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Abstract

We study the problem of fair and efficient allocation of a set
of indivisible goods to agents with additive valuations us-
ing the popular fairness notions of envy-freeness up to one
good (EF1) and equitability up to one good (EQ1) in con-
junction with Pareto-optimality (PO). There exists a pseudo-
polynomial time algorithm to compute an EF1+PO alloca-
tion, and a non-constructive proof of existence of allocations
that are both EF1 and fractionally Pareto-optimal (fPO). We
present a pseudo-polynomial time algorithm to compute an
EF1+fPO allocation, thereby improving the earlier results.
Our techniques also enable us to show that an EQ1+fPO allo-
cation always exists when the values are positive, and that it
can be computed in pseudo-polynomial time.
We also consider the class of k-ary instances where k is a
constant, i.e., each agent has at most k different values for
the goods. We show that for such instances an EF1+fPO allo-
cation can be computed in polynomial time. When all values
are positive, we show that an EQ1+fPO allocation for such in-
stances can be computed in polynomial time. Next, we con-
sider instances where the number of agents is constant, and
show that an EF1+PO (also EQ1+PO) allocation can be com-
puted in polynomial time. These results significantly extend
the polynomial-time computability beyond the known cases
of binary or identical valuations.
Further, we show that the problem of computing an EF1+PO
allocation polynomial-time reduces to a problem in the com-
plexity class PLS. We also design a polynomial-time algo-
rithm that computes Nash welfare maximizing allocations
when there are constantly many agents with constant many
different values for the goods.

Introduction
The problem of fair division was formally introduced by
Steinhaus (1948), and has since been extensively studied in
various fields, including economics and computer science
(Brams and Taylor 1996; Moulin 2003). It concerns allocat-
ing resources to agents in a fair and efficient manner, and has
various practical applications such as rent division, division
of inheritance, course allocation and government auctions.
Much of the work has focused on divisible goods, which can
be shared between agents. In this setting, several appealing
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fairness concepts like envy-freeness have been defined (Fo-
ley 1967; Varian 1974), which requires that every agent pre-
fer their own bundle of goods to that of any other. On the
other hand, when the goods are indivisible, envy-free allo-
cations need not even exist, e.g., in the simple case of one
good and two agents. Other classical notions of fairness, like
equitability and proportionality, may also be impossible to
satisfy when goods are indivisible. However, fair division of
indivisible goods remains an important problem since goods
cannot always be shared, and also because it models sev-
eral practical scenarios such as a course allocation (Othman
et al. 2010). Since allocations satisfying standard fairness
criteria fail to exist in the case of indivisible goods, several
weaker fairness notions have been defined.

A relaxation of envy-freeness, called envy-freeness up to
one good (EF1) was defined by Budish (2011). An allocation
is said to be EF1 if every agent prefers their own bundle over
the bundle of any other agent after removing at most one
good from the other agent’s bundle. When the valuations of
the agents for the goods are monotone, EF1 allocations exist
and are polynomial time computable (Lipton et al. 2004).

The standard notion of economic efficiency is Pareto opti-
mality (PO). An allocation is said to be PO if no other alloca-
tion makes an agent better off without making someone else
worse off. A natural question to ask is whether EF1 can be
achieved in conjunction with PO under additive valuations.
The concept of Nash welfare provides a positive answer to
this question. The Nash welfare is the geometric mean of the
agents’ utilities, and by maximizing it we achieve a tradeoff
between efficiency and fairness. Caragiannis et al. (2016)
showed that any maximum Nash welfare (MNW) alloca-
tion is EF1 and PO. For binary valuations, the MNW al-
location can be computed in polynomial time (Barman et
al. (2018b)). However, in general, the problem of computing
the MNW allocation is APX-hard (Lee 2015).

Bypassing this barrier, Barman, Krishnamurthy, and
Vaish (2018a) devised a pseudo-polynomial time algorithm
that computes an allocation that is both EF1 and PO. They
also showed that allocations that are both EF1 and fraction-
ally Pareto-optimal (fPO) always exist, where an allocation
is said to be fPO if no fractional allocation exists that makes
an agent better off without making anyone else worse off.
They showed this result via a non-constructive convergence
argument used in real analysis, and did not provide an al-
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gorithm for computing such an allocation. Clearly, fPO is a
stronger notion of economic efficiency, and hence the prob-
lem of computing EF1+fPO allocations is an important one.
Another reason to prefer fPO allocations over PO allocations
in practice is that the former property admits efficient verifi-
cation; whereas checking if an allocation is PO is known to
be co-NP-complete (de Keijzer et al. 2009). This means that
in scenarios where a centralized entity is responsible for the
allocation, all participants can efficiently verify if an allo-
cation is fPO (and thus PO). However, in general, the same
efficient verification is not possible for PO allocations.

In this paper, we present a pseudo-polynomial time al-
gorithm that computes an allocation that is EF1+fPO. Not
only does this improve the result of Barman et al., but it also
provides other interesting insights. We consider the class
of k-ary instances for a constant k, i.e., each agent has at
most k different values for the goods. Our analysis shows
that for such instances, an EF1+fPO allocation can be found
in polynomial time. Our result becomes especially interest-
ing in light of the fact that computing the MNW allocation
remains NP-hard for such instances (Lee 2015), even for
k = 3 (Amanatidis et al. 2020). Further, this is the first class
apart from binary or identical valuations for which EF1+fPO
allocations are polynomial time computable.

While k-ary instances are interesting from a theoretical
point of view to understand the limits of tractability in com-
puting fair and efficient allocations, they are also relevant
from a practical perspective. Eliciting the values that agents
have for goods is often a tricky task, as agents may not be
able to assert exactly what values they have for different
goods. A simple protocol that the entity in charge of the allo-
cation can do is to ask each agent to “rate” the goods using a
few (constantly many) values. Based on these responses, the
valuations of the agents can be established.

Equitability up to one good (EQ1) is a generalization of
the classical fairness notion of equitability. An allocation is
said to be EQ1 if the utility an agent gets from her bundle
is no less than the utility any other agent gets after remov-
ing one specific good from their bundle. Using similar tech-
niques to that of Barman et al. (2018a), a pseudo-polynomial
time algorithm to compute an EQ1+PO allocation was de-
veloped by Freeman et al. (2019), when all the values are
positive. We show the stronger result that EQ1+fPO allo-
cations always exist for positive-valued instances, and can
in fact be computed in pseudo-polynomial time. Our tech-
niques also show that for k-ary instances with positive val-
ues where k is a constant, an allocation that is EQ1 and fPO
can be computed in polynomial time.

In many practical applications, the number of agents n is
constant. We show that for constant n, an EF1+PO allocation
can be computed in time polynomial in the number of goods
for the case of general additive valuations. In contrast, com-
puting the MNW allocation remains NP-hard for n = 2. Our
techniques also show that for constant n, an EQ1+PO allo-
cation can also be computed in polynomial time. Further,
when we consider k-ary instances with constant n and k, we
show that many fair division problems, including comput-
ing the MNW allocation, have polynomial time complexity.
This improves the result of Bliem et al. (2016) who show

that the EF+PO is tractable in this case.
We also make progress on the complexity-front. We

prove that the problem of computing an EF1+PO alloca-
tion polynomial-time reduces to solving a problem in the
complexity class Polynomial Local Search (PLS). For this,
we carefully analyze Barman et al. (2018a)’s algorithm and
show that it has the structure of local-search problem. Fi-
nally, we remark that our techniques also improve the results
of (Chakraborty et al. 2020) and (Freeman et al. 2020) for
the problems of computing weighted-EF1+fPO allocations
of goods and EQ1+fPO allocations of chores, respectively.

Related work. Barman et al. (2018a) devised a pseudo-
polynomial time algorithm that computes an allocation
that is both EF1 and PO. This algorithm runs in time
poly(n,m, vmax), where n is the number of agents, m the
number of items, and vmax the maximum utility value. Their
algorithm first perturbs the values to a desirable form, and
then computes an EF1 and fPO allocation for the perturbed
instance. Their approach is via integral market-equilibria,
which guarantees fPO at every step. The spending of an
agent, which is the sum of prices of the goods she owns
in the equilibrium, works as a proxy for her utility. The re-
turned allocation is approximately-EF1 and approximately-
PO for the original instance, which for a fine-enough ap-
proximation is EF1 and PO. Our algorithm proceeds in a
similar manner to their algorithm, with one main difference
being that we do not need to consider any approximate in-
stance and can work directly with the given valuations. Our
algorithm returns an allocation that is not only PO, but is
in fact fPO. Another key difference is the run-time analy-
sis: while their analysis relies on bounding the number of
steps using arguments about prices, our analysis is more di-
rect and works with the values. This allows us to prove a
general Theorem 1, of which polynomial run-time for k-ary
instances with constant k is a consequence. Directly, such a
conclusion cannot be drawn from the analysis of Barman et
al. Another technical difference is that we raise the prices of
multiple components of least spenders simultaneously, un-
like in Barman et al. (2018a).

Barman et al. showed that there is a non-deterministic al-
gorithm that computes an EF1+fPO allocation, since check-
ing if an allocation is fPO can be done efficiently. In con-
trast, we present a deterministic algorithm computing an
EF1+fPO allocation, albeit with worst-case pseudopolyno-
mial run time. We also show that finding an EF1+PO allo-
cation reduces to a problem in PLS. However this doesn’t
place it in PLS, since the problem is not even in the class
Total Function NP ⊇ PLS (Barman et al.).

Freeman et al. (2019) presented a pseudo-polynomial
time algorithm for computing an EQ1+PO allocation for in-
stances with positive values. Since they consider an approxi-
mate instance too, their algorithm does not achieve the guar-
antee of fPO. They also show that the leximin solution, i.e.,
the allocation that maximizes the minimum utility, and sub-
ject to this, maximizes the second minimum utility, and so
on; is EQX (a stronger requirement than EQ1) and PO for
positive utilities. However, as remarked in (Plaut and Rough-
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garden 2018), computing a leximin solution is intractable.
Bredereck et al. (2019) presented a framework for fixed-

parameter algorithms for many fairness concepts, including
EF1+PO, parameterized by n + vmax. Our results improve
their findings and show that the problem has polynomial
time complexity for the cases of (i) constant n, (ii) constant
number of utility values, (iii) vmax bounded by poly(m,n).

Preliminaries
For t ∈ N, let [t] denote {1, . . . , t}.
Problem setting. A fair division instance is a tuple
(N,M, V ), where N = [n] is a set of n ∈ N agents,
M = [m] is the set of m ∈ N indivisible items, and
V = {v1, . . . , vn} is a set of utility functions, one for each
agent i ∈ N . Each utility function vi : M → Z≥0 is spec-
ified by m numbers vij ∈ Z≥0, one for each good j ∈ M ,
which denotes the value agent i has for good j. We assume
that the valuation functions are additive, that is, for every
agent i ∈ N , and for S ⊆ M , vi(S) =

∑
j∈S vij . Further,

we assume that for every good j, there is some agent i such
that vij > 0. Note that we can in general work with rational
values, since they can be scaled to make them integral.

We call a fair division instance (N,M, V ) a:

1. Binary instance if for all i ∈ N and j ∈M , vij ∈ {0, 1}.
2. k-ary instance, if ∀i ∈ N , |{vij : j ∈M}| ≤ k.

3. Positive-valued instance if ∀i ∈ N , ∀j ∈M , vij > 0.

Note that the class of k-ary instances generalizes the class of
k-valued instances as defined in Amanatidis et al. (2020), in
which all values belong to a k-sized set, whereas we allow
each agent to have k different values for the goods.
Allocation. An allocation x of goods to agents is a n-
partition of the goods x1, . . . ,xn, where agent i is allotted
xi ⊆ M , and gets a total value of vi(xi). A fractional al-
location x ∈ [0, 1]n×m is a fractional assignment such that
for each good j ∈ M ,

∑
i∈N xij ≤ 1. Here, xij ∈ [0, 1]

denotes the fraction of good j allotted to agent i.
For an agent i ∈ N , let Ui be the number of different util-

ity values i can get in any allocation. Let U = maxi∈N Ui.
Fairness notions. An allocation x is said to be:

1. Envy-free up to one good (EF1) if for all i, h ∈ N , there
exists a good j ∈ xh s.t. vi(xi) ≥ vi(xh \ {j}).

2. Equitable up to one good (EQ1) if for all i, h ∈ N , there
exists a good j ∈ xh s.t. vi(xi) ≥ vh(xh \ {j}).

Pareto-optimality. An allocation y dominates an allocation
x if vi(yi) ≥ vi(xi), ∀i and there exists h s.t. vh(yh) >
vh(xh). An allocation is said to be Pareto optimal (PO) if no
allocation dominates it. Further, an allocation is said to be
fractionally PO (fPO) if no fractional allocation dominates
it. Thus, a fPO allocation is PO, but not vice-versa.
Maximum Nash Welfare. The Nash welfare of an alloca-
tion x is given by NW(x) =

(
Πi∈Nvi(xi)

)1/n
. An alloca-

tion that maximizes the NW is called a MNW allocation.
Fisher markets. A Fisher market or a market instance is a
tuple (N,M, V, e), where the first three terms are interpreted

as before, and e = {e1, . . . , en} is the set of agents’ bud-
gets, where ei ≥ 0, for each i ∈ N . In this model, goods can
be allocated fractionally. Given prices p = (p1, . . . , pm) of
goods, each agent aims to obtain the set of goods that maxi-
mizes her total value subject to her budget constraint.

A market outcome is a (fractional) allocation x of the
goods to the agents and a set of prices p of the goods. The
spending of an agent i under the market outcome (x,p) is
given by p(xi) =

∑
j∈M pjxij . For an agent i, we define

the bang-per-buck ratio αij of good j as vij/pj , and the
maximum bang-per-buck (MBB) ratio αi = maxj αij . We
define mbbi = {j ∈M : vij/pj = αi}, called the MBB-set,
to be the set of goods that give MBB to agent i at prices p.
A market outcome (x,p) is said to be ‘on MBB’ if for all
agents i and goods j, xij > 0 → j ∈ mbbi. For integral x,
this means xi ⊆ mbbi for all i ∈ N .

A market outcome (x,p) is said to be a market equilib-
rium if (i) the market clears, i.e., all goods are fully allocated.
Thus, for all j,

∑
i∈N xij = 1, (ii) budget of all agents is ex-

hausted, for all i ∈ N ,
∑
j∈M xijpj = ei, and (iii) agents

only spend money on goods that give them maximum bang-
per-buck, i.e., (x,p) is on MBB. Given a market outcome
(x,p) with x integral, we say it is price envy-free up to one
good (pEF1) if for all i, h ∈ N there is a good j ∈ xh such
that p(xi) ≥ p(xh \ {j}). For integral market outcomes on
MBB, the pEF1 condition implies the EF1 condition.

Lemma 1. Let (x,p) be an integral market outcome on
MBB. If (x,p) is pEF1 then x is EF1 and fPO.

Proof. We first show that (x,p) forms a market equilibrium
for the Fisher market instance (N,M, V, e), where for ev-
ery i ∈ N , ei = p(xi). It is easy to see that the market
clears and the budget of every agent is exhausted. Further
x is on MBB as per our assumption. Now the fact that x
is fPO follows from the First Welfare Theorem (Mas-Colell
et al. 1995), which shows that for any market equilibrium
(x,p), the allocation x is fPO.

Since (x,p) is pEF1, for all pairs of agents i, h ∈ N ,
there is some good j ∈ xh s.t. p(xi) ≥ p(xh \ {j}). Since
(x,p) is on MBB, xi ⊆ mbbi. Let αi be the MBB-ratio of
i at the prices p. By definition of MBB, vi(xi) = αip(xi),
and vh(xh \ {j}) ≤ αip(xh \ {j}). Combining these, we
get that x is EF1.

Given a price vector p, we define the MBB graph to be
the bipartite graph G = (N,M,E) where for an agent i and
good j, (i, j) ∈ E iff j ∈ mbbi. Such edges are called MBB.
Given an accompanying allocation x, we supplement G to
include allocation edges, an edge between i and j if j ∈ xi.

We call an agent i with minimum p(xi) a least spender
(LS), and denote by L the set of least spenders. For
agents i0, . . . , i` and goods j1, . . . , j`, consider a path P =
(i0, j1, i1, j2, . . . , j`, i`) in the supplemented MBB graph,
where for all 1 ≤ `′ ≤ `, j`′ ∈ mbbi`′−1

∩ xi`′ . Define
the level of an agent h to be the length of the shortest such
path from the LS to h, and to be n if no such path exists.
Define alternating paths to be such paths where the edges
are between agents at a lower level to agents at a strictly
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Algorithm 1 Computing an EF1+fPO allocation of goods
Input: Fair division instance (N,M, V )
Output: An integral allocation x

1: (x,p)← initial welfare maximizing integral market al-
location, where pj = vij for j ∈ xi.

2: L← {i ∈ N : i ∈ argminh∈Np(xh)} . set of LS
3: if ∃i ∈ L, ∃ alternating path (i, j1, i1, . . . , j`, i`), s.t.

p(xi` \ {j`}) > p(xi) then
4: Transfer j` from i` to i`−1
5: Repeat from Line 2
6: if (x,p) is pEF1 then return x
7: else
8: γ1 = minh∈CL∩N,j∈M\CL

αh

vhj/pj
.

Factor by which prices of goods in CL are raised until a
new MBB edge appears from an agent in CL to a good
outside CL

9: γ2 = mini∈L,h∈N\CL

p(xh)
p(xi)

.

Factor by which prices of goods in CL are raised until a
new agent outside CL becomes a new LS

10: β = min(γ1, γ2)
11: for j ∈ CL ∩M do
12: pj ← βpj
13: Repeat from Line 2

higher level. The edges in an alternating path alternate be-
tween MBB edges and allocation edges. For a least spender
i, define C`i to be the set of all goods and agents which lie
on alternating paths of length `. Call Ci =

⋃
` C

`
i the com-

ponent of i, the set of all goods and agents reachable from
the least spender i through alternating paths.

Finding EF1+fPO Allocations of Goods
We now present the main algorithm of our paper. Given a
fair division instance (N,M, V ), our algorithm returns an
allocation x that is EF1 and fPO. We show Algorithm 1 ter-
minates in time poly(n,m,U) with an EF1+fPO allocation.
Detailed proofs are available in the full version of the paper.

Algorithm 1 starts with a welfare maximizing integral
allocation (x,p), where pj = vij for j ∈ xi. The al-
gorithm then explores if there is an alternating path P =
(i, j1, i1, . . . , j`, i` = h), from some LS agent i ∈ L, such
that p(xh \ {j`}) > p(xi), i.e., an alternating path along
which the pEF1 condition is violated for the LS agent w.r.t
the good j`. When such a path is encountered, the algorithm
transfers j` from h to i`−1. When there is no such path from
i, the component Ci of the LS agent i is pEF1. We denote by
CL the union of all components of LS agents. Suppose the
overall allocation is not pEF1, then the algorithm raises the
prices of all goods in theCL until either (i) a new MBB edge
gets added from an agent h ∈ CL to a good j /∈ CL (cor-
responding to a price rise of γ1), or (ii) the spending of an
agent h /∈ CL becomes equal to the spending of the agents
inL (corresponding to a price rise of γ2). The algorithm then
proceeds as before from Line 2.

We will use the terms time-step or iteration interchange-
ably to denote either a transfer or a price rise step. We say ‘at

time-step t’, to refer to the state of the algorithm just before
the event at t happens. We denote by (xt,pt) the allocation
and price vector at time-step t. First we note that:
Lemma 2. At any time-step t, (xt,pt) is on MBB.

This follows from the fact that goods are always trans-
ferred along MBB edges, and the prices are raised only until
a new MBB edge is created. Thus, the MBB condition is
never violated for any agent and the allocation is always on
MBB throughout the run of the algorithm.

If Algorithm 1 terminates, then the final outcome (x,p) is
pEF1. Since it is also on MBB, by Lemma 1, x is EF1+fPO.
We now proceed towards the run-time analysis of Algo-
rithm 1. First we observe that since prices are raised only un-
til the spending of a new agent becomes equal to the spend-
ing of the least spenders:
Lemma 3. The spending of the least spender(s) does not
decrease as the algorithm progresses. Further at any price
rise event t with price-rise factor β, the spending of the least
spender(s) increases by a factor of β.

Next we argue:
Lemma 4. The number of iterations with the same set of
least spenders is poly(n,m).

Proof. Let us fix a set L of least spenders. We count the
number of alternating paths from some i ∈ L to an agent k
who owns a good j which is then transferred to an agent h.
The number of such paths is at most n · n ·m · n = n3m,
thus there are at most poly(n,m) transfers with the same set
of LS in the absence of price-rise steps. Further, there can be
at most n price-rise steps without any change in L.

The next lemma is key. We argue that between the time-
steps at which an agent i ceases to be a LS and subsequently
becomes a LS again, her utility strictly increases.
Lemma 5. Let t0 be a time-step where agent i ceases to be
a LS, and let t` be the first subsequent time step just after
which i becomes the LS again. Then:

vi(x
t`+1
i ) > vi(x

t0
i )

Note here that vi(xt0i ) is the utility of agent i just before
time-step t0, and vi(x

t`+1
i ) her utility just after time-step t`.

Proof. From Lemma 3, since i ceases to be a LS after time-
step t0, i must have received some good j at time step t0.
Since j ∈ mbbi at t0, vij > 0. Suppose i does not lose
any good in any subsequent iterations until t`, then xt`+1

i ⊇
xt0i ∪{j}, and hence vi(xt`+1

i ) ≥ vi(xt0i ∪{j}) = vi(x
t0
i )+

vij > vi(x
t0
i ), using additivity of valuations.

On the other hand suppose i does lose some goods be-
tween t0 and t`. Let tk ∈ (t0, t`] be the last time-step
when i loses a good, say j′. Let t1, . . . , tk−1 be time-steps
(in order) between t0 and tk when i experiences price-
rise, and tk+1, . . . , t`−1 be time-steps (in order) between
tk and t` when i experiences price-rise, until finally af-
ter the event t` agent i becomes the LS again. Let us de-
fine βt to be the price-rise factor at the time-step t. If t
is a price-rise step, βt > 1, else we set βt = 1. Hence
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βt1 , . . . , βtk−1
, βtk+1

, . . . , βt`−1
are price-rise factors at the

corresponding events t1, . . . , tk−1, tk+1, . . . , t`−1 and are
all greater than 1. If t` is a price-rise event, let the price-
rise factor be βt` > 1; and if not let βt` = 1. Note that tk is
not a price-rise event and hence βtk = 1.

Using Lemma 3, together with the fact that i does not lose
any good after tk, we have:

pt`+1(xt`+1
i ) ≥ (βt`βt`−1

· · ·βtk+1
)ptk(xtki \ {j

′}). (1)

The above may not be an equality because in addition to ex-
periencing price-rises during tk+1, . . . , t`, agent i may also
gain some new good. If ik is a LS at tk, then for agent i to
lose the good j′ it must be the case that:

ptk(xtki \ {j
′}) > ptk(xtkik ). (2)

Let it be a LS at time-step t. Then by repeatedly applying
Lemma 3, we get:

ptk(xtkik ) ≥ βtk−1ptk−1(xtk−1itk−1
)

≥ · · · ≥ (βtk−1βtk−2 · · ·β1)pt0(xt0it0
)

≥ (βtk−1
βtk−2

· · ·βt1)pt0(xt0i ) ,

(3)

where the last transition follows from the facts that (i) each
βt ≥ 1, (ii) {t1, . . . , tk−1} ⊆ {1, . . . , tk−1}, and (iii) it0 =
i, since i is a least spender at t0. Putting (1), (2) and (3)
together, we get:

pt`+1(xt`+1
i ) > (Π`

r=1βtr )pt0(xt0i ) . (4)

Let αti denote the MBB-ratio of i at the time step t. Observe
that in every price rise event with price rise factor β, the
MBB ratio of any agent experiencing the price rise decreases
by a factor β. Further, the MBB ratio of any agent does not
change unless she experiences a price-rise step. Thus:

αt`+1
i =

αt0i
(βt`βt`−1

· · ·βtk+1
)(βtk−1

βtk−2
· · ·βt1)

. (5)

Therefore using the fact that the allocation is on MBB edges,
and with (4) and (5), we have:

vi(x
t`+1
i ) = αt`+1

i pt`+1(xt`+1
i ) (xt`+1 is on MBB)

>
αt0i

(Π`
r=1βtr )

(Π`
r=1βtr )pt0(xt0i ) (From (4) and (5))

= αt0i p
t0(xt0i ) = vi(x

t0
i ), (xt0 is on MBB)

as claimed.

Using the above lemmas, we show:
Lemma 6. Algorithm 1 terminates in time poly(n,m,U).

Proof. Consider any agent i. From Lemma 5, it is clear that
every time i becomes the LS again her utility has strictly
increased compared to her utility the last time she was a LS.
The number of utility values that i can have is Ui, and hence
we conclude that the number of times she stops being an
LS and becomes LS again is at most Ui. Since there are n
agents, and each agent i can become the LS again at most Ui
times, we have that after poly(n,maxi∈N Ui) changes in the

set of least spenders, there will be no changes further in the
set of least spenders. After this, in at most n more price-rise
steps, either the allocation becomes pEF1 or all agents get
added to CL, since no new agent becomes a LS on raising
prices. Further, the number of transfers with the same set of
least spenders is at most poly(n,m) (Lemma 4). This shows
that Algorithm 1 terminates in time poly(n,m,U).

Putting it all together, we conclude:
Theorem 1. Let I = (N,M, V ) be a fair division instance.
Then an allocation that is both EF1 and fPO can be com-
puted in time poly(n,m,U).

Observe that in any allocation and for any agent, the min-
imum utility is 0, and the maximum utility is mvmax, where
vmax = maxi,j vij . Since the utility values are integral, we
have U ≤ mvmax + 1. Thus, Algorithm 1 computes an
EF1+fPO allocation in pseudo-polynomial time.
Theorem 2. Given a fair division instance I = (N,M, V ),
an allocation that is both EF1 and fPO can be computed in
time poly(n,m, vmax), where vmax = maxi,j vij . In partic-
ular, when vmax ≤ poly(n,m), an EF1+fPO allocation can
be computed in poly(n,m) time.

The guarantee of EF1+fPO offered by our algorithm is
stronger than the guarantee of EF1+PO provided by the al-
gorithm of Barman et al. (2018a). We next turn our attention
to k-ary instances where k is a constant. First we observe
that for such instances, the maximum number of different
utility values any agent can get is at most poly(m).
Lemma 7. In a k-ary fair division instance (N,M, V ) with
constant k, U ≤ poly(m).

Proof. For any agent i, let {v`i}`∈[k] be the different utility
values i has for the goods. In an allocation x, let m`

i ∈ Z≥0
be the number of goods in xi with value v`i . Then agent i’s
utility is simply: vi(xi) = m1

i v
1
i + · · · + mk

i v
k
i . Since each

0 ≤ m`
i ≤ m, the number of possible utility values that i can

get in any allocation is at most (m+ 1)k, which is poly(m)
since k is constant. Thus U ≤ poly(m).

Therefore, using Lemma 7, Theorem 1 gives:
Theorem 3. Given a k-ary fair division instance I =
(N,M, V ) where k is a constant, an allocation that is both
EF1 and fPO can be computed in time poly(n,m).
Remark 1. We note that our techniques can also be used
to show that an allocation that is weighted-EF1 (wEF1) and
fPO exists and can be computed in pseudo-polynomial time.

Finding EQ1+fPO Allocations of Goods
We now show that Algorithm 2 finds an EQ1+fPO alloca-
tion given a fair division instance with positive values. We
require the values to be positive because instances with zero
values might not even admit an allocation that is EQ1+PO
(Freeman et al. 2019). Algorithm 2 is similar to Algorithm 1,
except that it works with values instead of spendings of
agents since EQ1 allocations are desired as opposed to EF1.

Algorithm 2 starts with a welfare maximizing integral al-
location (x,p), where pj = vij for j ∈ xi. We refer to the
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Algorithm 2 Computing an EQ1+fPO allocation of goods
Input: Positive-valued fair division instance (N,M, V )
Output: An integral allocation x

1: (x,p)← initial welfare maximizing integral market al-
location, where pj = vij for j ∈ xi.

2: L← {i ∈ N : i ∈ argminh∈Nvh(xh)} . set of LU
3: if ∃i ∈ L, ∃ alt. path (i, j1, i1, . . . , j`, i`), s.t. vi`(xi` \
{j`}) > vi(xi) then

4: Transfer j` from i` to i`−1
5: Repeat from Line 2
6: if x is EQ1 then return x
7: else
8: β = minh∈CL∩N,j∈M\CL

αh

vhj/pj
. Factor by which

prices of goods in CL are raised until a new MBB edge
appears from an agent in CL to a good outside CL

9: for j ∈ CL ∩M do
10: pj ← βpj
11: Repeat from Line 2

agent(s) with the least utility as the LU agent(s), and let L be
the set of LU agents. The algorithm first explores if there is
an alternating path P = (i = i0, j1, i1, . . . , j`, i` = h), from
some LU agent i ∈ L, such that vh(xh\{j`}) > vi(xi), i.e.,
an alternating path along which the EQ1 condition is vio-
lated for the LU agent. When such a path is encountered, the
algorithm transfers j` from h to i`−1. When there is no such
path from i, the component Ci of the LS agent i is EQ1. Let
CL be the union of components of the LU agents. Suppose
the overall allocation is not EQ1, then the algorithm raises
the prices of all goods in the CL until a new MBB edge gets
added from an agent h ∈ CL to a good j /∈ CL. The algo-
rithm then proceeds as before from Line 2.

By arguments similar to Lemma 2, we can show that
the allocation (together with associated prices) is always on
MBB, and hence is fPO. Further the algorithm only termi-
nates if the allocation is EQ1 (Line 7). Similar to Lemma 5,
we can show the following:

Lemma 8. Let t0 be a time-step where agent i ceases to be
an LU agent, and let t` be the first subsequent time step just
after which i becomes the LU agent again. Then:

vi(x
t`+1
i ) > vi(x

t0
i ).

Using the above, as argued in Lemma 6, we can show:

Lemma 9. Algorithm 2 terminates in time poly(n,m,U).

We conclude:

Theorem 4. Let I = (N,M, V ) be a positive-valued fair
division instance. Then an allocation that is both EQ1 and
fPO can be computed in time poly(n,m,U).

As argued before, we have U ≤ mvmax + 1. This gives:

Theorem 5. Given a fair division instance I = (N,M, V ),
an allocation that is EQ1 and fPO can be computed in time
poly(n,m, vmax), where vmax = maxi,j vij . In particular,
when vmax ≤ poly(n,m), an EQ1+fPO allocation can be
computed in poly(n,m) time.

Finally using Lemma 7, Theorem 4 becomes:

Theorem 6. Given a k-ary fair division instance I =
(N,M, V ) where k is a constant, an allocation that is EQ1
and fPO can be computed in time poly(n,m).

Remark 2. We remark that our techniques can be used to
show that EQ1+fPO allocations of chores can be computed
in pseudo-polynomial time, and in polynomial-time for k-
ary instances with constant k.

Finding EF1+PO Allocations for Constant n
Our algorithm relies on the fact that there exists an integral
allocation that is EF1+fPO, even when the values are ratio-
nal numbers and not integers, since valuations are scale-free.

We call an instance non-degenerate if there are no mul-
tiplicative relationships between the vij’s. For such an in-
stance, the MBB graph of market equilibrium is acyclic (Or-
lin 2010). In particular, this means that in any fractional al-
location respecting the MBB graph, at most n− 1 goods are
shared between agents, and remaining goods are allocated
integrally. Since each shared good is shared between at most
n agents, there are at most (n − 1)n = O(1) many integral
allocations, obtained by rounding all possible fractional al-
locations that respect a given MBB graph. Note that an MBB
graph is uniquely defined by the prices of the goods.

Thus, for a non-degenerate instance, our algorithm first
enumerates all possible price vectors that correspond to mar-
ket equilibria. As shown by Devanur and Kannan (2008), it
is possible via cell-enumeration to enumerate all possible
equilibrium price vectors in time poly(m) when n is con-
stant. Then, for each such price vector, since we know the
MBB graph is acyclic, we can enumerate all possible inte-
gral equilibria corresponding to it. Finally, we check if the
allocation is EF1 in poly(m) time. Since we know that there
exists some EF1+fPO allocation, and since we enumerate all
possible price vectors corresponding to fPO allocations, and
then compute all possible integral allocations at those prices,
our algorithm is guaranteed to find one such allocation.

We now show how to adapt our algorithm for all instances,
not just non-degenerate ones. Given a fair division instance
I = (N,M, V ), we construct a non-degenerate instance
I ′ = (N,M, V ′), where V ′ is defined as follows:

v′ij =

{
vij + δij , if vij > 0

0, if vij = 0
,

where for all i, j, δij is a small rational perturbation that
ensures that the instance I ′ is non-degenerate. For instance,
(Orlin 2010) set δij = εin + εj , where ε is arbitrarily close
to 0. Let δ = maxi,j δij . We can ensure that δ < 1

2mvmax
.

We now run our algorithm on the non-degenerate instance
I ′ and we are guaranteed to find a market equilibrium (x,p)
that is EF1 and fPO. Since the prices can be scaled, we can
ensure for all j ∈ M , 1 ≤ pj ≤ pmax, where pmax =

1
2mvmaxδ

. We can then show that the allocation x which is
EF1+fPO for I ′, is EF1+PO for I .

Lemma 10. If x is EF1 for I ′, then x is EF1 for I .

Lemma 11. If x is fPO for I ′, then x is PO for I .
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Thus we have shown:
Theorem 7. Given a fair division instance I = (N,M, V ),
where n is constant, an EF1+PO allocation can be com-
puted in poly(m) time.

Finally, we note that the techniques in Lemma 10 also
extend easily to EQ1. Since we showed that an EQ1+fPO
allocation is guaranteed to exist for positive instances:
Theorem 8. Given a positive fair division instance I =
(N,M, V ), where n is constant, an EQ1+PO allocation can
be computed in poly(m) time.

PLS and Finding an EF1+PO Allocation
We closely follow the algorithm A of Barman et al. (2018a)
that finds an EF1+PO allocation in time poly(n,m, vmax),
where vmax = maxi,j vij , and show that it has the structure
of a local search problem.

We first define some terms relevant to A. For a small per-
turbation ε > 0, a market outcome (x,p) is said to be ε-price
envy-free up to one good (ε-pEF1) if for all agents i, h there
is a good j ∈ xh such that (1 + ε)p(xi) ≥ p(xh \ {j}). We
can show like in Lemma 1, that if (x,p) is ε-pEF1, then x
is ε-EF1. Further, for sufficiently small ε, if x is ε-EF1, then
x is also EF1 by using that vij’s are integers. The algorithm
A first perturbs all valuations to powers of 1 + ε, and then
proceeds similarly to Algorithm 1, except that it transfers
goods along alternating paths when the ε-pEF1 condition is
violated. Further, prices are always maintained as powers of
1 + ε, bounded by pmax and a single agent is chosen as the
LS, with ties broken lexicographically. The algorithm and its
analysis is further described in the full version of the paper.

By the above arguments, computing an EF1+PO alloca-
tion is equivalent to computing an ε-pEF1+fPO market out-
come (x,p) for the corresponding ε-perturbed instance, for
small enough ε. We now reduce the EF1+PO problem to a
PLS problem. First we describe its solution space, cost func-
tion, and the neighborhood structure.

Solution space. For an allocation x and a vector of prices
p = (p1, . . . , pm), call a configuration (x,p) valid if
(i) x is integral (ii) (x,p) is on MBB (iii) all prices pj
are of the form (1 + ε)qj , where qj ∈ Z is between 0
and log1+ε pmax. Let the solution space be given by S =
{(x,p)|(x,p) is valid}. Since allocations are integral and
prices are bounded integral powers of (1 + ε), S is bounded.

Cost function. Let δ(x,p) = 1 if a valid allocation
(x,p) is ε-pEF1, else 0. The cost function is a lexicographic
function given by cost(x,p) = (δ(x,p),mini∈N p(xi)) if
(x,p) ∈ S, and equal to (−1,−1) if (x,p) /∈ S.

Neighborhood structure. The structure is described by a
polynomial time algorithmD. Each configuration (x,p) has
a single neighbor. If (x,p) /∈ S, then its neighbor D(x,p)
is (x0,p0). If (x,p) ∈ S, then D(x,p) = (x′,p′), which is
the allocation obtained by running A starting with the allo-
cation (x,p) until the spending of the least spender strictly
increases. We show that:
Lemma 12. Algorithm D terminates in polynomial time.

Membership in PLS. We need to show the existence of
three polynomial time algorithms: A – which outputs a so-
lution (x0,p0); B – which on input (x,p) computes the

cost(x,p); and C – which on input (x,p) computes a neigh-
bor which has a strictly larger cost.

Algorithms A and B are trivial and in polynomial time.
Observe that each solution (x,p) has only one neighbor
(x′,p′), and that it has a strictly larger cost since spend-
ing of the least spender at (x′,p′) is strictly more than the
spending of the least spender at (x,p), or the latter is EF1.
Thus algorithmD itself is algorithmC. Finally note that any
local maxima of (S, cost, D) is an integral market allocation
(x,p) where δ(x,p) = 1, i.e., it is ε-pEF1, and thus EF1,
even for the original valuations. Similarly, as is argued for
the analysis of A, the allocation is also PO for the origi-
nal valuations. Therefore, computing an EF1+PO allocation
for integral, additive valuations polynomial-time reduces to
a PLS problem. However since it is not in TFNP⊇ PLS, this
does not show membership in PLS.

k-ary Instances with Constant n and k
We now consider k-ary fair division instances (N,M, V )
where both k and n, the number of agents is constant.

Let X be the set of all allocations for the instance I .
For each agent i ∈ N , let Ti = {vi(xi) : x ∈ X}, the
set of different utility values i can get from any allocation.
Let U = maxi∈N |Ti|. From Lemma 7, we know U is at
most poly(m). Define T = T1 × · · · × Tn. We note that
|T | ≤ (poly(m))n = poly(m), since n is constant, and can
be computed in poly(m)-time.

To solve certain fair division problems for such instances,
we enumerate over each entry (u1, . . . , un) of T , and check
if there is a feasible allocation x in which each agent i gets
utility exactly ui. The next Lemma shows that the latter can
be done efficiently.
Lemma 13. Given a vector (u1, . . . , un) ∈ T , it can be
checked in poly(m)-time whether there is a feasible alloca-
tion x s.t. for all agents i, vi(xi) = ui.

By iterating through T we can in poly(m)-time prepare a
list of feasible utility vectors (and corresponding allocations)
that satisfy our fairness and efficiency criteria.
Theorem 9. For k-ary instance I = (N,M, V ) where both
k and the number of agents n are constants, we can com-
pute in poly(m) time (i) an MNW allocation, (ii) a leximin
optimal allocation, (iii) a F+fPO allocation (when it exists)
where F is any polynomial-time checkable property.

Discussion
In this paper, we showed that an EF1+fPO allocation can be
computed in pseudo-polynomial time, thus improving upon
the result of Barman et al (2018a). Our work also implies
polynomial time algorithms for two special cases: (i) com-
puting EF1+fPO allocation for k-ary instances where k is a
constant, (ii) computing EF1+PO allocation when n (num-
ber of agents) is constant. Settling the complexity of the
problem for general k and n remains a challenging open
problem. Our results extend to the fairness notions of EQ1
and wEF1 as well. We showed that computing an EF1+PO
allocation reduces to a problem in the complexity class PLS.
Showing the existence of EF1+PO allocations for chores is
another interesting research direction.
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