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Abstract

In social choice there often arises a conflict between the ma-
jority principle (the search for a candidate that is as good as
possible for as many voters as possible), and the protection of
minority rights (choosing a candidate that is not overly bad
for particular individuals or groups). In a context where the
latter is our main concern, veto-based rules – giving individ-
uals or groups the ability to strike off certain candidates from
the list – are a natural and effective way of ensuring that no
minority is left with an outcome they find untenable. How-
ever, such rules often fail to be anonymous, or impose specific
restrictions on the number of voters and candidates. These is-
sues can be addressed by considering the proportional veto
core – the solution to a cooperative game where every coali-
tion is given the power to veto a number of candidates pro-
portional to its size. However, the naı̈ve algorithm for the veto
core is exponential, and the only known rules for selecting
from the veto core, with an arbitrary number of voters, vio-
late either anonymity or neutrality. In this paper we present a
polynomial time algorithm for computing the veto core and
present a neutral and anonymous algorithm for selecting a
candidate from it. We also show that a pessimist can manipu-
late the veto core in polynomial time.

Introduction
Suppose we have a society of 100 individuals who express
the following preferences over alternatives a, b, and c:

• 60 individuals report a � b � c.
• 40 individuals report b � c � a.

Which alternative should the society adopt? It is reasonable
to exclude c from the running, as it is Pareto dominated by b,
but both a and b have good arguments to support them, and it
is difficult to choose one over another without knowing what
this society is and what they are electing. In a political con-
text a lot can be said in favour of a. As a president, b’s initia-
tives would be constantly challenged by 60% of the public,
and in a parliamentary system prime minister b would find it
very difficult to achieve anything at all. On the other hand, if
a, b, and c are meeting times, then presumably most people
would be able to attend b, while with a the hall will be half-
empty. As government budgets, a will write off the interests
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of nearly half the population. As an arbitrated settlement to
an armed dispute, a is unlikely to stop the violence.

Should we decide that in our context the minority matters,
we need to study the profile from the bottom up. Rather than
asking how many individuals would love to see a elected,
the real issue is to how many such an outcome would be un-
acceptable. A line of research starting with Mueller (1978)
considered voting rules that endowed groups or individuals
with the power to unilaterally block certain outcomes from
being elected, regardless of how desirable these outcomes
may be to the rest of the population.

Mueller (1978) introduced the procedure of voting by veto
to select a public good, with the explicit aim of protecting
an individual from unfair treatment. The alternatives consist
of one proposal from each voter, as well as the status quo.
An order is formed over the voters and each, in turn, strikes
off the alternative they like the least. Exactly one outcome is
selected by this procedure, and clearly no voter will see their
worst outcome elected. But this procedure is not anonymous,
and requires that the number of alternatives be one greater
than the voters.

Much of the subsequent work focused on the strategic be-
haviour of voters under this procedure. The sincere outcome
of voting by veto and similar rules has been shown to corre-
spond to a strong equilibrium solution (Peleg 1978; Moulin
1982), dominance solution (Moulin 1980), and maxmin be-
haviour (Moulin 1981b); truth-telling may not be an equi-
librium, but among equally sophisticated voters the same al-
ternative can be expected to be elected. However, these re-
sults depended on certain relationships between the number
of candidates and voters, and these procedures all violated
either anonymity or neutrality.

Moulin (1981a) extended the concept of voting by veto
from individuals to coalitions, and studied the core of the re-
sulting cooperative game. The veto core is anonymous, neu-
tral, and is well defined for any number of alternatives and
voters. Moulin showed that endowing each coalition with the
power to veto a number of alternatives proportional to the
coalition’s size guarantees that the veto core is non-empty,
and is the smallest possible core out of all such rules. Moulin
also proposed voting by veto tokens for selecting a specific
outcome from the veto core, however while the veto core as
a concept is anonymous, voting by veto tokens returns to the
problem of different voting orders leading to different out-
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comes.
In the case of two voters, the veto core corresponds to the

Pareto-optimal candidates ranked in the top half of both vot-
ers’ ballots. It turns out that nearly every rule used in arbitra-
tor selection selects from the veto core (Anbarci 1993; Bar-
berà and Coelho 2017, 2020; Bloom and Cavanagh 1986;
de Clippel, Eliaz, and Knight 2014; Erlich, Hazon, and
Kraus 2018). Many of these rules are not anonymous, and
it is not clear whether they can be extended to an arbitrary
number of voters in a reasonable way.

In recent years, voting by veto has been rediscovered in
a computational setting. Bouveret et al. (2017) introduce the
Sequential Elimination rule, which is a generalisation of vot-
ing by veto to an arbitrary number of candidates. However
their motivation is markedly different from Mueller (1978)
– they emphasise the low communication complexity of the
rule, rather than the guarantees it gives to minorities. Indeed,
the main focus of the paper is finding an elimination order
that best approximates the Borda winner – and the Borda
rule selects the alternative that maximises the average rank,
regardless of how many individuals end up with their worst
outcome. Kondratev and Nesterov (2020) return to the orig-
inal motivation, and study the veto core in the context of
balancing the rights of minorities and majorities. Their main
criticism of the rule is that it is unclear how the veto core is
to be computed – the naı̈ve algorithm is exponential.

Our Contribution
In this work we study the veto core from a computational
perspective. Our main result is that a polynomial-time algo-
rithm for the veto core exists. We also propose an anony-
mous and neutral rule for selecting from the veto core,
and demonstrate that in the framework of Duggan-Schwartz
(Duggan and Schwartz 1992; Taylor 2002) a pessimist can
manipulate the veto core in polynomial time.

Preliminaries
We operate in the standard voting model. We have a set V
of n voters, a set C of m candidates, and every voter is as-
sociated with a linear order over the candidates, which we
term the voters’ preferences, or ballots. We use�i and Pi to
denote the preference order of voter i. An n-tuple of prefer-
ences is called a profile. The notation P−i denotes the prefer-
ences of all voters other than i. Thus (Pi, P−i) is the profile
P , and (P ′i , P−i) is obtained from P by replacing voter i’s
preference order with P ′i .

A voting rule is a function that maps a profile to a set of
candidates: the tied election winners. A voting rule is anony-
mous if the names of the voters do not matter – for any per-
mutation π : V → V , we have f(P ) = f(πP ). It is neutral
if the names of the candidates do not matter – for any per-
mutation π : C → C, it holds that f(πP ) = πf(P ).

Definition 1 (Moulin 1981a). A veto function is a mapping
v : 2V → N. Intuitively, v(T ) is the number of candidates a
coalition of voters T can veto. We call v(T ) the veto power
of T .

A veto function is anonymous if v(T ) is a function of |T |
alone, i.e. only the size, not the composition, of T matters.

The proportional veto function is the anonymous veto func-
tion given by:

v(T ) =

⌈
m
|T |
n

⌉
− 1.

We say that a candidate c is blocked by a coalition T just if
there exists a blocking set of candidates, B, such that:

∀b ∈ B, ∀i ∈ T : b �i c, (1)
m− |B| ≤ v(T ) (2)

Intuitively, condition (1) means that every voter in T consid-
ers every candidate in B to be better than c, and condition
(2) means that the coalition T can guarantee that the winner
will be among B by vetoing all the other candidates.

The set of all candidates that are not blocked with the pro-
portional veto function is called the veto core. �

For intuition as to why the veto function looks the way it
does (rather than

⌊
m|T |
n

⌋
or
⌊
m|T |
n

⌋
− 1) consider the case

of the grand coalition and the singleton. We want the grand
coalition to be able to veto m− 1 candidates, so a winner is
left over, while

⌊
mn
n

⌋
= m; and a singleton, in the case of

m = n + 1, should be able to veto at least one candidate,
whereas

⌊
n+1
n

⌋
−1 = 0. More formally, Moulin (1981a) has

shown that proportional veto power occupies a distinguished
position among the possible anonymous veto functions: any
veto function that gives less veto power than proportional
will have a larger core (in terms of set-inclusion), and any
veto function that gives more power will sometimes have an
empty core. The veto core is thus the smallest solution that
is guaranteed to exist.
Theorem 2 (Moulin 1981a). The veto core is non-empty.

Note that the veto core is thus a function that maps a pro-
file of preferences to a non-empty subset of candidates –
in other words, it is a voting rule. The veto core is clearly
anonymous and neutral. Other desirable properties it satis-
fies include Pareto efficiency, strongly monotonicity, homo-
geneity, and it never selects the candidates which are ranked
last by more than n

m voters. However, we shall see later that
in general this rule is not single-valued.
Example 3. Consider a profile with five candidates and four
voters with the following preferences:
• e �1 b �1 c �1 d �1 a.
• b �2 e �2 c �2 d �2 a.
• d �3 b �3 e �3 c �3 a.
• a �4 c �4 d �4 e �4 b.
In the case of m = n + 1 the veto power of a coalition of
size k simplifies to

⌈
(n+ 1) kn

⌉
− 1 = k. In other words, k

voters can veto exactly k candidates.
Candidate a is blocked by the singleton coalition { 1 }

(among others), with B = { b, c, d, e }; b is blocked by { 4 },
with B = { a, c, d, e }; d is not blocked by any singletons,
but is blocked by { 1, 2 }, with B = { b, c, e }; c is blocked
by the coalition { 1, 2, 3 }withB = { b, e }. Thus the unique
candidate in the veto core is e.

Now let us add a fifth voter:
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• c �5 a �5 d �5 b �5 e.
With m = n, the veto power simplifies to

⌈
n kn
⌉
− 1 =

k − 1. A singleton coalition can no longer block anything,
but the coalition { 1, 2 } can block a with B = { b, c, d, e }.
However, no other candidate is blocked, so the veto core is
{ b, c, d, e }. �

Computing the Veto Core
The veto core is a solution to a cooperative game, and a naı̈ve
approach would have us enumerate all possible coalitions.
In this section we will show that it is possible to reduce this
problem to detecting a biclique in a bipartite graph. To do
this, we will need a lemma of Moulin (1981a), and a stan-
dard result of algorithmics. For completeness, we include
proofs that were omitted in the original works.
Lemma 4 (Moulin 1981a). Let T be a coalition of size k,
and r, t be coefficients satisfying rn = tm − α, where α =
gcd(m,n) is the greatest common divisor of m and n, and
t > αn. The veto power of T then satisfies:

v(T ) =

⌈
m
k

n

⌉
− 1 =

⌊
rk

t

⌋
.

Proof. From rn = tm− α we obtain:

rk

t
=
km

n
− kα

tn
.

Case one: kmn is an integer. In this case:⌊
rk

t

⌋
=

⌊
km

n
− kα

tn

⌋
,

=

⌈
m
k

n

⌉
− 1.

Case two: kmn =
⌊
km
n

⌋
+ ε, ε ∈ { 1

n , . . . ,
n−1
n }. In this case⌈

m k
n

⌉
− 1 =

⌊
km
n

⌋
, and:⌊

rk

t

⌋
=

⌊
km

n
− kα

tn

⌋
,

=

⌊
km

n

⌋
+

⌊
ε− kα

tn

⌋
,

≥
⌊
km

n

⌋
+

⌊
ε− 1

n

⌋
,

≥
⌊
km

n

⌋
.

The equality follows because it is clear that:⌊
km

n
− kα

tn

⌋
≤
⌊
km

n

⌋
.

Proposition 5 (Garey and Johnson 1979). LetG be a bipar-
tite graph with vertices L on the left and R on the right, and
k > max(|L|, |R|) an integer. The following are true:

1. If the largest biclique Kx,y ⊆ G satisfies x+ y ≥ k, then
x+y = |L|+ |R|− z, where z is the size of the maximum
matching in the bipartite complement of G, G.

2. We can determine whether G contains a biclique with at
least k vertices in polynomial time.

Proof. Let Kx,y ⊆ G, with x + y ≥ k > max(|L|, |R|),
be the largest biclique in G. Observe that the vertices in
Kx,y form the maximum independent set in G, and since
k > max(|L|, |R|), this independent set has vertices on both
sides of the graph. The complement of such a maximum in-
dependent set forms the smallest vertex cover, and is of size
|L|+|R|−x−y. By Kőnig’s theorem, the size of the smallest
vertex cover is equal to z, the size of the maximum match-
ing. Thus z = |L|+ |R|−x− y, and x+ y = |L|+ |R|− z.

To determine whether a biclique of such size exists, con-
structG, and find the size of the maximum matching, z. This
is equal to the size of the smallest vertex cover, so |L|+|R|−
z is the size of the maximum independent set. Now verify
that |L|+ |R| − z ≥ k. If so, then since k > max(|L|, |R|),
this independent set spans both sides of the graph, and it
corresponds to a biclique of size |L| + |R| − z ≥ k in G.
If |L| + |R| − z < k then, since every biclique in G corre-
sponds to an independent set in G, there can be no biclique
of size k in G.

The key insight in the proof of Theorem 8 is that we can
reduce the search for a blocking coalition to the search for a
biclique in a bipartite graph, and via Proposition 5 find that
biclique in polynomial time.

Definition 6. The blocking graph for c ∈ C is a bipartite
graph with rn vertices on the left and t(m−1) vertices on the
right, where r, t satisfy the conditions of Lemma 4. Every
voter is associated with r vertices on the left, every candidate
but c is associated with t vertices on the right, and a vertex
associated with voter i is adjacent to a vertex associated with
candidate d just if i prefers d to c. �

Lemma 7. The blocking graph for c contains a biclique of
size tm if and only if c is blocked.

Proof. Suppose that c is blocked by coalition T of size k.
Since r, t satisfy the conditions of Lemma 4, the veto power
of T is

⌊
rk
t

⌋
. This means there exists a B, |B| = m−

⌊
rk
t

⌋
,

such that the voters in T prefer everything inB to c. Observe
that the vertices associated with T and B form a biclique
with rk+ tm− t

⌊
rk
t

⌋
vertices. Since rk

t ≥
⌊
rk
t

⌋
, it follows

that rk ≥ t
⌊
rk
t

⌋
and the biclique has at least tm vertices.

Now suppose there exists a biclique Kx,y ⊆ G with x +
y ≥ tm. Without loss of generality, we can assume x =
rk′, y = tb′ (since if voter i considers candidate d to be
better than c, then all r vertices associated with i are adjacent
to all t vertices associated with d). That is, there are k′ voters
who all agree that b′ candidates are better than c. We must
show that the coalition has enough veto power to force this
outcome:

⌊
rk′

t

⌋
≥ m− b′. We know that:

rk′ + tb′ ≥ tm
rk′ ≥ tm− tb′

rk′

t
≥ m− b′.
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Since m − b′ is an integer it follows that
⌊
rk′

t

⌋
≥ m −

b′.

To see why duplicating the voters and candidates in the
proportions dictated by Lemma 4 is necessary, contrast the
cases of m = n + 1 and m = 2n + 1. In the first case, a
coalition of size k needs to agree on a blocking set of size
m−k, and we are searching for a biclique of sizem – every-
thing works, and no duplication is necessary. However, with
m = 2n+1, k voters need to agree on m− 2k candidates –
we are searching for a biclique of size m − k, with exactly
k vertices on the left. This is a problem, because the argu-
ment in Proposition 5 only works if we only care about the
total number of vertices in a biclique – the question “Does
G contain a biclique of size x, with y vertices on the left” is
NP-hard.

If we duplicate the voters and candidates, however, any
biclique of size tm suffices – the size of the coalition is no
longer relevant.
Theorem 8. The veto core can be computed in
O(mmax(n3,m3)) time.

Proof. Using the Extended Euclidean algorithm we can find
r′, t′ such that r′n = t′m − α, where α = gcd(m,n),
and |t′| ≤ n

α in polynomial time. It is easy to see that with
(r, t) = (r′ + 3αm, t′ + 3αn), we have rn = tm − α and
t > αn.

Lemma 7 together with Proposition 5 already gives us
a polynomial time algorithm for the veto core – for every
c, build the blocking graph, find the largest biclique, and
add c to the core if the biclique is smaller than tm. How-
ever, since t > αn, the blocking graph is of size O(αnm)),
and with a standard O(E

√
V ) algorithm to find the max-

imum matching, this approach will find the veto core in
O(α2m3n2

√
αmn) time – a heroicO(n8.5) whenm = n =

α. We can do better by reformulating the problem as one of
maximum flow.

LetG be the blocking graph for c, andG its bipartite com-
plement. We wish to find the size of the maximum matching
in G without constructing the graph explicitly.

Define the flow graph of c to be the directed weighted
graph with a source node S, a sink node T , a node for every
voter, and a node for every candidate but c. There is an arc
from S to each voter with capacity r, an arc from each can-
didate node to T with capacity t, and an arc of unbounded
capacity between every voter node and every candidate node
that the voter considers to be worse than c.

We will show that if G has a matching of size F then the
flow graph has a flow of at least F , and if the flow graph has
a maximum flow of F then G has a matching of size at least
F . Combining the two, the size of the maximum matching
in G is equal to the maximum flow in the flow graph.

Suppose G has a matching M of size F . For each edge
(i′, d′) in M , where i′ is a vertex of voter i and d′ is a vertex
of candidate d, increase the flow in (S, i), (i, d), and (d, T )
by one. Since there are at most r and t edges in the matching
incident on a vertex of i and d respectively, we have enough
capacity in (S, i) and (d, T ) to perform this operation for
every edge in M , and thus construct a flow of size F .

Now suppose there is a maximum flow of F in the flow
graph. By the integral flow theorem, we can assume that this
flow is integral. For every unit of flow from i to d, match one
vertex of i in G with one vertex of d. Since the inflow of i is
at most r, we have enough vertices of i in G, and since the
outflow of d is at most t, we have enough vertices of d.

Since we can solve the maximum flow problem in cu-
bic time (Malhotra, Kumar, and Maheshwari 1978), we can
check whether c is blocked in O(max(n3,m3)) time, and
compute the entire veto core in O(mmax(n3,m3)).

Selecting from the Veto Core
Any anonymous veto function with a non-empty core must
include the veto core (Moulin 1981a); it is thus the small-
est solution possible. In general, however, it is not a sin-
gleton. Simulations suggest that under the Impartial Culture
assumption (drawing voters’ preferences from all m! pref-
erence orders identically and independently) the veto core
tends to be unreasonably large (Table 1). Indeed, in the case
of a large number of voters and a small number of candi-
dates, we can demonstrate that the veto core will contain
half the candidates on average.

Proposition 9. With the Impartial Culture assumption and
fixed m, as n→∞ the following are true:

1. With probability one, the veto core consists of the candi-
dates which are ranked last by less than n

m voters;
2. The expected size of the veto core is half the candidates.

Proof. Fix a set of candidates, B, |B| = m − q, 1 ≤ q ≤
m − 1, and fix a candidate c not in B. We will show that as
n→∞ the probability of the existence of a coalition block-
ing c with blocking set B is 1

2 if q = 1, and 0 otherwise.
Since |B| = m − 1 would imply that all members of the
coalition rank c last, this will establish 1 and 2.

Let p(q,m) be the probability that a voter believes every
candidate in B is better than c. If q = 1, then c must be
ranked last. There are (m − 1)! possible preference orders
the voter can have, so p(1,m) = (m−1)!

m! = 1
m .

If q > 1, then the voter must rank c between positions
m− q+ 1 and m (any higher and the candidates in B could
not possibly all fit above c). There are (m− 1)! orders with
c ranked last, and less than (m− 1)! with c ranked in any of
the other q−1 positions. Thus there are more than (m−1)!,
and less than q(m−1)! preference orders that the voter could
have. This gives us 1

m < p(q,m) < q
m .

Recall that the veto power of a coalition of size k is⌈
m k
n

⌉
−1. Thus a coalition can veto q candidates if and only

if the size of the coalition is strictly larger than nq
m . It follows

thatB is a blocking set for c if and only if more than nq
m vot-

ers believe every candidate in B is better than c. Hence, by
the Central Limit Theorem, the limit of the probability that
B is a blocking set for c is:

1− lim
n→∞

F

(
nq
m − np(q,m)√

np(q,m)(1− p(q,m))

)
,

which is equal to 1
2 for q = 1 and 0 otherwise.

5492



m = 2 3 4 5 6 7 8 9 10 11 100 101 200
n = 2 0.75 0.39 0.41 0.28 0.28 0.22 0.23 0.20 0.20 0.17 0.04 0.04 0.02

3 0.50 0.69 0.35 0.33 0.40 0.28 0.27 0.31 0.25 0.24 0.09 0.09 0.06
4 0.68 0.45 0.66 0.35 0.37 0.35 0.42 0.30 0.32 0.31 0.15 0.15 0.11
5 0.50 0.42 0.47 0.66 0.36 0.37 0.36 0.39 0.44 0.31 0.21 0.20 0.17
6 0.65 0.63 0.48 0.50 0.67 0.35 0.39 0.41 0.40 0.41 0.26 0.26 0.22
7 0.50 0.48 0.41 0.47 0.54 0.68 0.35 0.39 0.41 0.39 0.29 0.29 0.27
8 0.63 0.44 0.64 0.46 0.52 0.58 0.70 0.36 0.40 0.41 0.32 0.32 0.30
9 0.50 0.63 0.53 0.41 0.52 0.54 0.60 0.71 0.36 0.40 0.33 0.33 0.32

10 0.62 0.51 0.51 0.65 0.47 0.50 0.57 0.63 0.71 0.36 0.37 0.34 0.35
11 0.50 0.45 0.44 0.58 0.42 0.49 0.54 0.60 0.64 0.71 0.35 0.35 0.34

100 0.54 0.53 0.55 0.57 0.49 0.54 0.52 0.57 0.58 0.57 0.73 0.37 0.55
101 0.50 0.50 0.53 0.53 0.48 0.52 0.50 0.55 0.57 0.56 0.73 0.74 0.55
200 0.52 0.49 0.54 0.54 0.52 0.50 0.55 0.54 0.56 0.54 0.68 0.41 0.73

Table 1: Proportion of candidates in the veto core, average of 1,000 IC profiles.

It is thus worthwhile to ask how a single candidate from
the veto core can be selected. The first solution was proposed
by Moulin (1981a):

Definition 10. Let r, t be coefficients satisfying the provisos
of Lemma 4. Create r clones of every voter and t clones of
every candidate. Let L be an order over the voter-clones.

Voting by veto tokens is the rule where the voter-clones
successively veto their least preferred candidate-clone in the
order of L until gcd(m,n) clones are left. The winners are
all candidates who have at least one clone remaining. �

While different ways of ordering the voter-clones may
lead to different outcomes, such an outcome will always lie
in the veto core.

Proposition 11 (Moulin 1981a). Voting by veto tokens
elects a candidate in the veto core.

Proof. Suppose, for contradiction, that voting by veto to-
kens elects a candidate c, but c is blocked by voters T ,
|T | = k. This means there must exist a set of candidates
B, |B| = m− v(T ), such that every voter in T believes ev-
ery candidate in B is better than c. Let W = C \B, and Wi

the set that voter i ∈ T believes to be at least as bad as c.
Observe that Wi ⊆ W . By Lemma 4, the number of clones
of candidates in W is equal to t|W | = tv(T ) = t

⌊
rk
t

⌋
.

Since a clone of c remains unvetoed by the end of the al-
gorithm, then it means that each of the r clones of every
voter i ∈ T casts a veto against a clone of a candidate in
Wi ⊆W . Yet these rk vetoes have been insufficient to elim-
inate all the clones of c ∈W and hence rk < t

⌊
rk
t

⌋
, which

is a contradiction.

While voting by veto tokens is defined for all choices of
n and m, it is inherently non-anonymous. This is the case
of the majority of known procedures selecting from the veto
core, and the few that are anonymous (the procedure of Peleg
(1978), or the strong equilibria of antiplurality (Wilczynski
2018)) violate neutrality instead. If we are willing to admit
a randomised procedure we could, of course, run voting by
veto tokens with a random voting order; however it is possi-
ble to select from the veto core anonymously, neutrally, and

deterministically via a voting rule inspired by the probabilis-
tic serial mechanism of Bogomolnaia and Moulin (2001):

Definition 12. Veto by consumption is the voting rule that is
computed by an algorithm that has voters eat the candidates
from the bottom of their order up. Every candidate starts
with capacity 1, and is being eaten by the voters who rank it
last. Each voter eats at speed 1.

The outcome can be computed as follows. In round k, let
ci be the capacity of candidate i and ni the number of voters
eating i. The round lasts until some candidate is fully eaten.
To move to round k + 1, do the following:

1. Find an i which minimises ci/ni. Let rk be this minimum
ratio – this is the duration of the round.

2. Update all capacities, cj = cj − rknj .
3. For all candidates who reached capacity 0, reallocate the

voters eating these to their next worst candidates.

The last candidate to be eaten is the winner. In the case of
two or more candidates being eaten simultaneously, a tie is
declared among those candidates. �

Observe that the duration of the algorithm is exactly m
n

units, and the time complexity is O(mn). As a voting rule,
veto by consumption is clearly anonymous, neutral, Pareto
efficient, homogeneous, and never selects the candidates
which are ranked last by more than n

m voters. The results
in Table 2 suggest that the number of winners tends to 1 as
the number of voters increases.

Proposition 13. Veto by consumption selects a candidate in
the veto core.

Proof. Suppose, for contradiction, that veto by consumption
elects a candidate c, but c is blocked by voters T , |T | = k.
This means there must exist a set of candidates B, |B| =
m − v(T ) = m −

⌈
mk
n

⌉
+ 1, such that every voter in T

believes every candidate in B is better than c. For voter i ∈
T , let Wi be the set of candidates i considers to be at least
as bad as c. Observe that Wi ⊆ C \B.

Observe that as long as c is present, every agent will eat a
candidate they consider to be at least as bad as c. Since we
have assumed that c is eaten last, it follows that the k voters
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in T eat only from W =
⋃
Wi ⊆ C \ B for the duration of

the algorithm, and the capacity of W is |W | ≤
⌈
mk
n

⌉
− 1 <

mk
n . However, it will take these k voters strictly less than
m
n units of time to eat all of W , but the algorithm runs for
exactly m

n units of time, which is a contradiction.

Given that we can compute the veto core in polynomial
time, however, one could suggest any number of neutral and
anonymous core selection algorithms – first compute the
veto core, throw away all other candidates, and use your
favourite voting rule to select a winner from what is left.
Unfortunately, the veto core is vulnerable to a very sim-
ple form of agenda manipulation – padding the profile at
the bottom with universally reviled candidates (Kondratev,
Ianovski, and Nesterov 2019; Barberà and Coelho 2020).
Indeed, suppose we add (n − 1)m spoiler candidates at the
bottom of every voter’s preference order. In the new pro-
file k voters will need to agree on a blocking set of size
mn−

⌈
mnk
n

⌉
+ 1 = mn−mk + 1. Since there are only m

original candidates, and they are universally preferred to the
spoilers, it follows that only the grand coalition will be able
to block anything, and the veto core will consist of all Pareto
undominated candidates. And this change of agenda could
be effected as easily as suggesting a group of English speak-
ers choose a film not from a library of English-language
films, but a library of all films.

Veto by consumption avoids this problem, as all the
spoiler candidates are eaten before the voters move on to
the real contenders.

Manipulating the Veto Core
The Gibbard-Satterthwaite framework of strategic voting
presupposes a resolute voting rule, i.e. one that always out-
puts a single winner. As no anonymous rule can have this
property, the standard approach in studying manipulation is
to assume that ties are broken either lexicographically, in
favour of the manipulator, or against the manipulator. Such
an approach is reasonable if ties are a rare occurrence, but
given the tendency of the veto core to be large, in our context
such an approach would lead to a tangible deviation from
neutrality or anonymity. Instead, we need to evaluate the ma-
nipulator’s preferences on the outcome sets directly. Duggan
and Schwartz (1992) considered two kinds of preference ex-
tensions:1 manipulation by an optimist, who evaluates a set
by the best element, and a pessimist, who evaluates a set by
the worst. While these extensions may not seem very imag-
inative, they are enough to derive an impossibility result –
any rule that is immune to both types of manipulation and
includes all singletons in its range is dictatorial.

Conceptually, manipulating the veto core in this frame-
work is simple. The veto core consists of all candidates that
are not blocked; therefore, an agent’s strategies are limited
to either blocking a candidate they would not sincerely, or
refusing to block a candidate they would have otherwise. In

1Duggan and Schwartz (1992) use a more complicated defini-
tion in their paper, but it is equivalent to the pessimist/optimist def-
inition found in Taylor (2002).

the case of pessimistic manipulation, this gives us a polyno-
mial time algorithm.
Lemma 14. The top set of candidate c in order Pi is the set
of all candidates ranked above c.

If c is blocked in (Pi, P−i) with top set X , and X ⊆ Y ,
then for any P ′i with top set Y , c is blocked in (P ′i , P−i).

Proof. Suppose c is blocked in (Pi, P−i) with top setX . Let
P ′i be an arbitrary order where the top set of c is Y , X ⊆ Y .

Let T be a coalition blocking c in (Pi, P−i) with blocking
set B. If i /∈ T , then T is a blocking coalition regardless of
what i votes, and remains a blocking coalition in (P ′i , P−i).
If i ∈ T , then observe that B ⊆ X ⊆ Y , so i considers
all the candidates in B to be better than c. The other voters’
preferences are unchanged, so they do too. Thus T is still a
blocking coalition in (P ′i , P−i).

Theorem 15. It can be determined whether the veto core is
manipulable by a pessimist in polynomial time.

Proof. Consider a profile P where c is the worst element in
the veto core for the manipulator, who will be voter 1 for
convenience. Call all the candidates 1 considers to be better
than c the good candidates, all the candidates at least as bad
(including c itself) the bad candidates.

The problem of pessimistic manipulation is thus finding
a P ′1 such that every bad candidate in (P ′1, P−1) is blocked.
Call such a P ′1 a strategic vote.

Observe that as a consequence of Lemma 14, if c is
blocked in (P ′1, P−1) with top set X , then c is blocked in
every (P ∗1 , P−1) with top set X . We can check whether this
is the case in polynomial time by constructing an arbitrary
preference order P ∗1 with the candidates in X ranked first,
then c, and running the veto core algorithm on (P ∗1 , P−1).
We will refer to this as checking whether c is blocked with
top set X .

The algorithm functions by progressively filling the bal-
lot from the top down. At step i of the algorithm, let Gi be
the set of candidates already on the ballot. To initialise the
algorithm, construct a partially filled ballot with all the good
candidates ranked at the top in the same order as in P1. Thus
G0 is the set of good candidates. To advance from step i
to i + 1 of the algorithm check if there exists a candidate
b ∈ C \ Gi that is blocked with top set Gi. If so, rank b di-
rectly below the candidates in Gi and let Gi+1 = Gi ∪{ b }.
If not, assert that no strategic vote exists.

First, observe that this algorithm will run for O(m) steps,
and each step will involve O(m) calls to the algorithm com-
puting veto core, so the algorithm is in P.

Next, we show that if the algorithm returns a vote it is
indeed a strategic vote. To demonstrate this we will show
that the algorithm has the invariant property that every can-
didate in Gi is either a good candidate or is blocked. At the
beginning of the algorithm, G0 consists solely of the good
candidates. After step i, we add some candidate b who is
blocked with top set Gi. We do not change the top set of any
candidate in Gi, so those that were blocked at step i remain
blocked at step i + 1. Thus if the algorithm returns a vote,
all the candidates on the ballot are either good candidates or
blocked.
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m = 2 3 4 5 6 7 8 9 10 11 100 101 200
n = 2 1.5 1.167 1.42 1.22 1.38 1.24 1.37 1.25 1.35 1.26 1.31 1.3 1.31

3 1 1.6 1.04 1.02 1.41 1.04 1.03 1.33 1.04 1.03 1.04 1.04 1.04
4 1.38 1.24 1.58 1.13 1.28 1.2 1.36 1.15 1.23 1.18 1.13 1.12 1.12
5 1 1 1 1.42 1 1 1 1 1.21 1 1.02 1 1
6 1.31 1.36 1.21 1.15 1.3 1.08 1.1 1.14 1.09 1.08 1.03 1.03 1.02
7 1 1 1 1 1 1.18 1 1 1 1 1 1 1
8 1.27 1.08 1.24 1.08 1.11 1.06 1.11 1.04 1.05 1.03 1.01 1.01 1.01
9 1 1.22 1.01 1 1.08 1.03 1.02 1.06 1.01 1.01 1 1 1

10 1.25 1.14 1.11 1.13 1.05 1.03 1.02 1.01 1.04 1.01 1 1 1
11 1 1 1 1 1 1 1 1 1 1.02 1 1 1

100 1.08 1.01 1.01 1 1 1 1 1 1 1 1 1 1
101 1 1 1 1 1 1 1 1 1 1 1 1 1
200 1.06 1.01 1 1 1 1 1 1 1 1 1 1 1

Table 2: Number of veto by consumption winners, average of 1,000,000 IC profiles.

Finally, we show that if there exists a strategic vote P ′1,
the algorithm will find one.

We first claim that if there exists a strategic vote, there
exists a strategic vote with all the good candidates ranked at
the top of the ballot in the same order as in P1. Let P ′1 be
a strategic vote where some good g is ranked behind a bad
b. Obtain P ∗1 by swapping g and b. We increase the top set
of b, so if b was blocked it remains blocked. Thus P ∗1 is still
strategic, and we can repeat this operation until all the good
candidates bubble to the top. Once we have a ballot where
all the good candidates are on the top, their internal order
does not matter since it will not change the top set of any
bad candidate. There is thus no generality lost in assuming
that the good candidates are ranked as in P1.

Now we proceed by contradiction. Suppose the algorithm
fails to return a vote. This must mean that at step i of the
algorithm none of the remaining bad candidates are blocked
with top set Gi. By the above claim, we can assume that
P ′1 ranks the set of good candidates G0 at the top in the
same order as P1 and thus has bad candidates in the next
i positions. Let X be the set of these i bad candidates, and
X ′ = Gi \ G0 be the set of candidates ranked in the corre-
sponding positions by our algorithm. Observe that X 6= X ′

– otherwise the algorithm could choose the same candidate
in the ith step as in P ′1. Thus there exists a b ∈ X, b /∈ X ′.
Of all such b, choose one that is ranked highest in P ′1. Let Y
be the set of bad candidates (possibly empty) ranked above b
in P ′1. Since b is the highest ranked bad candidate in P ′1 that
is not in X ′, it must be that Y ⊆ X ′. But that is a contra-
diction because if b is blocked with top set G0 ∪ Y in P ′1, it
will certainly be blocked with top set Gi = G0 ∪X ′ in the
algorithm.

In principle, it is also easy to check whether optimistic
manipulation is possible – by Lemma 14, if it is possible for
voter 1 to add some c to the core, then it must be possible to
add c to the core by ranking c first, and the other candidates
in any order. However, we have no examples of optimistic
manipulation of the core, and suspect that it is not possible.

Future Directions
From inception, the concept of voting by veto was closely
linked with implementation. Anbarci (2006) described the
subgame perfect equilibria of the Alternate Strike scheme. It
turns out that these equilibria correspond exactly to the veto
by consumption winners in the case of two voters. Similarly,
Laslier, Nunez, and Sanver (2020) proposed a mechanism
which implements the two-voter veto core in Nash equilib-
rium. It is natural to ask whether something similar can be
done with an arbitrary number of voters.

Veto by consumption is a novel voting rule, and hence
the standard questions (axiomatisation, non-trivial proper-
ties, susceptibility to manipulation, etc) have not been asked
about it. As an anonymous voting rule which selects from
the veto core, it would be interesting to consider how well
it functions in settings where the happiness of the minor-
ity matters, e.g. in group recommender systems (Masthoff
2015).
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