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1 Dept. Telematic Engineering, Universidad Carlos III de Madrid, E-28911 Leganés, Spain
2 Centro Universitario de la Defensa, Escuela Naval Militar, E-36920 Marı́n, Spain

3 Research Group Efficient Algorithms, Technische Universität Berlin, D-10587 Berlin, Germany
luiss@it.uc3m.es, norberto@cud.uvigo.es, jesus.arias@uc3m.es, brill@tu-berlin.de

Abstract

We propose the maximin support method, a novel exten-
sion of the D’Hondt apportionment method to approval-based
multiwinner elections. The maximin support method is a se-
quential procedure that aims to maximize the support of the
least supported elected candidate. It can be computed effi-
ciently and satisfies (adjusted versions of) the main properties
of the original D’Hondt method: house monotonicity, popu-
lation monotonicity, and proportional representation. We also
establish a close relationship between the maximin support
method and alternative D’Hondt extensions due to Phragmén.

1 Introduction
In a multiwinner election, the goal is to select a fixed number
of candidates (a so-called committee) based on the prefer-
ences of a set of agents (Faliszewski et al. 2017). Multiwin-
ner voting rules have a wide variety of applications includ-
ing political elections (Brams, Kilgour, and Potthoff 2019),
medical diagnostic decision-making (Gangl et al. 2019), and
the selection of validators who participate in the consensus
protocol of a blockchain (Cevallos and Stewart 2020).

Recent years have witnessed an increasing interest in set-
tings where the agents express their preferences via approval
ballots: For each candidate, an agent has the choice between
approving or disapproving the candidate. A particular fo-
cus of the approval-based multiwinner voting literature (see
Lackner and Skowron, 2020, for a recent survey) has been
on the proportional representation of agents’ preferences in
the committee (Aziz et al. 2017; Sánchez-Fernández et al.
2017; Brill et al. 2017, 2020; Peters and Skowron 2020).

A simpler setting in which proportional representation has
been extensively studied is that of apportionment (Balinski
and Young 1982). Here, both candidates and agents have at-
tributes and the goal is to select a committee such that the
distribution over attributes in the committee resembles as
closely as possible the distribution over attributes among the
agents. In classical applications of apportionment, attributes
refer to either geographical location or political party affil-
iation; proportionality then suggests, for instance, that the
number of seats assigned to a state of a union in a represen-
tative body should be proportional to the population size of
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the state, or that the number of seats assigned to a political
party in a parliament should be proportional to the number
of votes the party received in an election. An important ap-
portionment method is named after Victor D’Hondt.1

The apportionment problem has an illustrious history and
has given rise to an elegant mathematical theory (Balinski
and Young 1982; Pukelsheim 2014), but it is not without
limitations. For example, requiring voters in a parliamen-
tary election to choose among political parties is often de-
scribed as restrictive, as it prevents them from expressive
more fine-grained preferences (Renwick and Pilet 2016).
Furthermore, apportionment methods are not applicable in
scenarios where attributes (such as party affiliation) are not
available. These limitations have led a number of schol-
ars to explore more general settings (e.g., Hylland 1992;
Kilgour, Brams, and Sanver 2006). One important gener-
alization is the setting of approval-based multiwinner elec-
tions mentioned above. Apportionment problems constitute
the special case where approval sets partition the candi-
date space. Thus, every approval-based multiwinner voting
rule induces an apportionment method (Brill, Laslier, and
Skowron 2018). Indeed, some of the most studied approval-
based multiwinner voting rules, those of Phragmén (1894)
and Thiele (1895), have been devised as extensions of the
D’Hondt method of apportionment (Janson 2016).

In this paper, we introduce a novel approval-based mul-
tiwinner voting rule. Like Phragmén and Thiele, we take
the D’Hondt apportionment method as our point of depar-
ture. In contrast to earlier proposals, we focus on a com-
pelling “maximin” characterization of the method in terms
of voter support: The D’Hondt method always selects com-
mittees maximizing the voter support for the least supported
candidate in the committee. We generalize the notion of
maximin support to approval-based multiwinner elections.
When applying this concept iteratively (adding candidates
to the committee one at a time), we obtain the maximin sup-
port method (MMS). We establish that MMS is an efficiently
computable extension of the D’Hondt method that satisfies
committee monotonicity, (weak) support monotonicity, and
proportional justified representation (PJR).

1In the US, the method is named after Thomas Jefferson, the
third president of the United States. In fact, Jefferson introduced
the method already in 1792, whereas D’Hondt described it in 1878.
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We also establish a close relationship between the max-
imin support method and Phragmén’s voting rules. In par-
ticular, we show that the (computationally intractable) non-
sequential variant of Phragmén’s rule always produces com-
mittees that optimize the maximin support objective glob-
ally. From this perspective, MMS can be considered an ax-
iomatically desirable and polynomial-time computable ap-
proximation algorithm for the maximin support problem.
Interestingly, recent independent2 work by Cevallos and
Stewart (2020) has shown that MMS strictly outperforms
Phragmén’s sequential rule regarding this perspective.

2 Preliminaries
Let C be a finite set of candidates and N = {1, . . . , n} be a
set of n voters. Furthermore, k ∈ N denotes the number of
winners to be selected. We assume 1 ≤ k ≤ |C| and n ≥ 1.

For each i ∈ N , we letAi ⊆ C denote the approval ballot
of voter i. That is, Ai is the subset of candidates that voter i
approves of. An approval profile is a list A = (A1, . . . , An)
of approval ballots, one for each voter i ∈ N . Given an ap-
proval profile A and a candidate c, we let Nc denote the set
of approvers of c and we call |Nc| the approval score of c.

An (approval-based multiwinner) election E can be rep-
resented by a tuple E = (N,C,A, k). Since N and C can
be inferred from A, we often simply refer to an election by
(A, k). An (approval-based multiwinner voting) rule R is a
function that maps an election E = (N,C,A, k) to a subset
R(E) ⊆ C of candidates of size |R(E)| = k, referred to
as the committee. We often refer to committee members as
winners. During the execution of a voting rule, ties between
candidates can occur. We assume that ties are broken using
a fixed priority ordering over the candidates. An example of
a priority ordering is the lexicographic order, which we use
in our examples.

An important subdomain of approval-based multiwinner
elections is defined by party-list elections, where the set
of candidates is partitioned into parties and voters can vote
for exactly one party. Formally, a party-list election satis-
fies C = P1 ∪̇ P2 ∪̇ . . . ∪̇ Pp and every approval ballot
Ai coincides with one party list Pj . The ballot profile for
a party-list election can be summarized by a vote vector
V = (v1, v2, . . . , vp), where vj is the number of votes for
party Pj (i.e., vj = |{i ∈ N : Ai = Pj}|).

An apportionment method takes as input a vote vector
V = (v1, v2, . . . , vp) and a natural number k and outputs a
seat distribution x = (x1, . . . , xp) ∈ Np

0 with
∑p

j=1 xi = k.
The interpretation is that party Pj is allocated xj seats.
Apportionment methods have been extensively studied in
the literature (Balinski and Young 1982; Pukelsheim 2014).
Since the party-list setting is a special case of the general
approval-based multiwinner setting, every approval-based
multiwinner rule induces an apportionment method (Brill,
Laslier, and Skowron 2018). An approval-based multiwin-
ner rule is called an extension of an apportionment method
if it induces it. In this paper, we will introduce a novel ex-
tension of the apportionment method due to D’Hondt.

2The work of Cevallos and Stewart (2020) is based on a preprint
of this paper, which has been publicly available for some time.

Parties P1 P2 P3

Votes (vj) 5 100 3 150 1 750

Divisors

d1 = 1 5100.0 3150.0 1750.0
d2 = 2 2550.0 1 575.0 875.0
d3 = 3 1700.0 1 050.0 583.3
d4 = 4 1 275.0 787.5 437.5
d5 = 5 1 020.0 630.0 350.0

Seats (xj) 3 1 1

Table 1: Example of the use of the D’Hondt method. The
k = 5 highest quotients are marked in bold and correspond
to the seat distribution (3, 1, 1).

The D’Hondt method (aka Jefferson method) is a particu-
lar example from a family of apportionment methods known
as divisor methods. These methods assign seats to parties
based on a sequence of divisors (d1, d2, d3, . . .), and differ-
ent divisor methods differ in their choice of this sequence.
Divisor methods can be illustrated by constructing a table in
which columns correspond to parties and rows correspond to
divisors. The entry in row i and column j is given by vj/di,
i.e., the number of votes of party Pj divided by the i-th divi-
sor. The divisor method then assigns the k seats to the parties
corresponding to the k highest quotients in this table.

The D’Hondt method is defined via the divisor sequence
(d1, d2, d3, . . .) = (1, 2, 3, . . . ). An example of the use of
the D’Hondt method is shown in Table 1, where five seats
need to be assigned to three parties. As shown in Table 1,
the D’Hondt method assigns three seats to party P1, one to
party P2, and one to party P3.

An important proportionality axiom for apportionment
methods is lower quota, which requires that each party Pj

is allocated at least bk vj

n c seats. It is well known that the
D’Hondt method is the only divisor method satisfying lower
quota. Moreover, the D’Hondt method satisfies two promi-
nent monotonicity properties: house monotonicity, which
states that no party loses a seat when the house size k is
increased, and population monotonicity, which states that if
the ratio vi

vj
increases, then it should not be the case that xi

decreases and xj increases (Balinski and Young 1982).

3 A Formal Model of Support
In this section, we formalize the notion of support, on which
our extension of the D’Hondt method will be based.

Interpreting a vote for a party as support for the elected
members of that party, and assuming that the vj votes for
party Pj are evenly distributed among the xj seats assigned
to that party, one can characterize the D’Hondt method as
the unique apportionment method that maximizes the sup-
port of the least supported selected candidate. That is, the
D’Hondt method chooses seat distributions x maximizing
minj vj/xj . For instance, in the example illustrated in Ta-
ble 1, each of the three elected candidates from party P1 is
supported by 5100/3 = 1700 voters, the elected candidate
from party P2 is supported by 3150 voters, and the elected
candidate from party P3 is supported by 1750 voters. There-
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fore, minj vj/xj = min{1700, 3150, 1750} = 1700, and
all other seat distributions would lead to smaller values.

We now generalize this notion of support to approval pro-
files, by distributing votes in the form of approval ballots
among subsets of candidates. In general, there will be many
different ways of distributing the support of a voter among
the candidates approved by the voter, leading to different
support values for candidates. Later, we will focus on “opti-
mal” ways of distributing the support.

For an approval profile A and a nonempty subset D ⊆ C
of candidates, we define the family FA,D of support dis-
tribution functions for (A,D) as the set of all functions that
distribute support only among the candidates inD. Formally,
FA,D consists of all functions f : (N × D) → [0, 1] satis-
fying f(i, c) = 0 for all i ∈ N and c ∈ D \Ai, and∑

c∈Ai∩D
f(i, c) = 1 for all i ∈ N with Ai ∩D 6= ∅.

For each voter i ∈ N , f(i, c) is the fraction of voter i’s
vote that is “assigned” to candidate c. Note that the definition
requires that f(i, c) = 0 whenever c /∈ Ai. Thus, the support
of a voter is distributed only among those candidates that are
approved by the voter. Given a support distribution function
f ∈ FA,D and a candidate c ∈ D, we let suppf (c) denote
the total support received by c under f , i.e.,

suppf (c) =
∑
i∈N

f(i, c).

Example 1. Consider the following approval profile A over
the candidate set C = {c1, c2, c3, c4, c5, c6, c7}:
10 000× {c1, c2} 6 000× {c1, c3} 4 000× {c2}
5 500× {c3} 9 500× {c4} 3 000× {c5}
5 000× {c5, c6, c7}

Consider the candidate subset D = {c1, c3, c5} and let f be
the (unique) function in FA,D with f(i, c1) = 0.4 for each
voter i with Ai = {c1, c3} (thus f(i, c3) = 0.6 for those
voters). Thus, f assigns 2400 out of the 6000 {c1, c3}-votes
to c1 and the remaining 3600 {c1, c3}-votes to c3, resulting
in the following support values:

suppf (c1) = 10 000 + 2 400 = 12 400,

suppf (c3) = 3 600 + 5 500 = 9 100,

suppf (c5) = 5 000 + 3 000 = 8 000.
We will be interested in those support distribution func-

tions in FA,D that maximize the support for the least sup-
ported candidate in D. To this end, let maximin(A,D) de-
note the maximal support for the least supported candidate
in D, where the maximum is taken over all support distribu-
tion functions in FA,D. Formally,

maximin(A,D) = max
f∈FA,D

min
c∈D

suppf (c).

Furthermore, we let Fopt
A,D denote the nonempty3 set of opti-

3Since FA,D may be an infinite set, we need to make sure
that the function minc∈D suppf (c) attains a maximum over this
set. We will see in the proof of Theorem 3 that the correspond-
ing optimization problem can be formulated as a feasible and
bounded linear program. It follows that F opt

A,D 6= ∅ and that
maxf∈FA,D minc∈D suppf (c) indeed exists.

mal support distribution functions for (A,D), i.e.,

Fopt
A,D = {f ∈ FA,D:suppf (c) ≥ maximin(A,D)∀c ∈ D}.
The support distribution function specified in Example 1

is optimal, as |Nc5 | = 8000 and the approval score of a can-
didate in D is a natural upper bound for maximin(A,D).

In the remainder of this paper, we will be interested in
finding committees W with a large maximin support value
maximin(A,W ) for a given approval profile A. An inter-
esting rationale for maximizing the minimum support was
given by Cevallos and Stewart (2020): The maximin sup-
port value of a committee puts a limit on the overrepresen-
tation of voter groups. To illustrate this, consider a commit-
tee W together with an optimal support distribution func-
tion f for (A,W ). Let D ⊆ W be a subset of winning
candidates, and consider the set ND =

⋃
c∈DNc of vot-

ers that approve at least one candidate in D. It follows
from the definition of a support distribution function that
the total support for candidates in D is upper-bounded by
|ND|, i.e.,

∑
c∈D suppf (c) ≤ |ND|. On the other hand,∑

c∈D suppf (c) ≥ |D|·maximin(A,W ). Combining these
inequalities yields |D| ≤ |ND|/maximin(A,W ). In other
words, the voter group ND cannot have a number of repre-
sentatives in the committee that is higher than the size of the
voter group divided by the maximin support value.

4 The Maximin Support Method
We now propose an extension of the D’Hondt method to
approval-based multiwinner elections. It is based on the
same principle as the D’Hondt method, in that the support
for the least supported elected candidate should be as large
as possible. We therefore refer to this novel method as max-
imin support method (MMS). The maximin support method
chooses candidates sequentially4 until the desired number k
of candidates has been selected. In every iteration, a candi-
date with the greatest support is chosen, under the condition
that only support distribution functions maximizing the sup-
port for the least supported candidate are considered.

Given an approval-based multiwinner election E =
(N,C,A, k), the set W = MMS (E) is determined by start-
ing with W = ∅ and iteratively adding candidates until
|W | = k. In each iteration, we add toW an unelected candi-
date receiving the greatest support, under the condition that
only optimal support distribution functions are considered.5
More precisely, for each candidate c ∈ C \ W , we com-
pute an optimal support distribution function fc for the set
W ∪ {c} and determine the total support suppfc(c) that c
receives under fc. The candidate maximizing this value is
then added to W . See Algorithm 1 for a formal description.

Since the set Fopt
A,W∪{c} of optimal support distribution

functions may contain more than one function, the value of
suppfc(c) could potentially depend on the choice of fc. The
following result implies that this is not the case.

4One can also define a non-sequential (optimization) variant of
the maximin support method; we discuss this variant in Section 6.1.

5Restricting attention to optimal support distribution functions
ensures that support for previously elected candidates is not ig-
nored when searching for new support distribution function.
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Algorithm 1: Maximin Support Method (MMS )
Data: approval-based multiwinner election (A, k)
Result: subset W ⊆ C of candidates with |W | = k

1 W = ∅
2 for j = 1 to k do
3 foreach c ∈ C \W do
4 compute fc ∈ Fopt

A,W∪{c}
5 sc = suppfc(c)

6 w ∈ arg max
c∈C\W

sc

7 W =W ∪ {w}
8 return W

Theorem 2. Let (A, k) be an approval-based multiwinner
election. The following holds for each j ∈ {0, . . . , k − 1}.

Let W j denote the set of the first j candidates chosen by
the maximin support method when applied to (A, k). Then,
for each candidate c ∈ C \W j and for each optimal support
distribution function fc ∈ Fopt

A,(W j∪{c}),

suppfc(c) = maximin(A,W j ∪ {c}).
Theorem 2 states that in every iteration the candidate c

added to W is among the least supported candidates under
every optimal support distribution function. The support of
this candidate thus equals maximin(A,W ∪{c}), which (by
definition) is independent of the particular fc ∈ Fopt

A,W∪{c}
that was chosen in line 4 of the algorithm. The proof of
Theorem 2 employs linear programming duality theory and
can be found in the full version of this paper (Sánchez-
Fernández et al. 2021).

This result gives rise to an interesting alternative formula-
tion of the maximin support method. In this equivalent for-
mulation, there is no need to choose an optimal support dis-
tribution function for (A,W ∪{c}); rather, sc is directly de-
fined as maximin(A,W ∪ {c}). A natural interpretation of
this definition is that the value sc measures the effect that the
addition of a potential candidate would have on the maximal
support for the least supported candidate.

The next theorem establishes that the maximin support
method can be computed efficiently.
Theorem 3. The maximin support method can be computed
in polynomial time.

Proof. It is sufficient to show that, for any subset D ⊆ C
of candidates, an optimal support distribution function f ∈
Fopt

A,D can be computed in polynomial time. For a given ap-
proval profileA and a subsetD ⊆ C of candidates, consider
the following linear program, containing a variable f(i, c)
for each i ∈ N and c ∈ Ai∩D, and an additional variable s.

maximize s

subject to
∑

i∈N :c∈Ai∩D
f(i, c) ≥ s, for all c ∈ D

∑
c∈Ai∩D

f(i, c) = 1, for all i ∈ N with Ai ∩D 6= ∅

f(i, c) ≥ 0, for all i ∈ N and c ∈ D

The first set of constraints require that the support for the
least supported candidate in D is at least s, while the re-
maining constraints ensure that the variables f(i, c) encode
a valid support distribution function.6 Therefore, optimal so-
lutions of this linear program correspond to optimal support
distribution functions. Since linear programming problems
can be solved in polynomial time (Khachian 1979), this con-
cludes the proof.

We conclude this section by illustrating the maximin sup-
port method with an example.
Example 4. Consider the election E = (A, k), where A is
the approval profile from Example 1 and k = 3.

In the first iteration, the value sc = maximin(A, {c})
equals the approval score of candidate c, i.e., sc = |Nc| for
all c. Therefore, the approval winner c1 (with sc1 = 16000)
is chosen. The corresponding support distribution function
f satisfies f(i, c1) = 1 for all i ∈ Nc1 .

In the second iteration, we have W = {c1} and we need
to compute the value sx = maximin(A, {c1, x}) for all
x ∈ C \ {c1}. For example, for candidate c2 we get sc2 =
maximin(A, {c1, c2}) = 10000; the corresponding sup-
port distribution function f assigns 4000 out of the 10000
{c1, c2}-votes to c1 and the remaining 6000 to c2. A better
value is achieved by candidate c3. The support distribution
realizing sc3 = maximin(A, {c1, c3}) = 10750 assigns all
10000 {c1, c2}-votes to c1, all 5500 {c3}-votes to c3, and
divides the 6000 {c1, c3}-votes between c1 and c3 such that
both candidates have a total support of 10750 each. Comput-
ing the other values, we get sc4 = 9500, sc5 = 8000, and
sc6 = sc7 = 5000. Therefore, c3 is selected.

In the third iteration, we have W = {c1, c3} and we need
to compute the value sx = maximin(A, {c1, c3, x}) for
all x ∈ C \ {c1, c3}. It can be checked that sc2 = 8500,
sc4 = 9500, sc5 = 8000, and sc6 = sc7 = 5000. Thus, can-
didate c4 is chosen. There are several optimal support dis-
tribution functions f realizing maximin(A, {c1, c3, c4}) =
9500; each of them assigns all 9500 {c4}-votes to c4 and
distributes the 6000 votes that approve of c1 and c3 in such a
way that c1 and c3 have a total support of at least 9500 each.

In summary, we have MMS (E) = {c1, c3, c4}.

5 Axiomatic Properties of MMS
In this section, we show that the maximin support method
is indeed an extension of the D’Hondt method, and that it
satisfies (adjusted versions of) several important properties
that the latter satisfies. In particular, we show that the max-
imin support method satisfies committee monotonicity, weak
support monotonicity (a variant of population monotonic-
ity), and proportional justified representation.

Committee Monotonicity Committee monotonicity re-
quires that all selected candidates are still selected when the
committee size k is increased. Since the maximin support
method selects winners iteratively, committee monotonicity
is trivially satisfied.

6Note that constraints of the form f(i, c) ≤ 1 are not neces-
sary because each variable f(i, c) is non-negative and appears in a
constraint of the form

∑
c∈Ai∩D f(i, c) = 1.
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Observation 5. The maximin support method satisfies com-
mittee monotonicity.

Support Monotonicity Support monotonicity axioms for
approval-based multiwinner elections have been proposed
by Sánchez-Fernández and Fisteus (2019). Informally, these
axioms require that when a subset of the winners in an elec-
tion see their support increased (either because a voter adds
this subset of candidates to her approval set, or because a
new voter enters the election and approves of precisely this
subset of candidates), then (some of) those candidates must
remain in the committee. We establish that MMS satisfies an
axiom known as weak support monotonicity.7

Theorem 6. The maximin support satisfies weak support
monotonicity.

The formal definition of this axiom can be found in the
full version of this paper (Sánchez-Fernández et al. 2021),
together with a discussion of other support monotonicity ax-
ioms and the proof of Theorem 6.

Proportional Representation Axioms capturing the pro-
portional representation of voter preferences in approval-
based multiwinner elections have been studied extensively
in recent years (Aziz et al. 2017; Brill et al. 2017; Peters and
Skowron 2020). In this paper, we focus on an axiom known
as proportional justified representation (PJR) (Sánchez-
Fernández et al. 2017). PJR is a generalizations of the lower
quota axiom to the general approval-based multiwinner set-
ting: If a voting rule satisfies PJR, then its induced appor-
tionment method satisfies lower quota (Brill, Laslier, and
Skowron 2018).

In order to define PJR, we need some terminology. Con-
sider an election (N,C,A, k). Given a positive integer ` ∈
{1, . . . , k}, we say that a subset N∗ ⊆ N of voters is
`-cohesive if |N∗| ≥ `nk and |

⋂
i∈N∗ Ai| ≥ `. A subset

D ⊆ C of candidates provides proportional justified repre-
sentation (PJR) if for all ` ∈ {1, . . . , k} and all `-cohesive
subsets N∗ ⊆ N , it holds that |D ∩ (

⋃
i∈N∗ Ai)| ≥ `.

Definition 7. An approval-based multiwinner voting rule R
satisfies proportional justified representation (PJR) if R(E)
provides PJR for every election E = (N,C,A, k).

In order to prove that the maximin support method sat-
isfies PJR, we make use of the recently introduced notion
of priceability (Peters and Skowron 2020). The definition of
priceability is based on the notion of a price system. A price
system is a pair (p, {pi}i∈N ), where p > 0 and for each
voter i ∈ N , the function pi : C → [0, 1] satisfies pi(c) = 0
if i ∈ N \Nc and

∑
c∈C pi(c) ≤ 1.

Definition 8. Given an approval profile A, a set W ⊆ C
of candidates is priceable if there exists a price system
(p, {pi}i∈N ) such that the following conditions hold:

1.
∑

i∈N pi(c) = p for all c in W ;
2.

∑
i∈N pi(c) = 0 for all c in C \W ; and

3.
∑

i∈Nc
[1−

∑
c′∈W pi(c

′)] ≤ p for all c in C \W .
7Despite its name, weak support monotonicity is slightly

stronger than the basic version of population monotonicity that
only considers increased support for single candidates.

Peters and Skowron (2020) proved that if a committee of
size k is priceable for A, then it provides PJR for (A, k).
Therefore, we can prove that the maximin support satisfies
PJR by showing that it always returns priceable committees.

Theorem 9. Let E be an approval-based multiwinner elec-
tion. Then, MMS (E) is priceable.

Proof. Let E = (N,C,A, k) be an approval-based multi-
winner election and W = MMS (E).

We establish the priceability of W by defining a price
system (p, {pi}i∈N ) as follows. The price p is defined by
p = maximin(A,W ). In order to define the functions pi, let
f be any optimal support distribution function for (A,W )
and set pi(c) = f(i, c) for all i ∈ N and all c ∈ W . For
each c ∈ W such that suppf (c) > p, we arbitrarily reduce
the value of some pi(c) such that

∑
i∈N pi(c) = p.

For the sake of contradiction, suppose that there exists a
candidate c in C \W with

∑
i∈Nc

[1−
∑

c′∈W pi(c
′)] > p.

Consider a support distribution function f ′ for (A,W ∪{c})
given by f ′(i, c) = 1−

∑
c′∈W pi(c

′) for each voter i ∈ Nc,
f ′(i, c) = 0 for each voter i ∈ N \Nc, and f ′(i, c′) = pi(c

′)
for each voter i ∈ N and each candidate c′ ∈ W . If there
is a voter i with Ai ∩W 6= ∅ and

∑
c′∈W∪{c} f(i, c

′) < 1,
we arbitrarily increase the support that voter i gives to some
candidates in Ai ∩W so that

∑
c′∈W∪{c} f(i, c

′) = 1.
Observe that suppf ′(c) > p and suppf ′(c

′) ≥ p for each
c′ ∈ W . Let c∗ denote the candidate chosen by the max-
imin support method in the last iteration. We now have the
following two possibilities:

Case 1: f ′ is not an optimal support distribution function
for (A,W ∪ {c}). Then, since suppf ′(c

′) ≥ p for each c′

in W ∪ {c}, we have maximin(A,W ∪ {c}) > p. But then
maximin(A,W \{c∗}∪{c}) ≥ maximin(A,W∪{c}) > p,
contradicting the assumption that candidate c∗ was selected
in the last iteration.

Case 2: f ′ is an optimal support distribution func-
tion for (A,W ∪ {c}). Then, Theorem 2 implies that
maximin(A,W ∪ {c}) = suppf ′(c) > p. By the same ar-
gument as in the first case, we reach a contradiction.

Corollary 10. The maximin support method satisfies pro-
portional justified representation.

In the same spirit as lower quota, PJR ensures that each
cohesive group of voters is represented in the committee by
at least the number of candidates that is proportional to the
group size. In light of the discussion at the end of Section 3,
it can thus be argued that MMS strikes an attractive compro-
mise between two competing representation goals.

D’Hondt Extension Theorem 9 can also be used to show
that the maximin support indeed extends the apportionment
method of D’Hondt: Peters and Skowron (2020) proved that
in party-list elections, the only priceable committees are
those selected by the D’Hondt method. As a consequence,
the maximin support method coincides with the D’Hondt
method for such elections.

Corollary 11. The maximin support method is an extension
of the D’Hondt apportionment method.
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6 Relationship to Phragmén’s Rules
The maximin support method is by no means the only way
to extend the D’Hondt method to approval-based multiwin-
ner elections. As mentioned in the introduction, the rules of
Phragmén and Thiele also generalize the D’Hondt method.
In this section we focus on Phragmén’s rules.8

Phragmén’s methods can be described as load distribu-
tion methods (Brill et al. 2017). Every selected candidate in-
duces one unit of load, and this load needs to be distributed
among the approvers of that candidate. For example, if there
are 6 voters approving candidate c and we decide to select c
for the committee, then one possible way of distributing the
load would be to give a load of 1

6 to each of those voters.
However, it is not required that the load is distributed evenly
among the approvers: different approvers of c could be as-
signed different (non-negative) loads, as long as the loads
associated with each selected candidate sum up to 1. The
goal is to choose a committee such that the load distribu-
tion is as balanced as possible. Different interpretations of
balancedness lead to different optimization goals; the most
relevant variant minimizes the maximal load of a voter.

In particular, minimax-Phragmén is the rule that returns
committees corresponding to load distributions minimizing
the maximal voter load. And seq-Phragmén is a sequential
version of minimax-Phragmén; it selects candidates itera-
tively, in each round adding a candidate to the committee
such that the new maximal voter load is as small as possible.

Load Distributions Given an approval profile A and a
subset D ⊆ C of candidates, a load distribution for D given
A is a two-dimensional array ` = (`i,c)i∈N,c∈D satisfying9

0 ≤ `i,c ≤ 1 for all i ∈ N and c ∈ D,
`i,c = 0 for all i ∈ N and c ∈ D \Ai, and∑

i∈N
`i,c = 1 for all c ∈ D.

We let LA,D denote the set of all load distributions for
(A,D). For a load distribution ` ∈ L, the total load of voter i
under `, denoted `i, is given by `i =

∑
c∈D `i,c. Note that∑

i∈N `i = |D| for all ` ∈ LA,D. Finally, a load distribution
is called optimal for (A,D) if the maximal total voter load
maxi∈N `i is as small as possible. Lopt

A,D denotes the set of
all optimal load distribution functions for (A,D).

We are now going to establishing a close connection be-
tween load distributions and support distribution functions.

Lemma 12. Let A be an approval profile and D ⊆ C a
subset of candidates. Then, the following statements hold.

8Thiele’s non-sequential rule, known as Proportional Approval
Voting (PAV), does not satisfy committee monotonicity, whereas
Thiele’s sequential rule (sequential PAV) does not satisfy PJR.
On the other hand, PAV satisfies a stronger proportionality axiom
known as extended justified representation (EJR). Phragmén’s rules
and MMS fail EJR.

9Throughout this section we assume that Nc 6= ∅ for all c ∈ D;
otherwise, load distributions cannot be defined.

1. For every support distribution function f ∈ FA,D, there
is a load distribution `f ∈ LA,D such that

max
i∈N

`fi ≤
1

minc∈D suppf (c)
.

2. For every load distribution ` ∈ LA,D, there is a support
distribution function f ` ∈ FA,D such that

min
c∈D

suppf`(c) ≥
1

maxi∈N `i
.

Proof. For a given support distribution function f ∈ FA,D,
define the load distribution `f ∈ LA,D by setting `fi,c =
f(i,c)

suppf (c)
for each i ∈ N and c ∈ D.10 It follows that the total

load of a voter is upper bounded by 1
suppf (c

∗) , where c∗ is a
candidate with minimal support (recall that

∑
c f(i, c) = 1

for each voter i such that Ai ∩D 6= ∅).
For a given load distribution ` ∈ LA,D, define a support

distribution function f ` ∈ FA,D by setting f `(i, c) =
`i,c
`i

for each voter i ∈ N such that `i > 0. That is, the support
for a candidate is proportional to the load received from that
candidate, scaled such that the total support by the voter is 1.
It follows that the minimal support of a candidate is lower
bounded by 1

`i∗
, where i∗ is a voter with maximal load. To

see this, let i∗ denote a voter with maximal load and letN` =
{i ∈ N : `i > 0}. For c ∈ D, we get

suppf`(c) =
∑
i∈N

f `(i, c) ≥
∑
i∈N`

`i,c
`i
≥ 1

`i∗

∑
i∈N

`i,c =
1

`i∗
.

6.1 Phragmén’s Optimal Rule
Lemma 12 has particularly interesting implications for load
distributions and support distribution functions that are op-
timal: The construction used in the proof of Lemma 12
establishes a one-to-one correspondence between elements
of Lopt

A,D and elements of Fopt
A,D. Therefore, the objective

of minimizing the maximal voter load is equivalent to the
objective of maximizing the minimal support. As a conse-
quence, minimax-Phragmén (the method that globally min-
imizes the maximal voter load) is identical to the rule that
globally maximizes the minimal support.

Theorem 13. Let E = (N,C,A, k) be an approval-based
multiwinner election. Then, minimax-Phragmén(E) =
argmaxW⊆C,|W |=kmaximin(A,W ).

Since it is NP-hard to compute winners under minimax-
Phragmén (Brill et al. 2017), the same is true for find-
ing a set of candidates maximizing the minimum support.
Brill et al. (2017) proved that minimax-Phragmén satis-
fies PJR (when combined with an appropriate tie-breaking
rule) but not EJR. With respect to monotonicity axioms,
Mora and Oliver (2015) proved that minimax-Phragmén

10If suppf (c) = 0 for some candidate c, the first part of the
lemma trivially holds.
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fails committee monotononicity and Sánchez-Fernández and
Fisteus (2019) have extended previous results by Phragmén
(1896) showing that minimax-Phragmén satisfies weak sup-
port monotonicity.

6.2 Phragmén’s Sequential Rule
The rule seq-Phragmén can be viewed as a greedy algorithm
for minimax-Phragmén (for details, we refer to the paper by
Brill et al. 2017). There is a close relationship between the
maximin support method and Phragmén’s sequential rule.
Both MMS and seq-Phragmén construct the set of winners
by iteratively adding candidates: MMS chooses candidates
such that the minimal support of the new set is maximized;
seq-Phragmén chooses candidates such that the maximal
voter load incurred by the new set is minimized. However,
there is a subtle difference between the two methods con-
cerning the redistribution of support/load. Under MMS, sup-
port distributed to candidates in earlier rounds can be freely
redistributed when looking for maximin support distribu-
tions for the new set of candidates. This is not the case for
the loads under seq-Phragmén, however: once a voter is as-
signed some load from some candidate, this load is “frozen”
and will always stay with the voter. As a consequence, the
two methods might give different results, as the following
example illustrates.
Example 14. Consider election E = (N,C,A, k) with k =
4 and C = {a1, a2, a3, c1, c2, c3, c4}. There are 16 voters
casting the following ballots:

5× {a1, c1, c2, c3, c4} 2× {a1}
4× {a2, c1, c2, c3, c4} 1× {a2}
3× {a3, c1, c2, c3, c4} 1× {a3}

The committee according to the maximin support method
is given by MMS (E) = {c1, a1, a2, a3} (selected in
this order), while seq-Phragmén selects (in this order)
{c1, c2, c3, a1}.

It is straightforward to check that seq-Phragmén can be
computed in polynomial time (Brill et al. 2017). With re-
spect to the axiomatic properties considered in this paper,
seq-Phragmén is indistinguishable from the maximin sup-
port method: seq-Phragmén satisfies committee monotonic-
ity by definition; it satisfies PJR but fails EJR (Brill et al.
2017); and results by Phragmén (1896), Mora and Oliver
(2015), and Janson (2016) imply that seq-Phragmén satis-
fies weak support monotonicity.

An interesting distinction between seq-Phragmén and
the maximin support method concerns their ability to ap-
proximate the optimal solution of the maximin support
problem. As recently shown by Cevallos and Stewart
(2020), MMS provides a 2-approximation for this prob-
lem, whereas seq-Phragmén does not offer a constant-
factor approximation.11 To state these results formally, we
let OPT (A, k) denote the optimal maximin support value
maxW⊆C,|W |=k maximin(A,W ) for election (A, k), and
Hk the k-th harmonic number Hk =

∑k
i=1 1/i.

11Due to Lemma 12, the same bounds hold for the problem of
minimizing the maximal voter load.

Proposition 15 (Cevallos and Stewart 2020).

1. maximin(A,MMS (E)) ≥ 1
2OPT (A, k) for each elec-

tion E = (A, k).
2. For each committee size k ∈ N and each ε > 0, there is an

election (A(k), k) such that OPT (A(k), k) ≥ (Hk − ε) ·
maximin(A(k),Wk), whereWk is the committee selected
by seq-Phragmén in election (A(k), k).

Proposition 15 implies that seq-Phragmén can behave ar-
bitrarily worse than minimax-Phragmén (and also than the
maximin support method) in terms of maximizing the min-
imum support. We note that the maximin support value of
a committee can be seen as a measure of its representative-
ness: the optimal value of |N |/k can only be achieved when
all voters are represented in the committee (in the sense that
each voter approves at least one winning candidate) and,
furthermore, the support can be evenly distributed among
the committee members. Committees with smaller maximin
support values can thus be interpreted as providing a lesser
degree of representation. From this perspective, Proposi-
tion 15 shows an important advantage of the maximin sup-
port method compared to seq-Phragmén. Note, however, that
this advantage comes at the price of increased computational
complexity (see also Cevallos and Stewart 2020): as we have
seen in Section 4, in each iteration of MMS, we need to solve
one linear program for every remaining candidate.

7 Conclusion
We have proposed the maximin support method (MMS) as
a novel extension of the D’Hondt method to approval-based
multiwinner elections. Like the method of D’Hondt, MMS
aims to maximize the support of the least supported winning
candidate. We have shown that MMS can be computed effi-
ciently and satisfies an attractive combination of axiomatic
properties. In particular, we have argued that MMS strikes
a balance between sufficiently representing the interests of
cohesive voter groups, while at the same time trying not to
overrepresent groups. We have also established a close re-
lationship between MMS and Phragmén’s rules. This novel
connection allows us to formulate Phragmén’s rules as sup-
port maximization (rather than load minimization) prob-
lems, and to view MMS as a tractable approximation of
Phragmén’s (intractable) optimal rule.

There are several intriguing questions for future work, in-
cluding the following: Is the approximation factor of MMS
for the optimal maximin support problem tight? Do there
exist polynomial-time computable (and axiomatically de-
sirable) voting rules providing a better approximation fac-
tor? Do there exist committee-monotonic rules satisfying
stronger proportionality guarantees such as EJR?
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