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Abstract

We initiate the study of trembling-hand perfection in sequen-
tial (i.e., extensive-form) games with correlation. We intro-
duce the extensive-form perfect correlated equilibrium (EF-
PCE) as a refinement of the classical extensive-form corre-
lated equilibrium (EFCE) that amends its weaknesses off the
equilibrium path. This is achieved by accounting for the pos-
sibility that players may make mistakes while following rec-
ommendations independently at each information set of the
game. After providing an axiomatic definition of EFPCE, we
show that one always exists since any perfect (Nash) equi-
librium constitutes an EFPCE, and that it is a refinement of
EFCE, as any EFPCE is also an EFCE. Then, we prove that,
surprisingly, computing an EFPCE is not harder than find-
ing an EFCE, since the problem can be solved in polyno-
mial time for general n-player extensive-form games (also
with chance). This is achieved by formulating the problem
as that of finding a limit solution (as ε → 0) to a suitably
defined trembling LP parametrized by ε, featuring exponen-
tially many variables and polynomially many constraints. To
this end, we show how a recently developed polynomial-time
algorithm for trembling LPs can be adapted to deal with prob-
lems having an exponential number of variables. This calls
for the solution of a sequence of (non-trembling) LPs with
exponentially many variables and polynomially many con-
straints, which is possible in polynomial time by applying an
ellipsoid against hope approach.

Introduction
Nash equilibrium (NE) (Nash 1951) computation in 2-player
zero-sum games has been the flagship challenge in artifi-
cial intelligence for several years (see, e.g., landmark results
in poker (Brown and Sandholm 2018, 2019)). Recently, in-
creasing attention has been devoted to multi-player games,
where equilibria based on correlation are now mainstream.

Correlation in games is customarily modeled through a
trusted external mediator that privately recommends actions
to the players. The mediator acts as a correlation device
that draws action recommendations according to a publicly
known distribution. The seminal notion of correlated equi-
librium (CE) introduced by Aumann (1974) requires that no
player has an incentive to deviate from a recommendation.
This is encoded by NE conditions applied to an extended
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game where the correlation device plays first by randomly
selecting a profile of actions according to the public distribu-
tion; then, the original game is played with each player being
informed only of the action selected for her. CEs are com-
putationally appealing since they can be implemented in a
decentralized way by letting players play independently ac-
cording to no-regret procedures (Hart and Mas-Colell 2000).

Computing CEs in sequential (i.e., extensive-form) games
with imperfect information has received considerable atten-
tion in the last years (Celli et al. 2019; Farina, Bianchi, and
Sandholm 2020). In this context, various CE definitions are
possible, depending on the ways recommendations are re-
vealed to the players. The one that has emerged as the most
suitable for sequential games is the extensive-form corre-
lated equilibrium (EFCE) of Von Stengel and Forges (2008).
The key feature of EFCE is that recommendations are re-
vealed to the players only when they reach a decision point
where the action is to be played, and, if one player defects
from a recommendation, then she stops receiving them in
the future. Von Stengel and Forges (2008) show that EFCEs
can be characterized by a polynomially-sized linear pro-
gram (LP) in two-player games without chance. In the same
restricted setting, Farina et al. (2019a) show how to find an
EFCE by solving a bilinear saddle-point problem, which can
be exploited to derive an efficient no-regret algorithm (Fa-
rina et al. 2019b). In general n-player games, Huang and
von Stengel (2008) prove that an EFCE can be computed
in polynomial time by means of an ellipsoid against hope
(EAH) algorithm similar to that introduced by Papadimitriou
and Roughgarden (2008) for CEs in compactly represented
games (see also (Gordon, Greenwald, and Marks 2008) for
another algorithm). Instead, finding a payoff-maximizing
EFCE is NP-hard (Von Stengel and Forges 2008). Very re-
cently, Celli et al. (2020) provide an efficient no-regret pro-
cedure for EFCE in n-player games.

One of the crucial weaknesses of standard equilibrium no-
tions, such as NE, in sequential games is that they may pre-
scribe to play sub-optimally off the equilibrium path, i.e.,
at those information sets never reached when playing equi-
librium strategies. One way to amend this issue is trembling-
hand perfection (Selten 1975), whose rationale is to let play-
ers reasoning about the possibility that they may make mis-
takes in the future, playing sub-optimal actions with small,
vanishing probabilities (a.k.a. trembles). This idea leads to
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the NE refinement known as perfect equilibrium (PE) (Sel-
ten 1975). Other refinements have been introduced in the lit-
erature; e.g., in the quasi-perfect equilibrium of Van Damme
(1984) players only account for opponents’ future trembles
(see (Van Damme 1991) for other examples). Trembles can
also be introduced in normal-form games, leading to robust
equilibria that rule out weakly dominated strategies (Hillas
and Kohlberg 2002). Recently, equilibrium refinement has
been addressed beyond the NE case, such as, e.g., in Stack-
elberg settings (Farina et al. 2018; Marchesi et al. 2019).

Trembling-hand perfection for CEs has only been stud-
ied from a theoretical viewpoint in normal-form games,
by Dhillon and Mertens (1996). The authors introduce the
concept of perfect CE by enforcing PE conditions in the ex-
tended game, rather than NE ones. Despite equilibrium re-
finements in sequential games are ubiquitous, no work ad-
dressed perfection and correlation together in such setting. 1

Original Contributions We give an axiomatic definition
of extensive-form perfect correlated equilibrium (EFPCE),
enforcing PE conditions, rather than NE ones, in the ex-
tended game introduced by Von Stengel and Forges (2008)
for their original definition of EFCE. Intuitively, this ac-
counts for the possibility that players may make mistakes
while following recommendations independently at each in-
formation set of the game. Trembles are introduced on play-
ers’ strategies, while the correlation device is defined as
in classical CE notions. First, we show that an EFPCE al-
ways exists, since any PE constitutes an EFPCE, and that
EFPCE is a refinement of EFCE, as any EFPCE is also an
EFCE. Then, we show how an EFPCE can be computed in
polynomial time in any n-player extensive-form game (also
with chance). At first, we introduce a characterization of
the equilibria of perturbed extended games (i.e., extended
games with trembles) inspired by the definition of EFCE
based on trigger agents, introduced by Gordon, Greenwald,
and Marks (2008) and Farina et al. (2019a). This result al-
lows us to formulate the EFPCE problem as that of find-
ing a limit solution (as ε → 0) to a suitably defined trem-
bling LP parametrized by ε, featuring exponentially many
variables and polynomially many constraints. To this end,
we show how the polynomial-time algorithm for trembling
LPs developed by Farina, Gatti, and Sandholm (2018) can be
adapted to deal with problems having an exponential number
of variables. This calls for the solution of a sequence of (non-
trembling) LPs with exponentially many variables and poly-
nomially many constraints, which is possible in polynomial
time by applying an EAH approach. The latter is inspired by
the analogous algorithm of Huang and von Stengel (2008)
for EFCEs, which is adapted to deal with a different set of
dual constraints, requiring a modification of the polynomial-
time separation oracle of Huang and von Stengel (2008). 2

1Applying the perfect CE by Dhillon and Mertens (1996) to the
normal-form representation of a sequential game does not gener-
ally solve equilibrium weaknesses. This would lead to a correlated
version of the normal-form PE, which is known not to guard against
sub-optimality off the equilibrium path (Van Damme 1991).

2All the proofs are in (Marchesi and Gatti 2020).

Preliminaries
Extensive-Form Games
We focus on n-player extensive-form games (EFGs) with
imperfect information. We let N := {1, . . . , n} be the set
of players, and, additionally, we let c be the chance player
representing exogenous stochasticity. The sequential struc-
ture is encoded by a game tree with node set H . Each node
h ∈ H is identified by the ordered sequence σ(h) of actions
encountered on the path from the root to h. We let Z ⊆ H
be the subset of terminal nodes, which are the leaves of the
game tree. For every non-terminal node h ∈ H \ Z, we let
P (h) ∈ N ∪ {c} be the player who acts at h, while A(h)
is the set of actions available. The function pc : Z → (0, 1]
defines the probability of reaching each terminal node given
the chance moves on the path from the root to that node.
For every player i ∈ N , the function ui : Z → R encodes
player i’s utilities over terminal nodes. Imperfect informa-
tion is modeled through information sets (infosets). An in-
foset I ⊆ H \ Z of player i ∈ N is a group of player i’s
nodes indistinguishable for her, i.e., for every h ∈ I , it must
be the case that P (h) = i and A(h) = A(I), where A(I) is
the set of actions available at the infoset. W.l.o.g., we assume
that the sets A(I) are disjoint. We denote with Ii the collec-
tion of infosets of player i ∈ N . For every i ∈ N , we let
Ai :=

⋃
I∈Ii A(I) be the set of all player i’s actions. More-

over, we let A :=
⋃
i∈N Ai. We focus on EFGs with perfect

recall in which no player forgets what she did or knew in the
past. Formally, for every player i ∈ N and infoset I ∈ Ii,
it must be that every node h ∈ I is identified by the same
ordered sequence σi(I) of player i’s actions from the root to
that node. Given two infosets I, J ∈ Ii of player i ∈ N , we
say that J follows I , written I ≺ J , if there exist two nodes
h ∈ I and k ∈ J such that h is on the path from the root to
k. By perfect recall, ≺ is a partial order on Ii. We also write
I � J whenever either I = J or I ≺ J . For every infoset
I ∈ Ii, we let C(I, a) ⊆ Ii be the set of all infosets that
immediately follow I by playing action a ∈ A(I).

Strategies A player’s pure strategy specifies an action at
every infoset of her. For every i ∈ N , the set of player i’s
pure strategies πi is Πi :=×I∈IiA(I), with πi(I) ∈ A(I)
being the action at infoset I ∈ Ii. Moreover, Π :=×i∈NΠi

denotes the set of strategy profiles specifying a strategy for
each player, while, for i ∈ N , we let Π−i := ×j 6=i∈NΠj

be the (partial) strategy profiles defining a strategy for each
player other than i. Given πi ∈ Πi and a ∈ Ai, we write
a ∈ πi whenever πi prescribes to play a. Analogously, for
π ∈ Π and a ∈ A, we write a ∈ π. Players are allowed to
randomize over pure strategies by playing mixed strategies.
For i ∈ N , we let µi : Πi → [0, 1] be a player i’s mixed
strategy, where

∑
πi∈Πi

µi(πi) = 1. The perfect recall as-
sumption allows to work with behavior strategies, which
define probability distributions locally at each infoset. For
i ∈ N , we let βi : Ai → [0, 1] be a player i’s behavior strat-
egy, which is such that

∑
a∈A(I) βi(a) = 1 for all I ∈ Ii. 3

3EFGs with perfect recall admit a compact strategy representa-
tion called sequence form (Von Stengel 1996). See the Appendix A
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2, 2 3, 1 1, 3 0, 0 1
2 , 0 0, 0 0, 1 1

2 , 1

I J K L
π1 a c e g
π2 a c e h
π3 a c f g
π4 a c f h
π5 a d e g
π6 a d e h
π7 a d f g
π8 a d f h

I J K L
π9 b c e g
π10 b c e h
π11 b c f g
π12 b c f h
π13 b d e g
π14 b d e h
π15 b d f g
π16 b d f h

Π1(a) = {π1, . . . , π8}
Π1(f) = {π3, π4, π7, π8, π11, π12, π15, π16}
Π1(I) = {π1, . . . , π16}
Π1(J) = {π1, . . . , π8}
Π1(K) = {π9, . . . , π16}
Π1(L) = {π9, . . . , π16}

Π1(K, f) = {π3, π4, π7, π8}
Π1(L, g) = {π9, π11, π13, π15}

Π1(z) = {π1, π2, π3, π4}

Figure 1: (Left) Sample EFG. Black round nodes belong to player 1, white round nodes belong to player 2, and white square
nodes are leaves (with players’ payoffs specified under them). Rounded gray lines denote infosets. (Center) Set Π1 of pure
strategies for player 1. (Right) Examples of certain subsets of Π1 used in this work.

Additional Notation We introduce some subsets of Πi

(see Figure 1 for some examples). For every action a ∈ Ai
of player i ∈ N , we define Πi(a) := {πi ∈ Πi | a ∈ πi}
as the set of player i’s pure strategies specifying a. For ev-
ery infoset I ∈ Ii, we let Πi(I) ⊆ Πi be the set of strategies
that prescribe to play so as to reach I whenever possible (de-
pending on players’ moves up to that point) and any action
whenever reaching I is not possible anymore. Additionally,
for every action a ∈ A(I), we let Πi(I, a) ⊆ Πi(I) ⊆ Πi

be the set of player i’s strategies that reach I and play a.
Given a terminal node z ∈ Z, we denote with Πi(z) ⊆ Πi

the set of strategies by which player i plays so as to reach z,
while Π(z) :=×i∈NΠi(z) and Π−i(z) :=×j 6=i∈NΠj(z).
We also introduce the following subsets of Z. For every
i ∈ N and I ∈ Ii, we let Z(I) ⊆ Z be the set of termi-
nal nodes reachable from infoset I of player i. Moreover,
Z(I, a) ⊆ Z(I) ⊆ Z is the set of terminal nodes reach-
able by playing action a ∈ A(I) at I , whereas Z⊥(I, a) :=
Z(I, a) \

⋃
J∈C(I,a) Z(J) is the set of those reachable by

playing a at I without traversing any other player i’s infoset.

Nash Equilibrium and Its Refinements
Given an EFG, players’ behavior strategies {βi}i∈N consti-
tute an NE if no player has an incentive to unilaterally devi-
ate from the equilibrium by playing another strategy (Nash
1951). The PE defined by Selten (1975) relies on the idea of
introducing trembles in the game, representing the possibil-
ity that players may take non-equilibrium actions with small,
vanishing probability. Trembles are encoded by means of
Selten’s perturbed games, which force lower bounds on the
probabilities of playing actions. Given an EFG Γ, a pair
(Γ, η) defines a perturbed game, where η : A → (0, 1) is a
function assigning a positive lower bound η(a) on the proba-
bility of playing each action a ∈ A, with

∑
a∈A(I) η(a) < 1

for every i ∈ N and I ∈ Ii. Then:
Definition 1. Given an EFG Γ, {βi}i∈N is a PE of Γ if
it is a limit point of NEs for at least one sequence of per-
turbed games {(Γ, ηt)}t∈N such that, for all a ∈ A, the
lower bounds ηt(a) converge to zero as t→∞.

There are only a few computational works on NE refine-
ments. For instance, Miltersen and Sørensen (2010) char-
acterize quasi-perfect equilibria of 2-player EFGs using the

in (Marchesi and Gatti 2020) for more details.

sequence form (see the recent work by Gatti, Gilli, and
Marchesi (2020) for its extension to n-player games) and
exploit this to compute an equilibrium by solving a linear
complementarity problem with trembles defined as polyno-
mials of some parameter treated symbolically. Farina and
Gatti (2017) do the same for the PE. Recently, Farina,
Gatti, and Sandholm (2018) provide a general framework
for computing NE refinements in 2-player zero-sum EFGs
in polynomial time. The authors show how to reduce the
task to the more general problem of solving trembling LPs
parametrized by some parameter ε, i.e., finding their limit so-
lutions as ε → 0. Then, they provide a general polynomial-
time algorithm to find limit solutions to trembling LPs.
Other works study the problem of computing (approximate)
NE refinements in 2-player zero-sum EFGs by employing
online convex optimization techniques (Kroer, Farina, and
Sandholm 2017; Farina, Kroer, and Sandholm 2017).

Correlation in Extensive-Form Games
We model a correlation device as a probability distribution
µ ∈ ∆Π. In the classical CE by Aumann (1974), the cor-
relation device draws a strategy profile π ∈ Π according to
µ; then, it privately communicates πi to each player i ∈ N .
This notion of CE does not fit well to EFGs, as it requires
the players to reason over the exponentially-sized set Πi.
Von Stengel and Forges (2008) introduced the EFCE to solve
this issue. The first crucial feature of the EFCE is a different
way of giving recommendations: the strategy πi is revealed
to player i as the game progresses, i.e., the player is rec-
ommended to play the action πi(I) at infoset I ∈ Ii only
when I is actually reached during play. The second key as-
pect characterizing EFCEs is that, whenever a player decides
to defect from a recommended action at some infoset, then
she may choose any move at her subsequent infosets and
she stops receiving recommendations from the correlation
device. The definition of EFCE introduced by Von Stengel
and Forges (2008) (Definition 3) requires the introduction of
the notion of extended game with a correlation device.

Definition 2. Given an EFG Γ and a distribution µ ∈ ∆Π,
the extended game Γext(µ) is a new EFG in which chance
first selects π ∈ Π according to µ, and, then, Γ is played with
each player i ∈ N receiving the recommendation to play
πi(I) as a signal, whenever she reaches an infoset I ∈ Ii.
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The signaling in Γext(µ) induces a new infoset structure.
Specifically, every infoset I ∈ Ii of the original game Γ
corresponds to many, new infosets in Γext(µ), one for each
combination of possible action recommendations received at
the infosets preceding I (this included). At each new infoset,
player i can only distinguish among chance moves corre-
sponding to strategy profiles π ∈ Π that differ in the recom-
mendations at infosets J ∈ Ii : J � I . Figure 2 shows a
simple EFG with its corresponding extended game.
Definition 3. Given an EFG Γ, µ ∈ ∆Π defines an EFCE
of Γ if following recommendations is an NE of Γext(µ). 4

Next, we introduce an equivalent characterization of
EFCEs (Farina, Bianchi, and Sandholm 2020). It is based on
the following concept of trigger agent, originally due to Gor-
don, Greenwald, and Marks (2008).
Definition 4. Given an infoset I ∈ Ii of player i ∈ N ,
an action a ∈ A(I), and a distribution µ̂i ∈ ∆Πi(I), an
(I, a, µ̂i)-trigger agent for player i is an agent that takes on
the role of player i and follows all recommendations unless
she reaches I and gets recommended to play a. If this hap-
pens, she stops committing to recommendations and plays
according to a strategy sampled from µ̂i until the game ends.

Then, it follows that µ ∈ ∆Π is an EFCE if, for every
i ∈ N , player i’s expected utility when following recom-
mendations is at least as large as the expected utility that
any (I, a, µ̂i)-trigger agent for player i can achieve (assum-
ing the opponents’ do not deviate). A formal statement is
provided in Appendix B in (Marchesi and Gatti 2020).

Computing EFCEs in n-player EFGs The algorithm
of Huang and von Stengel (2008) relies on the following LP
formulation of the problem of finding an EFCE, which has
exponentially many variables and polynomially many con-
straints (see also Appendix C in (Marchesi and Gatti 2020)).

max
µ≥0,v

∑
π∈Π

µ[π] s.t. (1a)

Aµ+Bv ≥ 0, (1b)
where µ is a vector of variables µ[π] for π ∈ Π, encoding a
probability distribution µ ∈ ∆Π. Problem 1 does not enforce
any simplex constraint on variables µ[π], and, thus, it is ei-
ther unbounded or it has an optimal solution with value zero
(by setting µ and v to zero). In the former case, any feasible
µ encodes an EFCE after normalizing it. As a result, since
an EFCE always exists (Von Stengel and Forges 2008), the
following dual of Problem 1 is always infeasible:

A>y ≤ −1 (2a)
B>y = −0 (2b)
y ≥ −0, (2c)

4For EFCEs, one can restrict the attention to distributions µ
over reduced strategy profiles, i.e., those in which each player’s
pure strategy only specifies actions at infosets reachable given that
player’s moves (Vermeulen and Jansen 1998). We stick to un-
reduced strategy profiles since, as shown in Appendix D in (March-
esi and Gatti 2020), they are necessary for trembling-hand perfect
CEs to define the players’ behavior off the equilibrium path.

where y is a vector of dual variables. The EAH approach ap-
plies the ellipsoid algorithm (Grötschel, Lovász, and Schri-
jver 1993) to Problem 2 in order to conclude that it is in-
feasible. Since there are exponentially many constraints, the
algorithm runs in polynomial time only if a polynomial-time
separation oracle is available. This is given by the following:

Lemma 1 (Lemma 5, (Huang and von Stengel 2008)). If
y ≥ 0 is such that B>y = 0, then there exists µ encod-
ing a product distribution µ ∈ ∆Π such that µ>A>y = 0.
Moreover, µ can be computed in polynomial time.

Jiang and Leyton-Brown (2015) show how, given a prod-
uct distribution µ computed as in Lemma 1, it is possi-
ble to recover, in polynomial time, a violated constraint for
Problem 2, corresponding to some strategy profile π ∈ Π.
This, together with some additional technical tricks ensur-
ing that B>y = 0 holds (see (Huang and von Stengel 2008)
for more details), allows to apply the ellipsoid algorithm to
Problem 2 in polynomial time. Since the problem is infeasi-
ble, the algorithm must terminate after polynomially many
iterations with a collection of violated constraints, which
correspond to polynomially many strategy profiles. Then,
solving (in polynomial time) Problem 1 with the variables
µ restricted to these strategy profiles gives an EFCE of the
game. Let us also remark that the EFCE obtained in this way
has support size polynomial in the size of the game.

Trembling-Hand Perfection and Correlation
We are now ready to show how trembling-hand perfection
can be injected into the definition of EFCE so as to amend
its weaknesses off the equilibrium path (see the following
for an example). We generalize the approach of Dhillon and
Mertens (1996) (restricted to CEs in normal-form games) to
the general setting of EFCEs in EFGs. The core idea is to
use the PE rather than the NE in the definition of CE. Thus:

Definition 5. Given an EFG Γ, a distribution µ ∈ ∆Π is
an extensive-form perfect correlated equilibrium (EFPCE)
if following recommendations is a PE of Γext(µ).

The definition of EFPCE crucially relies on the introduc-
tion of trembles in extended games, i.e., it takes into account
the possibility that each player may not follow action rec-
ommendations with a small, vanishing probability. In the
following, given a perturbed EFG (Γ, η) and µ ∈ ∆Π, we
denote with (Γext(µ), η) a perturbed extended game in which
the probability of playing each action is subject to a lower
bound equal to the lower bound η(a) of the corresponding
action a ∈ A in Γ. By recalling the definition of PE (Defi-
nition 1) and the structure of perturbed extended games, it is
easy to infer the following characterization of EFPCEs:

Lemma 2. Given an EFG Γ, a distribution µ ∈ ∆Π is
an EFPCE of Γ if following recommendations constitutes
NEs for at least one sequence of perturbed extended games
{Γext(µ), ηt)}t∈N such that, for all a ∈ A, the lower bounds
ηt(a) converge to zero as t→∞.

We remark that, with an abuse of terminology, we say that
players follow recommendations in a perturbed extended
game (Γext(µ), η) whenever they play strategies which place
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Figure 2: (Left) An EFG Γ. (Right) The extended game Γext(µ). The white square node at the root is a chance node, where
each action corresponds to some π ∈ Π and is labeled with its probability µ(π). Infosets in Γext(µ) are identified by pairs.
For instance, infoset 〈J, ac〉 corresponds to J when being recommended to play a and c at I and J, respectively. Thick actions
represent players’ behavior when following recommendations (for the ease of reading, action names are omitted).

all the residual probability (given lower bounds) on recom-
mended actions. In the following sections, we crucially rely
on the characterization of EFPCEs given in Lemma 2 in or-
der to derive our computational results. First, we show an
example of EFPCE and prove some of its properties.

Example of EFPCE Consider the EFG in Figure 1(Left)
and lower bounds ηt : A→ (0, 1) for t ∈ N, with ηt(a)→ 0
as t→∞ for all a ∈ A. First, notice that player 1 is always
better off playing action a at the root infoset I, since she can
guarantee herself a utility of 1 by selecting c at the follow-
ing infoset J, while she can achieve at most 1

2 by playing b.
Thus, any EFPCE of the game (as well as any EFCE) must
recommend a at I with probability 1. Then, in the sub-game
reached when playing a at I, it is easy to check that recom-
mending the pairs of actions (c,m), (c, n), and (d,m) each
with probability 1

3 is an equilibrium, as no player has an in-
centive to deviate from a recommendation, even with trem-
bles (see Appendix E in (Marchesi and Gatti 2020)). The
correlation device described so far is sufficient to define an
EFCE, as recommendations at infosets Y, K, and L are not
relevant given that they do not influence players’ utilities at
the equilibrium (b is never recommended). However, they
become relevant for EFPCEs, since, in perturbed extended
games, these infosets could be reached due to a tremble with
probability ηt(b). Then, player 2 must be told to play p at
Y, because her utility is always 1 if she plays p, while it
is always 0 for o. Moreover, with an analogous reasoning,
player 1 must be recommended to play e and h at K and
L, respectively. In conclusion, µ ∈ ∆Π : µ(aceh,mp) =
µ(aceh, np) = µ(adeh,mp) = 1

3 is an EFPCE.

Properties of EFPCEs We characterize the relation be-
tween EFPCEs and other equilibria, also showing that EF-
PCEs always exist and represent a refinement of EFCEs. 5

Theorem 1. This relation holds: PE ⊆ EFPCE ⊆ EFCE.

Theorem 2. The following relations hold:
• EFPCE 6⊂ NE and NE 6⊂ EFPCE;
• EFPCE ∩ NE = PE.

5In the following, we denote the sets of equilibria with their
corresponding acronyms (e.g., NE is the set of all NEs of a game).

NEs of Perturbed Extended Games
We provide a characterization of NEs of perturbed extended
games (Γext(µ), η), useful for our main algorithmic result
on EFPCEs given in the following section. Specifically, we
give a set of easily interpretable conditions which ensure
that following recommendations is an NE of (Γext(µ), η).
These are crucial for the derivation of the LP exploited by
our algorithm. Our characterization is inspired by that of
EFCEs based on trigger agents (see Lemma 4 in Appendix B
in (Marchesi and Gatti 2020)). However, the presence of
trembles in extended games requires some key changes,
which we highlight in the following.

First, we introduce some additional notation. Given a per-
turbed extended game (Γext(µ), η), we let ξη(z, π) be the
probability of reaching a node z ∈ Z when a strategy profile
π ∈ Π is recommended and players’ obey to recommenda-
tions, in presence of trembles defined by η. Each ξη(z, π)
is obtained by multiplying probabilities of actions in σ(z),
which are those on the path from the root to z. For each
a ∈ σ(z), two cases are possible: either a is prescribed by
the recommended π and played with its maximum probabil-
ity given η, or it is not, which means that a tremble occurred
with probability η(a). Formally, letting 1{a ∈ π} be an in-
dicator for the event a ∈ π, for every z ∈ Z and π ∈ Π:

ξη(z, π) :=
∏

a∈A:a∈σ(z)

η(a)1{a∈π}η̃(a)1−1{a∈π}pc(z),

where, for a ∈ A(I), we let η̃(a) := 1 −
∑
a′ 6=a∈A(I) η(a′)

be the maximum probability assignable to a given η. More-
over, for every player i ∈ N , infoset I ∈ Ii, terminal node
z ∈ Z(I) reachable from I , and strategy profile π ∈ Π,
we let ξη(z, I, π) be defined as ξη(z, π) excluding player i’s
actions leading from I to z, i.e., with the product restricted
to actions a ∈ σi(I) ∪ (σ(z) \Ai). Analogously, for every
player i’s strategy πi ∈ Πi(I), we let ξη(z, πi) be defined
for player i’s actions a ∈ Ai ∩ (σ(z) \ σi(I)) from I to z.

Following recommendations is an NE of the perturbed ex-
tended game (Γext(µ), η) if, for every player i ∈ N , infoset
I ∈ Ii, and action a ∈ (I), player i’s utility when obeying
to the recommendation a at I is at least as large as the utility
achieved by any (I, a, µ̂i)-trigger agent. The fundamental
differences with respect to EFCE are: (i) an infoset I could
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be reached even when actions recommended at preceding
infosets do not allow it (due to trembles); and (ii) trigger
agents are subjects to trembles, which means that they may
make mistakes while playing the strategy sampled from µ̂i.

For any terminal node z ∈ Z, the probability of reaching
it when following recommendations is:

qηµ(z) :=
∑
π∈Π

ξη(z, π)µ(π),

where the summation accounts for the probability of reach-
ing z for every possible π. The sum is over Π rather than
Π(z) as for EFCE, since, due to trembles, z could be reached
even when π /∈ Π(z).

For any (I, a, µ̂i)-trigger agent, the probability of reach-
ing z ∈ Z(I) when the agent ‘gets triggered’ is defined as:

pη,I,aµ,µ̂i
(z):=

 ∑
πi∈Πi(a)
π−i∈Π−i

ξη(z, I, π)µ(π)


 ∑
π̂i∈Πi(I)

ξη(z, π̂i)µ̂i(π̂i)

,
where the first summation is over Πi(a) instead of Πi(I, a)
(as in the EFCE) since it might be the case that the agent is
activated also when the recommended strategy πi does not
allow to reach infoset I . Finally, the overall probability of
reaching z ∈ Z(I) is:

yη,I,aµ,µ̂i
(z) := pη,I,aµ,µ̂i

(z) +
∑

πi∈Πi\Πi(a)
π−i∈Π−i

ξη(z, π)µ(π),

where the first term is for when the agent ‘gets triggered’,
while the second term accounts for the case in which the
agent is not activated (the two events are independent).
Theorem 3. Given a perturbed extended game (Γext(µ), η),
following recommendations is an NE of the game if for every
i ∈ N and (I, a, µ̂i)-trigger agent for player i, it holds that:

∑
z∈Z(I)


 ∑
πi∈Πi(a)
π−i∈Π−i

ξη(z, π)µ(π)

ui(z)

≥ ∑
z∈Z(I)

pη,I,aµ,µ̂i
(z)ui(z).

Computing an EFPCE in n-player EFGs
We provide a polynomial-time algorithm to compute an EF-
PCE in n-player EFGs (also with chance). The algorithm is
built on three fundamental components: (i) a trembling LP
(with exponentially many variables and polynomially many
constraints) whose limit solutions define EFPCEs; (ii) an
adaption of the algorithm by Farina, Gatti, and Sandholm
(2018) that finds such limit solutions by solving a sequence
of (non-trembling) LPs; and (iii) a polynomial-time EAH
procedure that solves these LPs.

Trembling LP for EFPCEs It resembles the EFCE LP in
Problem 1. In this case, the constraints appearing in the LP
ensure that following recommendations is an NE in a given
sequence of perturbed extended games, by exploiting the
characterization given in Theorem 3. Then, Lemma 2 allows

to conclude that the limit solutions of the trembling LP de-
fine EFPCEs. In the following, we assume that a sequence of
perturbed extended games {(Γext(µ), ηt)}t∈N is given. For
every player i ∈ N , infoset I ∈ Ip, and action a ∈ A(I), we
introduce a variable u[i, I, a] to encode player i’s expected
utility when following the recommendation to play a at I in
the perturbed extended game (Γext(µ), ηt). These variables
are defined by the following constraints:

u[i, I, a] =
∑

z∈Z(I)

 ∑
πi∈Πi(a)
π−i∈Π−i

ξη(z, π)µ[π]

ui(z) (3)

∀i ∈ N, ∀I ∈ Ii, ∀a ∈ A(I).

Then, we introduce constraints that recursively define vari-
ables v[i, I, a, J ] for every infoset J ∈ Ii : I � J . These en-
code the maximum expected utility obtained at infoset J by
trigger agents associated with I and a. To this end, we also
need some auxiliary non-negative variables w[i, I, a, J, a′],
which are defined for every player i ∈ N , infoset I ∈ Ii,
action a ∈ A(I), infoset J ∈ Ii : I � J following I (this
included), and action a′ ∈ A(J) available at J .

v[i, I, a, J ]− w[i, I, a, J, a′] ≥ (4)

∑
z∈Z⊥(J,a′)

 ∑
πi∈Πi(a)

π−i∈Π−i(z)

ξη(z, I, π)µ[π]

ui(z)+

∑
K∈C(J,a′)

v[i, I, a,K]−
∑

a′′∈A(K)

ηt(a
′′)w[i, I, a,K, a′′]


∀i ∈ N, ∀I ∈ Ii, ∀a ∈ A(I), ∀J ∈ Ii : I � J, ∀a′ ∈ A(J).

Intuitively, each auxiliary variable w[i, I, a, J, a′] represents
a penalty on v[i, I, a, J ] due to the possibility of trembling
by playing a (possibly) sub-optimal action a′ ∈ A(J) at
J . Indeed, whenever a′ is an optimal action at infoset J ,
then w[i, I, a, J, a′] is set to 0 in any solution; otherwise,
w[i, I, a, J, a′] represents how much utility is lost by playing
a′ instead of an optimal action (see Figure 3(Right) for an
example). Finally, the incentive constraints are:

u[i, I, a] = v[i, I, a, I ]−
∑

a′∈A(I)

ηt(a
′)w[i, I, a, I, a′] (5)

∀i ∈ N, ∀I ∈ Ii, ∀a ∈ A(I).

Figure 3 provides an example of Constraints (4) and (5) to
better clarify their meaning. The following theorem shows
that Constraints (3), (5), and (4) correctly encode the condi-
tions given in Theorem 3, which ensure that following rec-
ommendations is an NE in (Γext(µ), ηt).
Theorem 4. Given a perturbed extended game (Γext(µ), ηt),
if Constraints (3), (4), and (5) can be satisfied for the vector
µ of variables µ[π] encoding the distribution µ, then follow-
ing recommendations is an NE of (Γext(µ), ηt).
By substituting the expression of u[i, I, a] (given by Con-
straints (3) and (5)) into Constraints (4), we can formulate
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z1 z2 z3 z4

z5

a b

c d e f

I

J K

Constraints (4) and (5) for player 1, infoset I, and action a

u[1, I, a] = v[1, I, a, I]− η(a)w[1, I, a, I, a]− η(b)w[1, I, a, I, b]

(I, a): v[1, I, a, I]− w[1, I, a, I, a] ≥ v[1, I, a, J] + v[1, I, a, K]+
−η(c)w[1, I, a, J, c]− η(d)w[1, I, a, J, d]− η(e)w[1, I I, a, K, e]− η(f)w[1, I, a, K, f ]

(I, b) v[1, I, a, I]− w[1, I, a, I, b] ≥ U1(z5)

(J, c): v[1, I, a, J]− w[1, I, a, J, c] ≥ U1(z1) (K, e): v[1, I, a, K]− w[1, I, a, K, e] ≥ U1(z3)
(J, d): v[1, I, a, J]− w[1, I, a, J, d] ≥ U1(z2) (K, f): v[1, I, a, K]− w[1, I, a, K, f ] ≥ U1(z4)

Figure 3: (Left) Simple EFG. (Right) Example of Constraints (4)–(5); we let U1(z) :=
∑
π1∈Π(a)π2∈Π2(z) ξ

η(z, I, π)µ[π]u1(z)

for every z ∈ Z. Variables v[1, I, a, ·] encode the optimal utility of trigger agents associated to I, a at infosets following I (without
trembles). Variables w[1, I, a, ·, ·] account for penalties due to trembles. To see this, fix µ[π]. Assume that U1(z4) > U1(z3)
and consider the constraints for (K, e) and (K, f). Then, it must be v[1, I, a, K] = U1(z4) and w[1, I, a, K, f ] = 0, which implies
w[1, I, a, K, e] = U1(z4)−U1(z3) (constraint for (I, a)). Similarly, assuming U1(z2) > U1(z1), it must be v[1, I, a, J] = U1(z2),
w[1, I, a, J, d] = 0, and w[1, I, a, J, c] = U1(z2)− U1(z1). An analogous reasoning holds at infosets upwards in the game tree.

the following trembling LP parameterized by t ∈ N:

max
µ≥0,v,w≥0

∑
π∈Π

µ[π] s.t. (6a)

Atµ+Bv + Ctw ≥ 0, (6b)

where At is the analogous of matrix A in Problem 1, w is a
vector whose components are the variables w[i, I, a, J, a′],
and Ct is a matrix defining the constraints coefficients for
these variables. Notice that the coefficients of variables in v
(as defined by B) are the same as in Problem 1.

Limit Solutions of Trembling LP Problem 6 can be cast
into the framework of Farina, Gatti, and Sandholm (2018)
by defining sequences of lower bounds ηt by means of van-
ishing polynomials in a parameter ε → 0. As a result, the
polynomial-time algorithm by Farina, Gatti, and Sandholm
(2018) can be used, with the only difference that, at each
step, for a fixed value of the parameter ε (i.e., particular
lower bounds ηt), it needs to solve an instance of Prob-
lem 6 featuring exponentially many variables. Provided that
the latter can be done in polynomial time, the polynomiality
of the overall procedure is preserved, since the bounds on
the running time provided by Farina, Gatti, and Sandholm
(2018) do not depend on the number of variables in the LP.

EAH Procedure In order to solve Problem 6 for a par-
ticular lower bound function ηt in polynomial time, we can
apply a procedure similar to the EAH algorithm by Huang
and von Stengel (2008). Notice that Problem 6 is always un-
bounded, since there always exists a distribution µ ∈ ∆Π

such that following recommendations is an NE of the per-
turbed extended game (Γext(µ), ηt) (such µ is an EFCE of
the corresponding perturbed, non-extended game). Thus, we
only need to provide a polynomial-time separation oracle for
the always-infeasible dual of Problem 6, which reads as:

A>t y ≤ −1 (7a)

B>y = −0 (7b)

C>t y ≥ −0 (7c)
y ≥ −0, (7d)

where the vector of dual variables y has the same role as in
Problem 2, since the constraints of the primal problems are
indexed on the same sets. Notice that constraints C>t y ≥ 0
are polynomially many. As a result, one can always check
whether one of these constraints is violated in polynomial
time and, if this is the case, output one such constraint as a
violated inequality. This allows to focus on separation ora-
cles for the other constraints. Then, the required one is given
by the following lemma, an analogous of Lemma 1.

Lemma 3. If y ≥ 0 is such that B>y = 0, then there
exists µ encoding a product distribution µ ∈ ∆Π such that
µ>A>t y = 0. Moreover, µ can be computed in poly-time.

The proof of Lemma 3 follows the same line as that of
Lemma 5 by Huang and von Stengel (2008) (see (Huang
2011) for its complete version) and it is based on the CE
existence proof by Hart and Schmeidler (1989).

Discussion and Future Works
We started the study of trembling-hand perfection in sequen-
tial games with correlation, introducing the EFPCE as a re-
finement of the EFCE that amends its weaknesses off the
equilibrium path. This paves the way to a new research line,
raising novel game-theoretic and computational challenges.

As for EFPCEs, an open question is whether compact cor-
related strategy representations, like the EFCE-based corre-
lation plan by Von Stengel and Forges (2008), are possible
in some restricted settings, such as 2-player games without
chance. This would enable the optimization over the set of
EFPCEs in polynomial time. The main challenge raised by
EFPCEs with respect to EFCEs is that the former require to
reason about general, un-reduced strategy profiles.

Another possible future work is to extend our analysis to
other CE-based solution concepts, such as the normal-form
CE and the agent-form CE (see (Von Stengel and Forges
2008) for their definitions). This raises the interesting ques-
tion of how different trembling-hand-based CEs are able to
amend weaknesses off the equilibrium path.

Finally, an interesting direction is to consider different
ways of refining CE-based equilibria in sequential games,
such as, e.g., using quasi-perfection (Van Damme 1984).
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