanisms with monitoring, and the matching nega-
tive results are either by known computational lower bounds
or by our new unconditional impossibility results.

The makespan minimization for scheduling on unrelated
machines is one of the flagship problems in Algorithmic
Mechanism Design. Its approximability by (deterministic
or randomized) truthful mechanisms has received signifi-
cant attention. Finding a truthful mechanism with sublin-
ear approximation ratio for this problem is a long-standing
open problem, since the seminal work of (Nisan and Ro-
nen 2001). The major complication is the multi-parameter
agents-machines: their private information are the process-
ing times for each job. Truthful mechanisms were only
obtained with ratios of O(n), where n is the number of
machines (Nisan and Ronen 2001; Lu and Yu 2008b,a).
Lower bounds of Ω(n) on the approximation ratio of cer-
tain classes of truthful mechanisms were shown in (Nisan
and Ronen 2001; Saks and Yu 2005; Ashlagi, Dobzinski,
and Lavi 2012). Christodoulou, Koutsoupias, and Kovács
(2020) proved a lower bound of Ω(

√
n) for the more gen-

eral case where the machine costs are submodular. These
lower bounds only assume truthfulness and hold even for
exponential time mechanisms (i.e., even if exponential time
was available, VCG could not achieve any nontrivial approx-
imation ratio for makespan minimization on unrelated ma-
chines!). If we drop truthfulness, a classical 2-approximation
algorithm is known (Shmoys and Tardos 1993). We apply
our VCGmon mechanisms to scheduling on unrelated ma-
chines, and investigate their power and limitations. We em-
phasize that monitoring for over-reported processing times
is a natural and common assumption in mechanism design
for scheduling problems (see e.g., the weak execution model
in (Angel, Bampis, and Pascual 2006; Angel et al. 2009)).
We can show that VCGmon is not truthful for the fractional
solution of the linear program (LP) used by (Shmoys and
Tardos 1993), due to the parameter pruning step. Given that
all known O(1)-approximation algorithms for this problem
are based on either the LP of (Shmoys and Tardos 1993) or
the so-called configuration LP (which also applies parame-
ter pruning), an interesting open question is whether there
exists a truthful (in expectation) O(1)-approximate mecha-
nism with monitoring for makespan minimization on unre-
lated machines. On the positive side, we focus on the special
case of makespan minimization on restricted-related ma-
chines, where each machine i has a private speed si and
a private subset of jobs Ji that the machine can process
(so, machine types are still multi-dimensional). We show
that there is a truthful-in-expectation 2-approximate mech-
anism with monitoring. Moreover, our approach generalizes
to Lp-norm minimization with O(1) approximation. Azar
et al. (2017) gave a truthful-in-expectation 2-approximation
mechanism for makespan minimization on restricted-related
machines, but under the assumption that sets Ji are pub-
lic (which makes machine types single-dimensional). Our
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mechanism remains 2-approximate w.r.t. the makespan ob-
jective, if actual money transfers from the mechanism to the
machines are not possible (e.g., imagine load balancing in
volunteering) and the payments required for truthfulness are
implemented by artificial delays in the schedule of each ma-
chine (i.e., in the money burning framework of (Hartline and
Roughgarden 2008)).

In a bottleneck network optimization problem, we are
given a network with edge costs and seek a certain feasi-
ble minimum-cost subnetwork where the cost of its costli-
est edge is minimized. For each of the bottleneck network
optimization problems in Hochbaum and Shmoys (1986),
we apply VCGmon and show that there exists a determin-
istic approximation mechanism that is truthful with moni-
toring for single-dimensional agents, i.e., they own a sin-
gle edge. Their approximation ratios are the same as those
in (Hochbaum and Shmoys 1986) and are, for many of
those problems, best polynomial-time approximations. We
achieve this by proving that the generic bottleneck algo-
rithm of Hochbaum and Shmoys (1986) possesses the re-
quired conditions (2) and (3), needed for the truthfulness of
VCGmon. These mechanisms cannot be extended to multi-
dimensional agents for these problems without violating
these conditions. We note that the bottleneck algorithm
from (Hochbaum and Shmoys 1986) is monotone for single-
dimensional agents, and therefore truthful in the standard
sense, without monitoring. Our conditions (2) and (3), how-
ever, are more demanding and yield more flexible pay-
ment functions (cf. discussion in the next section about
an equal-cost interpretation of VCGmon and connections to
money burning) – as opposed to the “threshold payment
scheme” for standard truthfulness (see e.g., (Nisan et al.
2007, Sec. 13.1)). Moreover, VCGmon payments have a more
explicit/direct definition, which helps their computation and
simplicity of the mechanism (i.e., how easy it is for humans
to understand how to behave). For more detailed motiva-
tion, see also the second paragraph in the section on bottle-
neck network problems. Leucci, Mamageishvili, and Penna
(2018) prove that no deterministic (standard) truthful mech-
anism with money can achieve an n-approximation for the
bottleneck s-t-shortest path problem with multi-dimensional
agents (each agent owns many edges), where n is the num-
ber of agents. This problem is solvable in polynomial time,
if we do not insist on truthfulness. Interestingly, by applying
monitoring along each dimension separately, we can show
that VCGmon with the optimal polynomial-time algorithm is
truthful for this problem with multi-dimensional agents. We
defer the details of this result to the full paper.

For binary covering problems with social cost objective,
we interestingly connect approximation with truthfulness of
our mechanisms. We first prove that no algorithm with a
bounded approximation ratio is continuous, even for single-
dimensional agents, thus implying that the only truthful
mechanisms are either optimal (by using an optimal MIR
algorithm) or have an approximation guarantee that is ar-
bitrarily close to 1, i.e., (Fully) Polynomial-Time Approx-
imation Schemes ((F)PTASs). This result, which might be
of independent interest, is very general and applies to multi-
ple covering problems and corresponding deterministic ap-

proximation algorithms1. The situation seems quite similar
to VCG without monitoring, where if the algorithm is not
optimal, or not MIR, we lose truthfulness, see, e.g., (Nisan
et al. 2007). The parallel with VCG, and with classical truth-
fulness, is even more striking for binary covering problems;
we, in fact, extend a result from (Dughmi and Roughgar-
den 2014) to prove that any MIR algorithm for a large class
of objective functions is actually optimal. These are, to our
best knowledge, the first results showing the limits of mech-
anisms with monitoring, where the principal is able to mon-
itor the agent costs at runtime and to mildly penalize over-
reported costs (see e.g., (Caragiannis et al. 2012; Fotakis
and Zampetakis 2015; Ferraioli and Ventre 2018) for lower
bounds for weaker notions of verification). Truthfulness is
very fragile here and any kind of fixed approximation guar-
antee, no matter how good, leads to manipulability. On the
positive side, we show that every deterministic approxima-
tion algorithm for any binary covering problem with so-
cial cost provides an approximately truthful mechanism with
monitoring. Examples of such algorithms and problems in-
clude all of those mentioned in Footnote 1. This result com-
plements our impossibility result and is especially interest-
ing for problems with PTASs/FPTASs, e.g., minimum cost
spanning tree with budget constraint and multi-unit reverse
auctions (Grandoni et al. 2014). In such cases we can con-
trol the truthfulness factor to any desired accuracy by simply
allowing for higher running time. Interestingly, for many of
these problems and algorithms, there exist instances, where
the “truthfulness gap” actually reaches the best possible ap-
proximation ratio, and thus, our approximate truthfulness re-
sults are tight for those algorithms and problems. For in-
stance, the tight example of the greedy algorithm for min-
imum cost set cover problem, see (Vazirani 2001, Exam-
ple 2.5), shows that VCGmon can only be Ω(log(n))-truthful
(see Def. 3 of approximate truthfulness).

VCG with Monitoring for General Objectives
Let Π be an optimization problem with n agents and O the
set of outcomes, i.e., feasible solutions, to problem Π. Each
agent i has a cost function, called type, ti : O → R>0. For
x ∈ O, ti(x) is the cost paid by agent i to implement x. The
type ti is private knowledge of agent i. The set of all legal
cost functions ti, denoted by Di, is called the domain of
agent i. After each agent has reported or bid a (true or false)
cost function bi ∈ Di, a mechanism determines an outcome
x ∈ O and a payment pi to each agent i. In summary, by
lettingD = D1× . . .×Dn, a mechanismM is a pair (f, p),
where f : D → O is an algorithm (a.k.a. social choice
function) that maps agents’ costs to a feasible solution inO;
and p : D → Rn maps cost vectors to payments to each
agent i. For mechanismM = (f, p), let ui(bi,b−i) denote
the utility of agent i for the output computed byM on input

1To name a few, the minimum cost set cover (SC) problem and
the primal-dual, deterministic LP rounding and Chvatal’s greedy
algorithms for SC; MST-based algorithm for metric Steiner Tree;
primal-dual algorithm for Steiner Forest and Jain’s iterative round-
ing algorithm for Steiner Network; see (Vazirani 2001) for an
overview of these approximation algorithms.

5425



(bi,b−i) and evaluated by ti. Since the type ti is private
knowledge of agent i, she might find it profitable to bid bi 6=
ti. We are interested in mechanisms for which truthtelling is
a dominant strategy for each agent.
Definition 1 (Truthful mechanisms). A mechanism M =
(f, p) is truthful if for any i, and for all bids b−i =
(b1, . . . , bi−1, bi+1, . . . , bn) of the agents other than i, and
any bi ∈ Di, ui(ti,b−i) ≥ ui(bi,b−i).

Often, ui is equal to the payments pi(b) received from the
mechanism minus the true cost ti(f(b)) paid by agent i for
the mechanism’s outcome f(b). We focus on the mechanism
design paradigm of mechanisms with monitoring, where
this quasi-linear definition is retained, but costs paid by the
agents for the allocated solution are tied to their bids. Intu-
itively, monitoring means that agents with over-reported cost
for the chosen outcome, i.e., if bi(f(b)) > ti(f(b)), have to
“work” up to cost bi(f(b)) instead of the true cost ti(f(b)).
Definition 2 (Mechanism with monitoring). In a mech-
anism with monitoring Mmon = (f, p), the bid bi is
a lower bound on agent i’s cost of using fi(bi,b−i).
So, agent i is allowed to have a real cost higher than
bi(f(b)), but not lower. Formally, ui(bi,b−i) := pi(b) −
max{ti(f(b)), bi(f(b))}.
The VCGmon

µ mechanism. Let f be an algorithm for prob-
lem Π and µ : O × D → R≥0 be the objective function
of Π mapping outcomes and bid vectors to non-negative
reals. The second argument of µ specifies the bids used
to calculate the value of a solution (first argument of µ).
A VCGmon

µ mechanism (f, p) pays agent i an amount of
pi(bi,b−i) = hi(b−i)−µ(f(b),b) + bi(f(b)). Hence, if i
bids truthfully, i’s utility becomes ui(ti,b−i) = hi(b−i)−
µ(f(ti,b−i), (ti,b−i)) + ti(f(ti,b−i))− ti(f(ti,b−i)) =
hi(b−i) − µ(f(ti,b−i), (ti,b−i)), for some function
hi(b−i) not depending on i’s bid. Since truthfulness is in-
dependent of the choice of hi(b−i), as in the case with-
out monitoring, we omit hi(b−i) for sake of brevity and
simplicity. This mechanism is a simple extension of VCG,
where the generic cost function µ plays the role of the social
cost. Then, truthfulness of VCGmon

µ is equivalent to: for all
i,b−i, ti, bi,

µ(f(ti,b−i), (ti,b−i)) ≤ µ(f(b),b)

− bi(f(b)) + max{ti(f(b)), bi(f(b))}. (1)

In fact, (1) is equivalent to the following: for all i,b−i, ti, bi,

ti(f(b)) ≤ bi(f(b)) =⇒
µ(f(ti,b−i), (ti,b−i)) ≤ µ(f(b),b);

(2)

ti(f(b)) > bi(f(b)) =⇒ µ(f(ti,b−i), (ti,b−i))

≤ µ(f(b),b)− bi(f(b)) + ti(f(b)).
(3)

(2) requires that µ (and f ) should be monotone in the agent
bids. Furthermore, (3) requires that µ (and f ) should be con-
tinuous, in the sense that a change δ in an agent’s bid should
change the µ-value of f ’s outcome by at most δ.

We now discuss the role of hi(b−i). Standard VCG uses
the “Clarke tax” to ensure individual rationality, i.e., the util-
ity of truthtelling agents being non-negative. However, the

payment’s flexibility can be leveraged to explore different
properties of VCGmon

µ mechanisms. By setting hi(b−i) = 0,
for all i and b−i, we obtain an equal-cost mechanism, where
all agents have the same utility (defined as in Def. 2) equal to
µ(f(ti,b−i), (ti,b−i)). Such mechanisms were introduced
in context of facility location in (Fotakis and Tzamos 2014)
and are particularly useful when there are no monetary tran-
fers and payments should be implemented as, e.g., waiting
times (an agent is delayed by amount “equal” to the pay-
ments imposed by the mechanism). This is the interpreta-
tion used in (Kovács, Meyer, and Ventre 2015). Since the
transfers required to equalize agents’ utilities take a form
of wasted resources in this case, it is reasonable to consider
money burning objectives and include payments in the ob-
jective value. One can see that such a variant of VCGmon

µ
provides approximation guarantees in this (more demand-
ing) money burning setting that are not far from the ratio to
the optimum cost alone. We defer these details to the full
paper.

VCGmon
µ and Maximal-in-Range Mechanisms

Let Π be an optimization problem with an objective func-
tion µ to be minimized. A deterministic Maximal-in-Range
(MIR) mechanism for Π with a rangeR ⊆ O of feasible so-
lutions uses the following MIR algorithm f : given the bids
b, it computes a minimizer of the objective value µ(x,b)
over all x ∈ R. Note that range R is independent of the
bids b. Based on (2) and (3), we next show that if f is
Maximal-in-Range, (sub)linearity of µ suffices for truthful-
ness of VCGmon

µ .
If f is an MIR algorithm for µ, its range is R = {f(b) :

b ∈ D}. An MIR algorithm f for µ satisfies

µ(f(ti,b−i), (ti,b−i)) ≤ µ(f(b), (ti,b−i)) (4)

for all ti, bi,b−i. A non-decreasing function µ (i.e., ti(x) >
bi(x) implies µ(x, (ti,b−i)) ≥ µ(x,b)) is 1-Lipschitz in
dimension i if for any x ∈ O, b ∈ D and ti ∈ Di,

ti(x) ≥ bi(x) =⇒ µ(x, (ti,b−i))−µ(x,b) ≤ ti(x)−bi(x).

This means that µ grows at most linearly in dimension i,
and if it is differentiable, ∂µ(x,b)∂bi(x)

≤ 1. If µ is 1-Lipschitz in
every dimension i = 1, . . . , n, then we omit the dimensions.

Theorem 1. Let µ be a non-decreasing 1-Lipschitz function
and f be MIR for µ. Then VCGmon

µ using f is truthful.

Proof. f is MIR for µ, so by (4) truthfulness is implied by

µ(f(b), t) ≤ µ(f(b),b)

− bi(f(b)) + max {ti(f(b)), bi(f(b))} , (5)

where t = (ti,b−i). If max {ti(f(b)), bi(f(b))} =
bi(f(b)) then (5) simply requires µ to be non-decreasing.
Otherwise, if we have that max {ti(f(b)), bi(f(b))} =
ti(f(b)), then (5) follows by 1-Lipschitzness.

Notably, Theorem 1 applies to objectives µ that minimize
the maximum agent cost, the Lp-norm of agent costs, and
the social cost (i.e., the L1-norm of agent costs).
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Scheduling on Unrelated Machines
Next, we present a randomized truthful-in-expectation
mechanism with monitoring for makespan minimization.
In scheduling on unrelated machines, we seek a balanced
schedule of set J of n jobs to a set M of m selfish ma-
chines. Each machine i has a vector pi = (pij)j∈J , where
pij ∈ N ∪ {∞} denotes the processing time of job j on
machine i. pij = ∞ means that job j cannot be processed
by machine i. Wlog., we assume that for each job j, there
are at least two machines with finite processing time for j
(otherwise, scheduling j is trivial; in our mechanism with
monitoring, falsely declaring a finite processing time as in-
finite, or vice versa, is dominated by truthful reporting). An
assignment J = (J1, . . . , Jm) is a partition J1, . . . , Jm of
J , where jobs Ji are processed by machine i. The load `i of
machine i in J is `i(J ) =

∑
j∈Ji pij .

The standard objective µ is the makespan, i.e., compute an
assignment J that minimizes maxi∈M{`i(J )}. The vector
pi = (pij)j∈J of job processing times on machine i is i’s
private type. Each machine i aims to maximize her utility
(expected utility, for randomized mechanisms), defined as
i’s payment for assignment J minus i’s load in J .

We consider the special case of restricted-related ma-
chines (Azar et al. 2017), where each job has a publicly
known processing time pj . The private type of each machine
i consists of the subset J i ⊆ J of jobs that i can process and
of i’s speed si ∈ N∗. Hence, pij = pj/si, if j ∈ J i and
pij = ∞, if j 6∈ J i. The load `i of machine i in assignment
J is `i(J ) =

∑
j∈Ji pj/si, if Ji ⊆ J i, and `i(J ) = ∞,

otherwise. (In (Azar et al. 2017), only the speeds si are pri-
vate).

We study properties of the following randomized version
of VCGmon

µ for scheduling on unrelated machines.

Fractional Solution. We compute the minimum value of T
for which the following linear program is feasible:∑

i∈M
xij = 1 ∀j ∈ J∑

j∈J
xijpij ≤ T ∀i ∈M

xij ≥ 0 , pij > T ⇒ xij = 0 ∀i ∈M, j ∈ J
We refer to this system as LP(T ). Let T ∗ be the min-
imum value of T for which LP(T ) is feasible and let
(x∗ij)i∈M,i∈J be a basic feasible solution (bfs) of LP(T ∗).

Randomized Rounding. We obtain an integral assignment
by applying randomized rounding of Kumar et al. (2009);
Lavi and Swamy (2009) to a bfs (x∗ij)i∈M,j∈J of LP(T ∗).
Let Xij be indicator random variables denoting that job j
is assigned to machine i. The randomized rounding proce-
dure ensures that for all i ∈ M and j ∈ J , E[Xij ] = x∗ij ,
and for any machine i, the following holds with cer-
tainty (see also (Lavi and Swamy 2009, Lemma 4.2)):∑
j∈J Xijpij ≤

∑
j∈J x

∗
ijpij + maxj:x∗ij>0{pij}.

Payments. Machine i receives payment
∑
j∈J x

∗
ijpij − T ∗

from the mechanism (recall that we omit the hi term from
the payments, because truthfulness does not depend on it).

Approximation Guarantee. Lavi and Swamy (2009,
Lemma 4.2) proved that the above algorithm is 2-
approximate for makespan minimization on unrelated ma-
chines (and also on restricted-related machines). In fact,
(Lavi and Swamy 2009, Lemma 4.2) implies that the load
of each machine i is at most T ∗ + maxj:x∗ij>0{pij} ≤ 2T ∗,
with certainty2.
Truthfulness of VCGmon

µ . The expected utility of machine
i with monitoring is

∑
j∈J

x∗ijp
′
ij−T ∗−E

max

∑
j∈J

Xijpij ,
∑
j∈J

Xijp
′
ij


 (6)

where pij (resp. p′ij) is the true (resp. reported) processing
time of each job j on machine i (recall that the solution
x∗ij is computed wrt. the reported processing rimes). The
last term in (6) corresponds to −max{ti(f(b)), bi(f(b))}
in Definition 2, and the first term corresponds to bi(f(b))
in the definition of VCGmon

µ payments (we use expected
values here, because the mechanism is randomized). For
truthfulness-in-expectation, we compute the payments using
the optimal fractional value T ∗ of LP(T ), instead of the ex-
pected makespan E [µ(f(b),b)] of the integral assignment
obtained by randomized rounding (which may not satisfy
the equivalent of (2) and (3)). Since T ∗ is an upper bound
on the expected machine load, we can use −T ∗, instead of
−E [µ(f(b),b)] for the payments of VCGmon

µ and i’s ex-
pected utility in (6).

The randomized version of VCGmon
µ above is not truthful

for the general setting of scheduling on unrelated machines,
due to the parameter pruning step in 3rd line of LP(T ∗). So,
we focus on restricted-related machines. We consider non-
trivial instances, where each job j belongs to at least two sets
J i. Then, (6) becomes

(
1
s′i
−max

{
1
si
, 1
s′i

})∑
j∈J x

∗
ijpj−

T ∗, provided all jobs with x∗ij > 0 belong to the true set of
admissible jobs of machine i. Otherwise, the expected utility
of machine i is −∞.

Theorem 2. The randomized version of VCGmon
µ is truthful-

in-expectation for scheduling on restricted-related machines
(note that types are multidimensional).

If monetary transfers are infeasible, we can set hi = 0 and
implement the payments as a delay of T ∗ −

∑
j∈J x

∗
ijpij ,

introduced before machine i starts processing jobs. Thm. 2
applies and the mechanism is truthful-in-expectation for
restricted-related machines. An approximation ratio of 2 for
makespan (resp. of 2n1/p for Lp-norm minimization) fol-
lows from (Lavi and Swamy 2009, Lemma 4.2) (resp. from
(Kumar et al. 2009, Sec. 4)), even in the money burning set-
ting.

2We can extend the proof of Theorem 2 to show that the ran-
domized rounding algorithm in (Kumar et al. 2009, Sec. 4) is
truthful with payments (6). The second case in the proof of The-
orem 2 can deal with (Kumar et al. 2009, constraints (18)) by con-
vexity of (18), giving a randomized truthful-in-expectation O(1)-
approximation for minimizing the Lp-norm of machine loads, for
any p ≥ 1.
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Bottleneck Network Optimization Problems
The bottleneck traveling salesperson (BTSP) is the follow-
ing problem. Given a weighted complete graph, with edge
weights obeying triangle inequality, find a Hamiltonian cy-
cle in this graph where the most costly edge is as cheap
as possible. We prove here that the 2-approximation al-
gorithm of Hochbaum and Shmoys (1986) for BTSP im-
plies a truthful VCGmon

µ mechanism for single-dimensional
agents, where µ corresponds to the above objective. This im-
plies truthful mechanisms with monitoring for all bottleneck
network optimization problems in (Hochbaum and Shmoys
1986), with the same approximation guarantees as the algo-
rithms therein.

To further motivate the results in this section, we look
at the equal-cost implementation of VCGmon

µ and money
burning. Agent i’s payment in mechanism VCGmon

µ (f, p) is
pi(bi,b−i) = hi(b−i)−µ(f(b),b)+bi(f(b)). To compute
all the pi’s, one only needs to run algorithm f(b) once, and,
possibly, again when computing hi(b−i)’s. But if we used
the “threshold” payment, following from monotonicity of f
in the standard sense, we would need to use binary search for
each agent, that requires more time. Importantly, if, for in-
stance, hi(b−i) = 0, for all i and b−i, VCGmon

µ would be an
equal cost mechanism, where payments can be interpreted
as, e.g., waiting times imposed by the mechanism. In this
case, our mechanisms below maintain the same approxima-
tion factor also for the money burning objective accounting
for the payments as well as the maximum cost. Finally, our
mechanism is a simple example of continuous mechanism,
i.e., obeying (2)-(3), with an easy-to-follow proof.

The Mechanism. To model bottleneck network optimiza-
tion problems, suppose that GC = (V,EC) is the complete
input graph with edge costs ce1 ≤ ce2 ≤ · · · ≤ cem , |V | = n
and |EC | = m =

(
n
2

)
. We assume that costs obey the tri-

angle inequality (this assumption is only needed for the ap-
proximation guarantees but not for truthfulness). We will de-
fine these problems using BTSP as a running example.

Let G be the set of all feasible solutions to the prob-
lem on graph GC . For instance, G contains all subgraphs
(V,E′) ⊆ GC that are Hamiltonian cycles. Given any
positive c ≥ 0, we define the bottleneck subgraph as
bottleneckG(c) = (V,E′), where E′ = {e ∈ EC : ce ≤
c}. Let G = (V,E′) be an arbitrary subgraph of GC , then
let max(G) = maxe∈E′ ce.

Algorithm 1 is a generic approximation algorithm for
solving bottleneck problems, with t > 0 a fixed, usually

Algorithm 1: The generic bottleneck algorithm.
1 procedure bottleneck(G, GC , t)
2 i := 0
3 repeat
4 i := i+ 1; Gi := bottleneckG(cei)
5 test′ := test(G, Gi, t)
6 until test′ is not a certificate of failure
7 return test′

Algorithm 2: The test procedure.
1 procedure test(G, G, 2)
2 if graph G is not biconnected then
3 return certificate of failure
4 else
5 return a Hamilton cycle in G2

small, integer. It either returns as test′ a certificate of fail-
ure or returns a feasible solution to the bottleneck prob-
lem in the t-th power (Gi)

t of the graph Gi = (V,E′),
where (Gi)

t = (V, (E′)t) and (E′)t = {(v0, v`) :
∃v1, v2, . . . , v`−1 s.t. (vs−1, vs) ∈ E′, s = 1, 2, . . . , `, ` ≤
t}. Note, for all the problems in (Hochbaum and Shmoys
1986), finding a feasible solution to the problem in mind in
Gi is NP-complete, e.g., finding a Hamiltonian cycle. That
is why they relax the problem and find a feasible solution in
the graph (Gi)

t with t ≥ 2 instead.
Hochbaum and Shmoys (1986) prove that if procedure

test is a poly-time algorithm outputting a certificate of fail-
ure if there is no feasible solution to the problem in Gi and
outputs a feasible solution in (Gi)

t otherwise, then Algo-
rithm 1 is a poly-time t-approximation to the given bottle-
neck problem. Given the output solution test′ of Algorithm
1, the cost of this solution is cei , where i is the last value of
the variable i. For BTSP problem there is a poly-time test
procedure for t = 2, Algorithm 2 (Hochbaum and Shmoys
1986).

A generic network bottleneck mechanism design prob-
lem has m single-dimensional agents, each owns an edge
e ∈ EC and has cost ce as private data. Let b, t ∈ R|EC |

≥0
be the vector of the declared costs and agents’ true costs, re-
spectively. We assume that the declared costs obey the trian-
gle inequality. Let (f, p) be the VCGmon

µ mechanism for the
bottleneck problem. For instance, for BTSP, f is Algorithm
1 with t = 2, and p is the VCGmon

µ payment with respect to
cost function µ defined as follows. We run Algorithm 1 with
the declared costs b and the cost of f(b) is the cost bei of
the returned solution test′, i.e., µ(f(b)) = bei . Algorithm 1
is 2-approximate for the BTSP. We can prove the following:
Theorem 3. Let the procedure test(G, G, t) run in de-
terministic polynomial time and correctly output a certifi-
cate of failure in Gi or a feasible solution in (Gi)

t for a
given bottleneck network optimization problem. Then, the
VCGmon

µ mechanism for the bottleneck problem is truthful for
single-dimensional agents, and provides the following ap-
proximations, given in {}, to these bottleneck problems: k-
clustering∗ {2}, k-switching network {3}, (k,G)-partition
with diameter d {2d}, k-center∗ {2}, weighted k-center {3},
weighted k-center with at most ` centers {3},m-weighted k-
center {9m − 6}, wandering salesperson and BTSP∗ {2},
repeated city TSP∗ {2}, k-supplier∗ {3}, k-path vehicle
routing∗ {2}, single depot k-vehicle routing∗ {2}.

Mechanism VCGmon
µ has best approximation guarantees

possible in polynomial time for many problems in Theo-
rem 3, indicated by “∗”, see (Hochbaum and Shmoys 1986).
We can also show that Algorithm 1 is not truthful for 2-

5428



dimensional agents, i.e., owning 2 edges.

Social Cost Optimization Problems
Let us define a binary covering minimization problem, see,
e.g., (Dughmi and Roughgarden 2014). Let U be a finite
set, universe, |U | = m, and b = (be)e∈U ∈ Rm≥0 be a
vector of costs. The agents e ∈ U here are again single-
dimensional. An instance I ∈ Π of a binary covering min-
imization problem Π is defined by a family of feasible so-
lutions F(I) ⊆ 2U , such that, if S ∈ F(I) is a feasible
solution then for any superset S′ ∈ U of S, S ⊆ S′, S′ is
also feasible, S′ ∈ F(I). That is, given any feasible solu-
tion to problem Π if we add any other element of U to this
solution, we again obtain a feasible solution. We usually as-
sume that vector b is part of the instance of Π, but formally,
the set F(I) contains only all combinatorial feasible solu-
tions on instance I ∈ Π. Thus, formally, the full instance of
problem Π is (I,b).

We define now an objective function of Π abstractly, as a
function µ : F(I) −→ R≥0 depending on the costs, i.e.,
given a feasible solution S ∈ F(I) and vector (be)e∈U ,
µ(S,b) = µ((be)e∈S) = µ(be1 , . . . , bel), where S =
{e1, . . . , el}. The value of µ depends only on the costs of el-
ements from set S, but sometimes we will write µ((be)e∈S)
as µ(b), i.e., specifying all elements of b.

In this section we will be interested in functions µ which
are strictly all-monotone, that is, for any vector b ∈ Rm≥0
and any single element e ∈ S with b′e > be, we have that
µ((be,b−e)) < µ((b′e,b−e)). In words, if we strictly in-
crease any of the arguments of function µ, its value increases
by a strictly positive amount, which might be tiny. Note, that
the social cost function µ((be)e∈S) =

∑
e∈S be is strictly

all-monotone. Also, the Lp norm with any fixed p ≥ 1 is
strictly all-monotone but not the Lp norm with p = +∞.
Impossibility Result. Let Π be an NP-hard binary cov-
ering minimization problem with a strictly all-monotone
objective µ. Let f be a deterministic polynomial time α-
approximation algorithm for Π. Our first goal in this sec-
tion is to prove that no such algorithm f can fulfill condition
(2) if α > 1 and F(I) is finite for any I ∈ Π, which is
obviously true for our class of problems. This result will im-
ply that none of these algorithms can be used by a truthful
VCGmon

µ mechanism.
To prove that f violates condition (2), we will show that it

is discontinuous, that is, there always exists an instance of Π,
vector b and value ti such that ti = ti(f(b)) < bi(f(b)) =
bi and µ(f(ti,b−i), (ti,b−i)) > µ(f(b),b).

Theorem 4. Let Π be a binary covering minimization prob-
lem with a strictly all-monotone objective µ, and f be a de-
terministic α-approximation algorithm for Π, with α > 1+ε
for some ε > 0. Then there exists an instance of Π on which
algorithm f is discontinuous, i.e., does not fulfill condition
(2). This means that no truthful VCGmon

µ mechanism for Π
can use f as algorithm, even for single-dimensional agents.

Proof. (Sketch) Let α > 1 be the worst-case approximation
ratio of f . Then there exists an instance I ∈ Π, vector b ∈
Rm≥0, and two feasible solutions S0, S1 ∈ F(I) s.t.

S0 = opt(I, b), S1 = f(I, b),

c0 = µ(S0, b) < µ(S1, b) = α · c0 = c1,

with µ(S, b) = µ((be)e∈S) for any S ∈ F(I). S0 is the
optimal solution on instance (I, b) minimizing µ with cost
vector b; S1 shows tightness of the approximation ratio α.

Given the solutions (S0, b), (S1, b), we will construct
a sequence of pairwise distinct feasible solutions S0, S1,
. . . , Sk ∈ F(I) output by f and corresponding cost vec-
tors b = b1, b2, . . . , bk, where bk is obtained from bk−1 by
increasing a single coordinate (the first vector b1 is the same
for S0 and S1), and α · c0 = µ(S1, b

1) = µ(S2, b
2) = · · · =

µ(Sk, b
k). We will prove that algorithm f is either discontin-

uous when “switching” from solution (Sk−1, b
k−1) to solu-

tion (Sk, b
k), or if f “switches” continuously between these

two solutions (i.e., (2) holds with equality, µ(Sk−1, b
k−1) =

µ(Sk, b
k)) then we will show how to extend this sequence

with a new solution (Sk+1, b
k+1), distinct from all previ-

ous S1, . . . , Sk. Because F(I) is finite, this process must
eventually end with S` = S0 for some `, showing that f is
discontinuous when “switching” from solution (S`−1, b

`−1)
to (S`, b

`), because α · c0 = µ(S`−1, b
`−1) > µ(S`, b

`) =
c0.

Corollary 1. Let Π be a binary covering minimization prob-
lem with a strictly all-monotone objective µ, and f be any
deterministic α-approximation algorithm for Π with α ≥ 1.
If f fulfils (2) on any instance of Π, then ∀ε > 0 : α ≤ 1+ε.
That is, if f is the algorithm used by a truthful VCGmon

µ
mechanism for Π then f must be optimal or have arbitrar-
ily good approximation ratio, even for single-dimensional
agents.

Remark 1. We believe that Theorem 4 and Corollary 1 can
be extended to certain classes of randomized approximation
algorithms. Moreover, we believe that the assumption of Π
being a binary covering problem can also be relaxed.

Approximate Truthfulness. Let A be any α-approximation
algorithm for a binary covering minimization problem with a
social cost objective function. We will show that any such al-
gorithm A fulfills (2) and (3) up to a multiplicative factor of
α. This will imply an α-approximate truthfulness with mon-
itoring. These results together with the above impossibil-
ity results provide a characterization of approximate mech-
anisms which are truthful with monitoring for the class of
binary covering minimization problems with social cost ob-
jectives.

Definition 3 (α-truthful mechanisms). A mechanismM is
α-truthful, for some α > 1, if for any i, any bids b−i, and
any bi ∈ Di: ui(ti,b−i) ≥ α · ui(bi,b−i).

Thus to prove that VCGmon
µ is α-truthful it suffices to

prove the relaxed variants of conditions (2) and (3).

Theorem 5. Let Π be a binary covering minimization prob-
lem with the social cost objective function µ, and f be any
deterministic α-approximation algorithm for Π. Then f ful-
fils the relaxed conditions (2) and (3), implying an α-truthful
VCGmon

µ mechanism for Π with single-dimensional agents.
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