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Abstract

Envy-freeness up to any good (EFX) provides a strong and
intuitive guarantee of fairness in the allocation of indivisible
goods. But whether such allocations always exist or whether
they can be efficiently computed remains an important open
question. We study the existence and computation of EFX
in conjunction with various other economic properties under
lexicographic preferences–a well-studied preference model
in artificial intelligence and economics. In sharp contrast to
the known results for additive valuations, we not only prove
the existence of EFX and Pareto optimal allocations, but
in fact provide an algorithmic characterization of these two
properties. We also characterize the mechanisms that are, in
addition, strategyproof, non-bossy, and neutral. When the ef-
ficiency notion is strengthened to rank-maximality, we obtain
non-existence and computational hardness results, and show
that tractability can be restored when EFX is relaxed to an-
other well-studied fairness notion called maximin share guar-
antee (MMS).

Introduction
Fair and efficient allocation of scarce resources is a fun-
damental problem in economics and computer science.
The quintessential fairness notion—envy-freeness—enjoys
strong existential and computational guarantees for divisi-
ble resources (Varian 1974). However, in notable applica-
tions such as course allocation (Budish 2011) and property
division (Pruhs and Woeginger 2012) that involve indivisi-
ble resources, (exact) envy-freeness could be too restrictive.
In these settings, it is natural to consider notions of approx-
imate fairness such as envy-freeness up to any good (EFX)
wherein pairwise envy can be eliminated by the removal of
any good in the envied bundle (Caragiannis et al. 2019).

EFX is arguably the closest analog of envy-freeness in the
indivisible setting, and, as a result, has been actively studied
especially for the domain of additive valuations. However,
it also suffers from a number of limitations: First, barring
a few special cases, the existence and computation of EFX
allocations remains an open problem. Second, for additive
valuations, EFX can be incompatible with Pareto optimality
(PO)—a fundamental notion of economic efficiency (Plaut
and Roughgarden 2020). Finally, EFX could also be at odds
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with strategyproofness (Amanatidis et al. 2017), which is an-
other desirable property in the economic analysis of alloca-
tion problems.

The aforementioned limitations of EFX prompt us to ex-
plore the domain restriction approach in search of posi-
tive results (Elkind, Lackner, and Peters 2016). Specifically,
we deviate from the framework of cardinal preferences for
which EFX allocations have been most extensively studied,
and instead focus on the purely ordinal domain of lexico-
graphic preferences.

Lexicographic preferences have been widely studied
in psychology (Gigerenzer and Goldstein 1996), ma-
chine learning (Schmitt and Martignon 2006), and social
choice (Taylor 1970) as a model of human decision-making.
Several real-world settings such as evaluating job candidates
and the desirability of a product involve lexicographic pref-
erences over the set of features. In the context of fair divi-
sion, too, lexicographic preferences can arise naturally. For
example, when dividing an inheritance consisting of a house,
a car, and some home appliances, a stakeholder might prefer
any division in which she gets the house over one where she
doesn’t (possibly because of its sentimental value), subject
to which she might prefer any outcome that includes the car
over one that doesn’t, and so on.

On the computational side, lexicographic preferences pro-
vide a succinct language for representing preferences over
combinatorial domains (Saban and Sethuraman 2014; Lang,
Mengin, and Xia 2018), and have led to numerous positive
results at the intersection of artificial intelligence and eco-
nomics (Fujita et al. 2018; Hosseini and Larson 2019). Mo-
tivated by these considerations, our work examines the exis-
tence and computation of fair (i.e., EFX) and efficient allo-
cations from the lens of lexicographic preferences.

Our Contributions. Figure 1 summarizes our theoretical
contributions.
• EFX+PO: Our first result provides a family of
polynomial-time algorithms for computing EFX+PO allo-
cations under lexicographic preferences. Furthermore, we
show that any EFX+PO allocation can be computed by some
algorithm in this family, thus providing an algorithmic char-
acterization of such allocations (Theorem 1). This result es-
tablishes a sharp contrast with the additive valuations do-
main where the two properties are incompatible in general.
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Figure 1: Summary of our theoretical results.

• EFX+PO+strategyproofness: The positive result for
EFX+PO motivates us to investigate a more demanding
property combination of EFX, PO, and strategyproofness.
Once again, we obtain an algorithmic characterization (The-
orem 2): Subject to some common axioms (non-bossiness
and neutrality), any mechanism satisfying EFX, PO, and
strategyproofness is characterized by a special class of
quota-based serial dictatorship mechanisms (Pápai 2000b;
Hosseini and Larson 2019).
• EFX+rank-maximality: When the efficiency notion is
strengthened to rank-maximality, we encounter incompati-
bility with strategyproofness (Example 1) as well as with
EFX (Example 2). Furthermore, checking the existence of
EFX and rank-maximal allocations turns out to be NP-
complete (Theorem 3), suggesting that our algorithmic re-
sults are, in a certain sense, ‘maximal’. The intractability
persists even when EFX is relaxed to envy-freeness up to k
goods (EFk) (Theorem 4), but efficient computation is possi-
ble if EFX is relaxed to another well-studied fairness notion
called maximin share guarantee or MMS (Theorem 5).

Related Work. Envy-free solutions may not always ex-
ist for indivisible goods. As a result, the literature has fo-
cused on notions of approximate fairness, most notably
envy-freeness up to one good (EF1) and its strengthening
called envy-freeness up to any good (EFX). The former en-
joys strong existential and algorithmic support, as an EF1 al-
location always exists for general monotone valuations and
can be efficiently computed. However, achieving EF1 to-
gether with economic efficiency seems non-trivial: For addi-
tive valuations, EF1+PO allocations always exist (Caragian-
nis et al. 2019; Barman, Krishnamurthy, and Vaish 2018) but
no polynomial-time algorithm is known for computing such
allocations.

The stronger notion of EFX has proven to be more chal-
lenging. As mentioned previously, the existence of EFX for
additive valuations remains an open problem. Additionally,
EFX and Pareto optimality are known to be incompatible
for non-negative additive valuations (Plaut and Roughgar-
den 2020).

The aforementioned limitations of EFX have motivated
the study of further relaxations or special cases in search
of positive results. Some recent results establish the exis-
tence of partial allocations that satisfy EFX after discard-
ing a small number of goods while also fulfilling certain
efficiency criteria (Caragiannis, Gravin, and Huang 2019;
Chaudhury et al. 2020). Similarly, EFX allocations have
been shown to exist for the special case of three agents with

additive valuations (Chaudhury, Garg, and Mehlhorn 2020),
or when the agents can be partitioned into two types (Mahara
2020), or when agents have dichotomous preferences (Ama-
natidis et al. 2020). For cardinal utilities, various multiplica-
tive approximations of EFX (and its variant that involves
removing an average good) have been considered (Plaut
and Roughgarden 2020; Amanatidis, Markakis, and Ntokos
2020; Chaudhury, Garg, and Mehta 2020; Farhadi et al.
2020). Another emerging line of work studies EFX for non-
monotone valuations, i.e., when the resources consist of both
goods and chores (Chen and Liu 2020; Bérczi et al. 2020).

The interaction between fairness and efficiency is further
complicated with the addition of strategyproofness due to
several fundamental impossibility results both in determin-
istic (Zhou 1990) as well as randomized settings (Bogomol-
naia and Moulin 2001; Kojima 2009). Indeed, while ordinal
efficiency is compatible with envy-freeness, such outcomes
cannot, in general, be achieved via (weakly) strategyproof
mechanisms even under strict preferences (Kojima 2009).
Moreover, sd-efficiency and sd-strategyproofness (here, sd
stands for stochastic dominance) are incompatible even with
a weak notion of stochastic fairness called equal treatment
of equals (Aziz and Kasajima 2017). In a similar vein,
for deterministic mechanisms, any strategyproof mechanism
could fail to satisfy EF1 even for two agents under additive
valuations (Amanatidis et al. 2017).

Lexicographic preferences have also been successfully
used as a domain restriction to circumvent impossibility re-
sults in mechanism design (Sikdar, Adali, and Xia 2017; Fu-
jita et al. 2018). In fair division of indivisible goods, lex-
icographic (sub)additive utilities have facilitated constant-
factor approximation algorithms for egalitarian and Nash
social welfare objectives (Baumeister et al. 2017; Nguyen
2020). Hosseini and Larson (2019) showed that under lex-
icographic preferences, a mechanism is Pareto optimal,
strategyproof, non-bossy, and neutral if and only if it is
a serial dictatorship quota mechanism. In randomized set-
tings, too, lexicographic preferences have led to the design
of mechanisms that simultaneously satisfy stochastic effi-
ciency, envy-freeness, and strategyproofness (Schulman and
Vazirani 2015; Hosseini and Larson 2019).

Preliminaries
Model For any k ∈ N, define [k] := {1, . . . , k}. An instance
of the allocation problem is a tuple 〈N,M,�〉, where N :=
[n] is a set of n agents,M is a set ofm goods, and� := (�1

, . . . ,�n) is a preference profile that specifies the ordinal
preference of each agent i ∈ N as a linear order �i ∈ L
over the set of goods; here, L denotes the set of all (strict
and complete) linear orders over M .
Allocation and bundles A bundle is any subset X ⊆ M
of the set of goods. An allocation A = (A1, . . . , An) is an
n-partition of M , where Ai ⊆ M is the bundle assigned to
agent i. We will write Π to denote the set of all n-partitions
of M . We say that allocation A is partial if

⋃
i∈N Ai ⊂ M ,

and complete if
⋃

i∈N Ai = M .
Lexicographic preferences We will assume that agents’
preferences over the bundles are given by the lexicographic
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extension of their preferences over individual goods. Infor-
mally, this means that if an agent ranks the goods in the order
a � b � c � . . . , then it prefers a bundle containing a over
any other bundle that doesn’t, subject to that, it prefers a bun-
dle containing b over any other bundle that doesn’t, and so
on. Formally, given any pair of bundles X,Y ⊆ M and any
linear order �i ∈ L, we have X �i Y if and only if there
exists a good g ∈ X \ Y such that {g′ ∈ Y : g′ �i g} ⊆ X .
Notice that since �i is a linear order over M , the corre-
sponding lexicographic extension is a linear order over 2M .

For any agent i ∈ N and any pair of bundles X,Y ∈ M ,
we will write X �i Y if either X �i Y or X = Y .
Envy-freeness Given a preference profile �, an allocation
A is said to be (a) envy-free (EF) if for every pair of agents
i, h ∈ N , we have Ai �i Ah; (b) envy-free up to any good
(EFX) if for every pair of agents i, h ∈ N such that Ah 6= ∅
and every good j ∈ Ah, we have Ai �i Ah \ {j}, and
(c) envy-free up to k goods (EFk) if for every pair of agents
i, h ∈ N such that Ah 6= ∅, there exists a set S ⊆ Ah such
that |S| ≤ k and Ai �i Ah \ S. Clearly, EFX ⇒ EF1 ⇒
EF2⇒ . . . .
Maximin Share An agent’s maximin share is its most pre-
ferred bundle that it can guarantee itself as a divider in an n-
person cut-and-choose procedure against adversarial oppo-
nents (Budish 2011). Formally, the maximin share of agent i
is given by MMSi := maxA∈Π mini{A1, . . . , An}, where
min{·} and max{·} denote the least-preferred and most-
preferred bundles with respect to �i. An allocation A satis-
fies maximin share guarantee (MMS) if each agent receives
a bundle that it weakly prefers to its maximin share. That is,
the allocation A is MMS if for every i ∈ N , Ai �i MMSi.
It is easy to see that EF ⇒ MMS. Additionally, for lexico-
graphic preferences, we have that EFX ⇒ MMS (the con-
verse is not true) while EF1 and MMS can be incomparable
(see the full version (Hosseini et al. 2020) for details).
Pareto optimality Given a preference profile �, an alloca-
tion A is said to be Pareto optimal (PO) if there is no other
allocation B such that Bi �i Ai for every agent i ∈ N and
Bk �k Ak for some agent k ∈ N .
Rank-maximality A rank-maximal (RM) allocation is one
that maximizes the number of agents who receive their
favorite good, subject to which it maximizes the number
of agents who receive their second favorite good, and so
on (Irving et al. 2006; Paluch 2013). Given an allocation
A, its signature refers to a tuple (n1, n2, . . . , nm) where
ni is the number of agents who receive their ith favorite
good (note that an agent can contribute to multiple ni’s).
All rank-maximal allocations for a given instance have the
same signature. Computing some rank-maximal allocation
for a given instance is easy: Assign each good to an agent
that ranks it the highest among all agents (tiebreak arbi-
trarily). This procedure provides a computationally efficient
way of computing the signature of a rank-maximal alloca-
tion as well as verifying whether a given allocation is rank-
maximal. Notice that rank-maximality is a strictly stronger
requirement than Pareto optimality.
Mechanism A mechanism f : Ln → Π is a mapping from
preference profiles to allocations. For any preference profile
�∈ Ln, we use f(�) to denote the allocation returned by

f , and fi(�) to denote the bundle assigned to agent i.
Properties of mechanisms A mechanism f : Ln → Π is
said to satisfy EF / EFX / EFk / PO / RM if for every prefer-
ence profile �∈ Ln, the allocation f(�) has that property.
In addition, a mechanism f satisfies
• strategyproofness (SP) if no agent can improve by mis-
reporting its preferences. That is, for every preference pro-
file �∈ Ln, every agent i ∈ N , and every (misreported)
linear order �′i ∈ L, we have fi(�) �i fi(�′), where
�′ := (�1, . . . ,�i−1,�′i,�i+1, . . . ,�n).
• non-bossiness if no agent can modify the allocation of an-
other agent by misreporting its preferences without chang-
ing its own allocation. That is, for every profile �∈ Ln,
every agent i ∈ N , and every (misreported) linear order
�′i ∈ L, we have fi(�′) = fi(�)⇒ f(�′) = f(�), where
�′ := (�1, . . . ,�i−1,�′i,�i+1, . . . ,�n).
• neutrality if relabeling the goods results in a consistent
change in the allocation. That is, for every preference pro-
file �∈ Ln and every relabeling of the goods π : M →
M , it holds that f(π(�)) = π(f(�)), where π(�) :=
(π(�1), . . . , π(�n)) and π(A) := (π(A1), . . . , π(An)) for
any allocation A = (A1, . . . , An).

EFX and Pareto Optimality
Recall that for additive valuations, establishing the existence
of EFX allocations remains an open problem, and there ex-
ist instances where no allocation is simultaneously EFX and
PO (Plaut and Roughgarden 2020). Our first result (Theo-
rem 1) shows that there is no conflict between fairness and
efficiency for lexicographic preferences: Not only does there
exist a family of polynomial-time algorithms that always re-
turn EFX+PO allocations, but every EFX+PO allocation can
be computed by some algorithm in this family. We will start
with an easy observation concerning EFX allocations.

Proposition 1. An allocation A is EFX if and only if each
envied agent in A gets exactly one good.

Description of algorithm Each algorithm in this family
(Algorithm 1) is specified by an ordering σ over the agents,
and consists of two phases. Phase 1 involves a single round
of serial dictatorship according to σ. Phase 2 assigns the re-
maining goods among the unenvied agents according to a
picking sequence τ . Note that the set of unenvied agents af-
ter Phase 1 must be nonempty; in particular, the last agent in
σ belongs to this set since every other agent prefers its good
picked in Phase 1 to any good in the last agent’s bundle.

Theorem 1. For any ordering σ of the agents, the allocation
computed by Algorithm 1 satisfies EFX and PO. Conversely,
any EFX+PO allocation can be computed by Algorithm 1
for some choice of σ.

Proof. We will start by showing that the allocation A re-
turned by Algorithm 1 satisfies EFX. From Proposition 1,
it suffices to show that any envied agent gets exactly one
good in A. Notice that any agent that is envied at the end of
Phase 1 does not receive any good in Phase 2. Furthermore,
the pairwise envy relations remain unchanged during Phase
2 since each agent has already picked its favorite available
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ALGORITHM 1: EFX+PO
Input: An instance 〈N,M,�〉 with lexicographic preferences
Parameters: A permutation σ : N → N of the agents
Output: An allocation A
A← (∅, . . . , ∅)
. Phase 1: Serial dictatorship for assigning n goods

Agents arrive according to σ, and each picks a favorite good
from the set of remaining goods. Update partial allocation A.
. Phase 2: Allocate leftover goods via picking sequence

if the set of remaining goods is nonempty then
U ← {i ∈ N : i is not envied by any agent under A}.
Fix any picking sequence τ of length m− n consisting

only of the agents in U (i.e., the unenvied agents).
Assign remaining goods according to τ and update A.

return A

good in Phase 1, and because of lexicographic preferences,
any goods assigned in Phase 2 are strictly less preferred.
Thus, A is EFX.

To prove Pareto optimality (PO), suppose, for contradic-
tion, that A is Pareto dominated by an allocation B. Then,
there must exist some agent, say i, who receives a good un-
der A that it does not receive under B (i.e., Ai \ Bi 6= ∅);
we will call any such item a difference good. Observe that
the execution of Algorithm 1 can be described in terms
of a combined picking sequence 〈σ, τ〉. Thus, without loss
of generality, we can define i to be the first agent accord-
ing to 〈σ, τ〉 to receive a difference good. Let g denote the
corresponding difference good picked by i, and note that
g ∈ Ai \Bi by assumption.

Since B Pareto dominates A and Ai 6= Bi, we must
have Bi�iAi. For lexicographic preferences, this means
that there exists a good g′ ∈ Bi \Ai such that g′�i g. Since
all agents preceding i in 〈σ, τ〉 pick the goods that they also
own under B, the good g′ must be available (along with g)
when it is i’s turn to pick. Thus, i would not pick g, which
is a contradiction. Hence, A satisfies PO.

To prove the converse, note that any PO allocation can be
induced by a picking sequence.1 Given any EFX+PO allo-
cation A, let S denote the corresponding picking sequence.
We claim that without loss of generality, the first n positions
in S belong to n different agents. Indeed, if some agent i ap-
pears more than once in the n-prefix of S, then |Ai| > 1. By
Proposition 1, i must not be envied by any other agent. Be-
cause of the no-envy condition, a modified sequence where
the repeated appearances of unenvied agents are “pushed be-
hind”’ the first appearance of any other agent will also result
in allocation A. We can now instantiate Algorithm 1 with σ
as the n-prefix of S and τ as S \ σ to compute A.

Characterizing Strategyproof Mechanisms
In addition to fairness and efficiency, an important desidera-
tum for allocation mechanisms is strategyproofness. For ad-

1Indeed, in any PO allocation, some agent must receive its fa-
vorite good (otherwise a cyclic exchange of the top-ranked goods
gives a Pareto improvement). Add this agent to the picking se-
quence, and repeat the procedure for the remaining goods.

ALGORITHM 2:
Input: An instance 〈N,M,�〉 with lexicographic preferences
Parameters: A permutation σ : N → N of the agents
Output: An allocation A
A← (∅, . . . , ∅)
Execute one round of serial dictatorship according to σ.
Assign all remaining goods to the last agent in σ.
return A

ditive valuations, strategyproofness is known to be incom-
patible even with EF1 (Amanatidis et al. 2017). By con-
trast, for lexicographic preferences, we will show that strat-
egyproofness can be achieved in conjunction with a stronger
fairness guarantee (EFX) as well as Pareto optimality, non-
bossiness, and neutrality (Theorem 2). Indeed, Algorithm 2,
a special case of Algorithm 1 where the last agent gets all
the remaining goods characterizes these properties.

Our characterization result builds upon an existing result
of Hosseini and Larson (2019, Theorem 5.6) (see Proposi-
tion 2) that characterizes four out of the five properties men-
tioned above (excluding EFX) in terms of Serial Dictator-
ship Quota Mechanisms (SDQ), as defined below.
Definition 1. The Serial Dictatorship Quota (SDQ) mecha-
nism is specified by a permutation σ : N → N of the agents
and a set of quotas (q1, . . . , qn) such that

∑n
i=1 qi = m.

Given a lexicographic instance 〈N,M,�〉 as input, the SDQ
mechanism considers agents in the order σ, and assigns the
ith agent its most preferred bundle of size qi from the remain-
ing goods. The resulting allocation is returned as output.

Proposition 2 (Hosseini and Larson 2019). For lexico-
graphic preferences, a mechanism is Pareto optimal, strat-
egyproof, non-bossy, and neutral if and only if it is SDQ.

The next result (Theorem 2) provides an algorithmic char-
acterization of EFX, PO, strategyproofness, non-bossiness,
and neutrality for lexicographic preferences.
Theorem 2. For any ordering σ of the agents, Algorithm 2 is
EFX, PO, strategyproof, non-bossy, and neutral. Conversely,
any mechanism satisfying these properties can be imple-
mented by Algorithm 2 for some σ.

Proof. Note that Algorithm 2 is a special case of SDQ for
the quotas qi = 1 for all i ∈ [n− 1] and qn = m− (n− 1).
Therefore, from Proposition 2, it is PO, strategyproof, non-
bossy, and neutral. Furthermore, Algorithm 2 is also a spe-
cial case of Algorithm 1 and is therefore EFX (Theorem 1).

To prove the converse, let f be an arbitrary mechanism
satisfying the desired properties. From Proposition 2, f must
be an SDQ mechanism for some ordering σ and some set of
quotas (q1, . . . , qn) such that

∑n
i=1 qi = m. If m < n, the

claim follows easily from Theorem 1, so we can assume,
without loss of generality, that m ≥ n. Then, by Proposi-
tion 1, we must have that qi ≥ 1 for all i ∈ [n]. Therefore, it
suffices to show that qi = 1 for all i ∈ [n− 1].

Assume, without loss of generality, that σ =
(1, 2, . . . , n). Consider a preference profile � with
identical preferences, i.e., �i = �k for all i, k ∈ [n]. Let
g1 �i g2 �i · · · �i gm for any i ∈ [n]. Suppose, for
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contradiction, that qi > 1 for some i ∈ [n − 1], and let
k ∈ [n − 1] be the smallest index for which this happens.
Since f is an SDQ mechanism, we have that gk ∈ fk(�)
and |fk(�)| = qk > 1. Then, for every ` > k, agent `
envies agent k. By Proposition 1, f violates EFX, which is a
contradiction. Therefore, f must be identical to Algorithm 2
for the ordering σ, as desired.

We note that in this context any deterministic strat-
egyproof and non-bossy mechanism is also group-
strategyproof (Pápai 2000a). Therefore, Algorithm 2 also
characterizes the set of EFX, PO, group-strategyproof, non-
bossy, and neutral mechanisms under lexicographic prefer-
ences. In addition, we show that the set of properties consid-
ered in Theorem 2 is minimal. That is, dropping any prop-
erty from the characterization necessarily allows for feasible
mechanisms beyond those in Algorithm 2. Details and the
proof are relegated to the full version (Hosseini et al. 2020).
Proposition 3. The set {EFX, PO, strategyproofness, non-
bossiness, neutrality} is a minimal set of properties for char-
acterizing the family of mechanisms in Algorithm 2.

The efficiency guarantee in Theorem 2 cannot be strength-
ened much further, as there exists an instance where
any rank-maximal (RM) mechanism violates strategyproof-
ness (Example 1).
Example 1 (Strategyproofness and RM). Consider the in-
stance with k + 2 goods g1, . . . , gk+2 and three agents:

a1 : g1� g2� g3� . . .� gk+1� gk+2

a2 : g1� g2� g3� . . .� gk+1� gk+2

a3 : g2� g3� g4� . . .� gk+2� g1.

Each of the goods g2, . . . , gk+2 is ranked higher by a3 than
by a1 or a2, and therefore must be assigned to a3 in any
rank-maximal allocation. Suppose, under truthful reporting,
g1 is assigned to a1, and a2 gets an empty bundle. Then,
a2 could falsely report g3 as its favorite good. By rank-
maximality, g3 is now assigned to a2, resulting in a strict
improvement.

The non-existence result in Example 1 prompts us to
forego strategyproofness (as well as non-bossiness and neu-
trality) and focus only on (approximate) envy-freeness and
rank-maximality.

Envy-Freeness and Rank-Maximality
For lexicographic preferences, it is easy to see that a com-
plete allocation is envy-free if and only if each agent receives
its favorite good. Checking the existence of an envy-free al-
location therefore boils down to computing a (left-)perfect
matching in a bipartite graph where the left and the right ver-
tex sets correspond to the agents and the goods, respectively,
and the edges denote the top-ranked good of each agent. If
an envy-free partial allocation of the top-ranked goods ex-
ists, then it can be extended to a complete rank-maximal al-
location by assigning each remaining good to an agent that
has the highest rank for it (note that the assignment of the
remaining goods does not introduce any envy). Thus, the
existence of an envy-free and rank-maximal allocation can

be checked efficiently for lexicographic preferences (Propo-
sition 4).

Proposition 4. There is a polynomial-time algorithm that,
given a lexicographic instance as input, computes an envy-
free and rank-maximal allocation, whenever one exists.

Since an envy-free allocation is not guaranteed to ex-
ist, one could ask whether rank-maximality can always be
achieved alongside approximate envy-freeness; in particu-
lar, EFk and EFX. Example 2 shows that both of these no-
tions could conflict with rank-maximality. Specifically, for
any fixed k ∈ N, an EFk+RM allocation could fail to exist.
Since EFX implies EF1, a similar incompatibility holds for
EFX+RM as well.

Example 2 (EFk and RM). Consider again the instance in
Example 1. Any rank-maximal allocation assigns the goods
g2, . . . , gk+2 to a3. If g1 is assigned to a1, then a2 gets an
empty bundle and the pair {a2, a3} violates EFk.

Given the non-existence result in Example 2, a natural
question is whether there exists an efficient algorithm for
checking the existence of an approximately envy-free and
rank-maximal allocation. Unfortunately, the news here is
also negative, as the problem turns out to be NP-complete
(Theorem 3). Thus, while EFX can always be achieved in
conjunction with Pareto optimality (Theorems 1 and 2),
strengthening the efficiency notion to rank-maximality re-
sults in non-existence and computational hardness.

Theorem 3. Determining whether a given instance admits
an EFX and rank-maximal allocation is NP-complete.

Proof. Membership in NP follows from the fact that both
EFX and rank-maximality can be checked in polynomial
time. To prove NP-hardness, we will show a reduction from
a restricted version of 3-SAT called (2/2/3)-SAT, which
is known to be NP-complete (Ahadi and Dehghan 2019).
An instance of (2/2/3)-SAT consists of a collection of r
variables X1, . . . , Xr and s clauses C1, . . . , Cs, where each
clause is specified as a disjunction of three literals, and each
variable occurs in exactly four clauses, twice negated and
twice non-negated. The goal is to determine if there is a truth
assignment that satisfies all clauses.

Construction of the reduced instance: We will construct
a fair division instance with n = 4r agents and m =
4r + s goods. The set of agents consists of 2r literal agents
{xi, xi}i∈[r], and 2r dummy agents {di, di}i∈[r]. The set of
goods consists of 2r signature goods {Si, Si}i∈[r], s clause
goods {Cj}j∈[s], and 2r dummy goods {Ti, Bi}i∈[r]; here
Ti and Bi denote the top and the bottom dummy goods as-
sociated with the variable Xi, respectively.

Preferences: Table 1 shows the preferences of the agents.
Let B define a reference ordering on the set of goods. For
every i ∈ [r], ifCj andCk denote the two clauses containing
the positive literal xi, then the literal agent xi ranks Si at the
top, and the clause goods Cj and Ck at ranks j + 1 and k +
1, respectively. The missing positions consist of remaining
goods ranked according to B (we write B` to denote the top
` goods in B that have not been ranked so far). The symbol
∗ indicates rest of the goods ordered according to B. The
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B: S1 � S1 � · · · � Sr � Sr � T1 � · · · � Tr

� C1 � · · · � Cs � B1 � · · · � Br

xi: Si �B(j−1)� Cj �B(k−j−1)� Ck � ∗
xi: Si �B(p−1)� Cp �B(q−p−1)� Cq � ∗
di: Ti � Si � Bi � ∗ and di : Ti � Si � Bi � ∗.

Table 1: Preferences of agents in the proof of Theorem 3.

preferences of the (negative) literal agent xi and the dummy
agents di, di are defined similarly as shown in Table 1. This
completes the construction of the reduced instance.

Note that for any fixed i ∈ [r], the signature good Si (or
Si) is ranked at the top position by the literal agent xi (or xi),
and at a lower position by all other agents. Therefore, any
rank-maximal allocation must assign Si to xi and Si to xi.
For a similar reason, a rank-maximal allocation must assign
the clause good Cj to a literal agent corresponding to a lit-
eral contained in the clauseCj , and the dummy goods Ti, Bi

to the dummy agents di, di. The aforementioned necessary
conditions for rank-maximality are also sufficient since each
clause good Cj is ranked at the same position by all literal
agents corresponding to the literals contained in clause Cj ,
and the goods Ti and Bi are ranked identically by di and di.

We will now argue the equivalence of solutions.
(⇒) Given a satisfying truth assignment, the desired al-

location, say A, can be constructed as follows: For every
i ∈ [r], assign the signature goods Si and Si to the literal
agents xi and xi, respectively. If xi = 1, then assign Ti to di
and Bi to di, otherwise, if xi = 0, then assign Ti to di and
Bi to di. For every j ∈ [s], the clause good Cj is assigned to
a literal agent xi (or xi) if the literal xi (or xi) is contained
in the clause Cj and the clause is satisfied by the literal, i.e.,
xi = 1 (or xi = 1). Note that under a satisfying assignment,
each clause must have at least one such literal.

Observe that allocation A satisfies the aforementioned
sufficient condition for rank-maximality. Furthermore, any
envied agent in A receives exactly one good; in particular, if
di receives a bottom dummy good Bi, then we have xi = 0
in which case the literal agent xi, who is envied by di, does
not receive any clause goods. By Proposition 1, A is EFX.

(⇐) Now suppose there exists an EFX and rank-maximal
allocation A. Then, A must satisfy the aforementioned nec-
essary condition for rank-maximality. That is, for every i ∈
[r], the signature goods Si and Si are assigned to the literal
agents xi and xi, respectively (i.e., Si ∈ Axi and Si ∈ Axi ),
and the dummy goods Ti and Bi are allocated between the
dummy agents di and di (i.e., {Ti, Bi} ⊆ Adi ∪ Adi

). In
addition, for every j ∈ [s], the clause good Cj is assigned
to a literal agent xi (or xi) such that the literal xi (or xi)
is contained in the clause Cj . Also, by Proposition 1, each
dummy agent must get exactly one dummy good.

We will construct a truth assignment for the (2/2/3)-SAT
instance as follows: For every i ∈ [r], if Ti ∈ Adi

, then set
xi = 1, otherwise set xi = 0. Note that the assignment is
feasible as no literal is assigned conflicting values. To see
why this is a satisfying assignment, consider any clause Cj .

Suppose the clause good Cj is assigned to a literal agent
xi (an analogous argument works when xi gets Cj). Then,
due to rank-maximality, we know that the literal xi must
be contained in the clause Cj . Furthermore, since agent xi
gets more than one good (Si, Cj ∈ Axi

), it cannot be envied
underA (Proposition 1). Thus, the dummy agent di must get
the top good Ti. Recall that in this case we set xi = 1. Since
clause Cj contains xi, it must be satisfied, as desired.

The intractability in Theorem 3 persists even when we re-
lax the fairness requirement from EFX to EFk.
Theorem 4. For any fixed k ∈ N, determining the existence
of an EFk and rank-maximal allocation is NP-complete.

We note that the proof of Theorem 4 (see the full ver-
sion (Hosseini et al. 2020) for details) differs considerably
from that of Theorem 3 as neither result is an immediate con-
sequence of the other. Indeed, a YES instance of EFX+RM
is also a YES instance of EFk+RM, but the same is not true
for a NO instance.

A corollary of Theorem 4 is that checking the existence
of EF1+RM allocations for additive valuations is also NP-
complete.2 For this setting, Aziz et al. (2019) have shown
NP-completeness even for three agents. By contrast, we will
show that for lexicographic preferences, the problem is effi-
ciently solvable when n = 3 (Proposition 5). The proof of
this result is deferred to the full version of the paper (Hos-
seini et al. 2020).
Proposition 5. There is a polynomial-time algorithm that,
given as input a lexicographic instance with three agents,
computes an EF1 and rank-maximal allocation, whenever
one exists.

Another avenue for circumventing the intractability in
Theorem 3 is provided by maximin share guarantee (MMS).
For additive valuations, EFX and MMS are incomparable
notions (Amanatidis, Birmpas, and Markakis 2018). How-
ever, for lexicographic preferences, MMS is strictly weaker
than EFX (see the full version (Hosseini et al. 2020) for de-
tails). This relaxation of EFX turns out to be computation-
ally useful, as the existence of an MMS and RM allocations
can be checked in polynomial time.
Theorem 5. There is a polynomial-time algorithm that,
given as input a lexicographic instance, computes an MMS
and rank-maximal allocation, whenever one exists.

We defer the proof of Theorem 5 to the full version (Hos-
seini et al. 2020), and briefly outline the algorithm below.

Fix any agent i ∈ N , and suppose its preference is given
by �i := g1� g2� . . .� gm. Under lexicographic prefer-
ences, the MMS partition of agent i ∈ N is uniquely defined
as {{g1}, {g2}, . . . , {gn−1}, {gn, gn+1, . . . , gm}}. This ob-
servation gives a characterization of MMS allocations: An
allocation is MMS if and only if each agent either receives
one or more of its top-(n− 1) goods, or it receives all of its
bottom-(m− n+ 1) goods.

Construct a bipartite graph G = (N ∪ M,E) between
agents and goods where an edge (i, j) ∈ E exists if agent i

2An additive valuations instance in which agent i values its j th

favorite good at 2m−j+1 is equivalent to the lexicographic instance.
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Figure 2: The plots show how the fraction of instances that admit {EF,EFX,EF1,MMS} + RM allocations varies with the
number of goods. The number of agents is fixed (n = 5). Preferences follow the Mallows model with dispersion parameter φ.

ranks good j within its top-(n−1) goods, and good j can be
‘rank-maximally assigned’ to agent i. In other words, agent
i ranks good j at least as high as any other agent.

If G admits a perfect matching (this can be checked in
polynomial time), then, by the above characterization, we
have a partial allocation that is MMS and rank-maximal. By
assigning the unmatched goods in a rank-maximal manner
(which can be done in polynomial time), we obtain a desired
complete allocation.

Experiments
We now revisit the non-existence result in Example 2 by ex-
amining how frequently {EF,EFX,EF1,MMS}+ RM allo-
cations exist in synthetically generated data. To that end, we
consider a fixed number of agents (n = 5) whose prefer-
ences over a set of m goods (where m ∈ {5, . . . , 15}) are
generated using the Mallows model (Mallows 1957). Given
a reference ranking �∗ ∈ L and a dispersion parameter
φ ∈ [0, 1], the probability of generating a ranking �i ∈ L
under the Mallows model is given by 1

Zφ
d(�∗,�i), where Z

is a normalization constant and d(·) is the Kendall’s Tau
distance. Thus, φ = 0 induces identical preferences (i.e.,
�i = �∗) while φ = 1 is the uniform distribution. For each
combination of m, n, and φ ∈ {0, 0.25, 0.5, 0.75, 1}, we
sample 1000 preference profiles, and use an integer linear
program to check the existence of {EF,EFX,EF1,MMS}+
RM allocations. Code and data for all our experiments is
available at https://github.com/sujoyksikdar/Envy-Freeness-
With-Lexicographic-Preferences.

Figure 2 presents our experimental results. For identical
preferences (φ = 0), every complete allocation is Pareto
optimal as well as rank-maximal. Therefore, an EFX+RM
(and hence {EF1, MMS}+RM) allocation always exists in
this case, validating our theoretical result in Theorem 1. On
the other hand, an EF+RM allocation fails to exist because
of the conflict in top-ranked goods. At the other extreme for
φ = 1 (i.e., the uniform distribution), we note that the proba-
bility of existence of EF+RM outcomes grows steadily with
m. This is because for (exact) envy-freeness, all five rank-
ings should have distinct top goods, the probability of which
is (1 − 1

m ) · (1 − 2
m ) · (1 − 3

m ) · (1 − 4
m ). For m = 100,

this value is roughly 0.9, suggesting that in the asymptotic
regime, envy-free (and, by extension, EF+RM) allocations
are increasingly likely to exist, and our algorithm in Propo-
sition 4 will return EF+RM outcomes with high probability.

We observe that the gap between the fractions of instances
that admit EFX+RM allocations and EF+RM allocations de-
creases with the number of goods. We conjecture that as the
number of goods increases, the likelihood that every agent
must be allocated more than one good in any RM allocation
increases. Therefore, it is likely that envied agents receive
more than one good, which is in direct conflict with EFX.
In the full version (Hosseini et al. 2020), we test this conjec-
ture through experiments for larger values ofm, and observe
an increasing trend in the fractions of instances that admit
EF+RM allocations as well as those that admit EFX+RM al-
locations, while the gap between the two shrinks rapidly, and
becomes negligible for larger number of goods. We also ob-
serve the general trend in our plots that {EF1,MMS}+ RM
allocations tend to exist more frequently as the number of
goods increases. Together, these observations suggest that
the distributional approach could be a promising avenue for
addressing the non-existence result in Example 2.

Concluding Remarks
We studied the interplay of fairness and efficiency under lex-
icographic preferences, obtaining strong algorithmic char-
acterizations for EFX and Pareto optimality that addressed
notable gaps in the additive valuations model, and outlining
the computational limits of our approach for the stronger ef-
ficiency notion of rank-maximality. Going forward, it would
be interesting to develop distribution-specific algorithms
that can compute EFX+RM (or EF1+RM) allocations with,
say, a constant probability. Extending our algorithmic char-
acterization results to other fairness notions, specifically
EF1 and MMS, will also be of interest.
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