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Abstract

Restricted domains over voter preferences have been exten-
sively studied within the area of computational social choice,
initially for preferences that are total orders over the set of al-
ternatives and subsequently for preferences that are dichoto-
mous—i.e., that correspond to approved and disapproved
alternatives. This paper contributes to the latter stream of
work in a twofold manner. First, we obtain forbidden subpro-
file characterisations for various important dichotomous do-
mains. Then, we are concerned with incomplete profiles that
may arise in many real-world scenarios, where we have par-
tial information about the voters’ preferences. We tackle the
problem of determining whether an incomplete profile admits
a completion within a certain restricted domain and design
constructive polynomial algorithms to that effect.

1 Introduction
Individual preferences on the one hand, and the aggregation
of these preferences into one collective choice on the other
hand, constitute central elements of AI research (Domshlak
et al. 2011). With applications ranging from recommender
systems to electronic voting and automated personal as-
sistants, the problem of choosing suitable preference mod-
els and aggregation methods becomes evident. But well-
behaved aggregation mechanisms are not always easy to
find, notably because determining the outcome of the aggre-
gation is often an intractable task (e.g., Procaccia, Rosen-
schein, and Zohar, 2007). Luckily, good news come to light
under the assumption that the agents’ preferences conform
to a certain structure, also known as a domain restriction.

For the above reason, domain restrictions over the prefer-
ences of voters have received increasing attention within the
field of computational social choice (see Elkind, Lackner,
and Peters (2017) for a recent survey). On a conceptual level,
restricted domains represent structures that arise as sensible
preference models in many real-life settings; on a techni-
cal level, they allow for the efficient application of several
voting mechanisms, the utilisation of which is in general a
computationally hard problem.

More specifically, restricted domains of preferences that
are total orders over the set of alternatives are well-studied.
In contrast, domains of dichotomous preferences where
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the voters hold an approved and a disapproved set of
alternatives—although very natural—were developed only
recently. Elkind and Lackner (2015) introduced various do-
mains of this kind (later generalized by Yang, 2019); they
showed that a number of structures of dichotomous pref-
erences admit polynomial algorithms in the context of two
popular approval-based multiwinner rules, for which deter-
mining the winning committee is known to be NP-hard: Pro-
portional Approval Voting (PAV) and Maximin Approval
Voting (MAV), described by Kilgour and Marshall (2012)
and Brams, Kilgour, and Sanver (2007), respectively.

This paper consists of two parts. The first part builds on
Elkind and Lackner’s work with the following contribution:
• We prove characterisation theorems for restricted dichoto-

mous domains on which the results of Elkind and Lackner
(2015) rely, by identifying the patterns that prevent a pref-
erence profile from exhibiting a certain structure.

In particular, introducing an order of the alternatives and in-
troducing an order of the voters are the two main approaches
when defining structured dichotomous preferences. But a
structure of the voters is dual to a structure of the alterna-
tives. So, we present all our results for domains resting on
voter structures, but these results can be directly translated
and assumed to hold for structures of alternatives as well.

The literature on domains of total orders contains char-
acterization results using forbidden patterns, reminiscent
to ours. Ballester and Haeringer (2011) characterised the
single-peaked and the group-separable domains, while Bred-
ereck, Chen, and Woeginger (2013) performed the task for
the single-crossing domain, and Peters and Lackner (2020)
worked on the domain of single-peaked preferences on a cir-
cle. We now know that all these domains are characterised
by a finite number of forbidden patterns—but this is not true
for other domains of total orders. For instance, Chen, Pruhs,
and Woeginger (2017) proved that finitely many forbidden
patterns are not enough for the one-dimensional euclidean
domain. It is also worth stressing here that, for any domain
characterised by a finite number of forbidden patterns, it is
computationally easy to check whether a preference profile
conforms to it. Bartholdi III and Trick (1986) designed the
original algorithm for detecting whether a profile is single-
peaked, while Elkind, Faliszewski, and Slinko (2012) and
Bredereck, Chen, and Woeginger (2013) solved the same ex-
ercise for single-crossing preferences.
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However, one important aspect has not been considered
in the literature to date, namely the fact that our information
about the exact dichotomous preferences of the voters will
often be incomplete. Either because it is costly for the vot-
ers to report all their preferences, or because they have not
yet formed full preferences when they are asked to express
them, we may have no access to the complete preference
profile. Yet, it is crucial to know whether a certain struc-
ture can potentially be manifested in a given incomplete pro-
file, most importantly to understand whether an aggregation
method has the chance to be efficiently applied.

The second part of this paper, which contains our main
focus, aims to close the aforementioned gap in the literature.
We point at the general case of incomplete information on
dichotomous preferences and ask:
• Given an incomplete profile, is it possible to complete it

in a way that complies with a certain restriction? Is it nec-
essary that a completion will conform to the restriction of
our interest? If the answer is positive, can we efficiently
discover an appropriate completion? We design polyno-
mial algorithms that provide constructive answers for the
relevant dichotomous domains.

Our original algorithms subsume and extend the algorithms
for the complete case of Elkind and Lackner (2015).

Regarding incomplete profiles of total orders, the work
of Lackner (2014) (recently elaborated upon by Fitzsim-
mons and Lackner, 2020) was the first to address the prob-
lem of extending partial preferences to full preferences that
respect a given restriction, specifically investigating the do-
main of single-peaked preferences on total orders. Following
up, Elkind et al. (2015) explored single-crossing domains.

Along similar lines, researchers in the area of preference
elicitation (Walsh 2008; Conitzer 2009) are specifically con-
cerned with scenarios where the voters are not able to report
their full preferences and we thus need to perform a lim-
ited number of queries, for example asking for comparisons
between two alternatives at a time. Knowing whether an in-
complete profile admits a completion that complies with a
desirable structure is an essential part of preference elicita-
tion, which currently only involves preferences that—when
fully elicited—are total orders.

Lastly, a different—yet intuitively related—task on do-
main restrictions, pioneered by Faliszewski, Hemaspaan-
dra, and Hemaspaandra (2014) and so far only explored on
domains of total orders, is about recognising profiles that
nearly enjoy a given structure (Elkind and Lackner 2014;
Erdélyi, Lackner, and Pfandler 2017; Jaeckle, Peters, and
Elkind 2018), according to some distance metric. This is
very natural area to investigate for dichotomous preferences
as well, but this is a topic for another paper.1

The remainder of this paper is organised as follows. Sec-
tion 2 introduces our model and reviews a number of do-
main restrictions on dichotomous preferences of practical
relevance. In Section 3, we characterise complete profiles

1Completing incomplete matrices in order to satisfy certain de-
sirable properties is studied in many different contexts as well. For
example, Ganian et al. (2018) examined completions that minimize
the rank, or the number of distinct rows of a matrix.

in these domains via forbidden patterns. In Section 4, we
present the principal contributions of this paper: We study
settings of incomplete information and design polynomial
algorithms that detect whether a given incomplete profile
can possibly (and analogously, necessarily) have a comple-
tion with a certain structure. Then, Section 5 concludes.

2 The Model
This section presents our basic notation and terminology and
defines domain restrictions on dichotomous preferences.

Preliminaries
In our model, a finite set of voters N = {v1, . . . , vn}, with
n ≥ 2, hold dichotomous preferences over a finite set of
alternatives A = {a1, . . . , am}, with m ≥ 2. That is, a
voter vj either approves or disapproves an alternative ai, de-
noted by pi,j = 1 and pi,j = 0, respectively. The dichoto-
mous preferences of all voters are captured by a profile P ,
which is anm×n binary matrix.2 We may also have incom-
plete information about that matrix, corresponding to cells
of unknown value “?”. LetMm×n be the set of all complete
m× n matrices with entries “0” or “1”, and let Im×n be
the set of all incomplete matrices with entries “0”, “1”, or
“?”. So,Mm×n ⊆ Im×n. Given matrices X ∈ Im×n and
Y ∈ Mm×n, we say that Y is a completion of X if every
cell of known value in X has the same value in Y .

For a number k ∈ N, we denote by [k] the set {1, . . . , k}
and by Sk the set of all permutations on [k]. For two matrices
X,Y ∈ Im×n, we say that X and Y are equivalent if X
equals Y after some permutation of rows and columns:
X ≡ Y if xi,j = yσ(i),τ(j) for some σ ∈ Sm, τ ∈ Sn.

We say that the matrix X ∈ Ik×` occurs as a pattern in the
matrix Y ∈ Im×n if for some submatrix Z ∈ Ik×` of Y it is
the case that X ≡ Z. If X does not occur as a pattern in Y ,
we say that Y avoids X . For any class of matrices X , we
write Av(X ) = {Y | for all X ∈ X , Y avoids X} for the
set of matrices that avoid all matrices in X . For simplicity,
we say that a matrix Y ∈ Av(X ) avoids the class X .

For x ∈ {0, 1}, we denote by P [pi,j |x] the new matrix
obtained from the matrix P by placing the value “x” in the
cell pi,j (that may previously have a known or an unknown
value). Then, the operation that we call cancellation applies
in a row of a matrix and changes all its elements from “0” to
“1” and from “1” to “0”. For a subset of alternatives A ⊆ A,
we denote byP [A] the profile obtained fromP by cancelling
all rows corresponding to the alternatives in A.

Finally, given a profile P ∈ Im×n, we define P ’s con-
secutive order graph, a novel object that will be a very use-
ful tool for our technical results. We construct P ’s consecu-
tive order graph as follows: We have n nodes, one for each
voter, and we have a directed edge from node vj to node v`
if and only if for some alternative ai it is the case that vj ap-
proves ai and v` disapproves ai (i.e., pi,j = 1 and pi,` = 0).
See Figure 1 for an example and note that for the remainder,
we will not indicate the voters and the alternatives on the
various profiles—it should be clear that voters correspond to
columns and alternatives to rows of the matrix.

2We will use the terms “profile” and “matrix” interchangeably.
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v1 v2 v3 v4

a1 1 ? 0 ?
a2 ? ? 0 1
a3 1 1 1 1
a4 0 0 ? ?
a5 ? 0 1 0

v1

v2

v3

v4

Figure 1: An incomplete profile and its representation via
the consecutive order graph.

Domain Restrictions
We are interested in domain restrictions, i.e., in dichotomous
preferences with a special structure, which are significant
with respect to the application of prominent approval-based
rules. To this end, we study the following three domain re-
strictions that we formally define below: VI, VEI, and PART.
These particular restrictions on complete preference profiles
have been found to be of major interest to the computa-
tional social choice community, since Elkind and Lackner
(2015) showed that they admit efficient algorithms for the
popular—yet computationally hard—rules PAV and MAV.3

In addition to the above, we consider a novel restriction
to which we refer as SVEI. SVEI is logically stronger than
VEI, and hence it also allows for efficiency regarding both
PAV and MAV. The reason why we include SVEI in our
analysis is twofold: First and foremost, analysing the prop-
erties of SVEI and obtaining reliable results for it is very
useful technically, as our relevant results for the more stan-
dard property of VEI heavily depend on the former. Second,
SVEI is not unreasonable in voting scenarios. For example,
assume that the alternatives constitute the candidates of a
specific political party. We may then order the voters from
the most loyal party supporter to the most adversarial one
so that each candidate firstly wins the support of the most
loyal voter, then possibly also gets a vote from the next most
loyal voter (depending on how convincing she is), and so on.
Note also that in a profile that satisfies SVEI, most common
approval-based multiwinner voting rules (like Chamberlin-
Courant, PAV, and MAV) will select the same, optimal win-
ning committee; that is, the committee with the most votes
(Faliszewski et al. 2017).

Definition 1. We say that a profile P ∈Mm×n satisfies

• Voter Interval (VI) if the voters can be reordered so that
for every alternative ai, the voters that approve it form an
interval of the ordering.

• Voter External Interval (VEI) if the voters can be re-
ordered so that for every alternative ai, the voters that
approve it form a prefix or a suffix of the ordering.

• Single-sided Voter External Interval (SVEI) if the vot-
ers can be reordered so that for every alternative ai, the
voters that approve it form a prefix of the ordering.

3We also know by Elkind and Lackner (2015) that the property
Candidate Interval (CI) is equivalent to many other properties, viz.
Dichotomous Euclidean, Possibly Single-Peaked, and Possibly Eu-
clidean. Hence, by studying VI (which, as we mentioned in the
introduction, is dual to CI), we have answers for all these domains.

(
0 1 0
1 0 0
0 1 1

)
(a) VI

(
1 1 0
1 0 0
0 1 1

)
(b) VEI

(
1 1 0
1 0 0
1 1 0

)
(c) SVEI1 0 0 0

1 0 0 0
0 1 1 1
0 1 1 1


(d) PART

Figure 2: Ordered profiles satisfying different properties.

• Partition (PART) if the set of alternatives A can be par-
titioned into subsets A1, . . . , A` such that each voter ap-
proves exactly one of the sets A1, . . . , A` and each such
set is approved by at least one voter.

Clearly, each of SVEI, PART, and VEI implies VI. Figure 2
provides examples for the above properties.

3 Complete Profiles
In this section, we characterise profiles in restricted domains
of dichotomous preferences via forbidden patterns: For each
property, we identify a class of matrices Y such that a profile
will satisfy the property if and only if it avoids Y .

Although no characterisations of dichotomous preference
domains exist in the computational social choice literature,
Tucker (1972), working in combinatorics, has obtained a
forbidden pattern characterisation for VI that contains in-
finitely many forbidden patterns. To be specific, Tucker ob-
tained forbidden patterns that characterise matrices with the
consecutive-ones property in columns, which are exactly
transposed matrices with the VI property.

Proposition 1 (Tucker, 1972). A profile P ∈ Mm×n satis-
fies the VI property if and only if it avoids the (infinite) class

T =
3⋃
k=1

Tk ∪ {T4, T5}, where Tk =
⋃∞
`=1{T `k} and for all

` ≥ 1, T `1 , T
`
2 , and T `3 are such that:

T `1 =



1 1
1 1

. . 0
0 . .

1 1
1 1

1 0 ... 0 1

 ∈M(`+2)×(`+2),

T `2 =



1 1 0
1 1 0

. . 0 0

0 . .
...

1 1 0
1 1 0

1 1 1 ... 1 1 0 1
0 1 1 ... 1 1 0 1


∈M(`+3)×(`+3),

5728



T `3 =



1 1 0
1 1 0

. . 0
...

0 . .
1 1 0

1 1 0
0 1 1 ... 1 1 0 1


∈M(`+2)×(`+3),

T4 =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 1 0 1 0 1

 , T5 =

1 1 0 0 0
1 1 1 1 0
0 0 1 1 0
1 0 0 1 1

 .

Next, we present original characterisations for the properties
of VEI, SVEI, and PART.
Proposition 2. A profile P ∈Mm×n satisfies the VEI prop-
erty if and only if it avoids the class

Z =

5⋃
k=1

{Zk}, where

Z1 =

(
0 1 1
1 0 1
1 1 0

)
, Z2 =

(
1 0 0
0 1 0
0 0 1

)
, Z3 =

(
1 1 0
1 0 1
1 0 0

)
,

Z4 =

(
0 0 1
0 1 0
0 1 1

)
, Z5 =

(
1 1 0 0
1 0 1 0

)
.

Proof. Trivially, matrices containing patterns from the
class Z do not satisfy VEI. Then, we need to prove that Z
contains all forbidden patterns for VEI. Recall that VEI is a
logically stronger property than VI. This means that in every
matrix T ∈ T (where T is the class of forbidden patterns for
VI as defined in Proposition 1), there must occur a subpat-
tern Z that is forbidden for VEI.

Now, suppose that a profile P violates VEI. There are two
cases. Case 1: P violates VI. Then, P must contain a for-
bidden pattern Z for VEI that is a subpattern of a forbidden
pattern T for VI. Case 2: P satisfies VI. Then, P contains
a forbidden pattern Z for VEI since it violates this property
(and clearly forbidden patterns for VEI exist—we just do
not yet know which they are). Now, if we cancel some rows
in Z, then P will violate VI (because if that weren’t the case,
then P would satisfy VEI, contradicting our hypothesis).

So, a class of matrices Y includes all forbidden patterns
for VEI if (i) every matrix in T contains a pattern from Y ,
and (ii) when closed under cancellation for any subset of
rows in any of its matrices, Y gives rise to the same patterns.

For the class Z of our statement, it can be easily checked
that condition (ii) holds. We show that condition (i) holds
as well: For ` = 1, Tucker’s matrix T `1 coincides with Z1.
For ` ≥ 2, the matrix T `1 contains the pattern Z5 in the last
two rows. For ` ≥ 1, the matrices T `2 and T `3 contain the

pattern Z5 in the first two rows. Lastly, Tucker’s matrices T4
and T5 contain the pattern Z5 in the last two rows.

Proposition 3. A profile P ∈ Mm×n satisfies the SVEI
property if and only if it avoids the pattern X , where

X =

(
1 0
0 1

)
.

Proof. Note that a profile satisfying SVEI can be uniquely
reconstructed from its row and column sums. Matrices with
this property are characterized by the above forbidden pat-
tern X (Ryser 1957).

Proposition 4. A profile P ∈ Mm×n satisfies the PART
property if and only if (i) it avoids the pattern W , where

W =

(
0 1
1 1

)
, and

(ii) every row and every column of P has at least one “1”.

Proof. Obviously, if W occurs as a pattern in P , then P
cannot satisfy PART; if condition (ii) does not hold, then P
cannot satisfy PART either, by definition. Suppose now that
condition (ii) holds and W does not occur as a pattern in P .
Then, for every voter vj we can define the set of alternatives
that she approves as Aj = {ai ∈ A | pi,j = 1}, and for any
two voters vj , v` it will be the case that either Aj = A` or
Aj ∩ A` = ∅. So, we have a partition of A as prescribed by
the definition of PART.

Notably, the characterisation results of this section play
an essential role in settings of incomplete information too,
when we are looking for profiles that possibly or neces-
sary satisfy a given property. They imply that we can check
whether the aforementioned condition holds in polynomial
time. Most importantly, in Section 4 we will additionally see
how we can address this issue in a constructive fashion.

4 Incomplete Profiles
Before proceeding to the second part of this paper, some ad-
ditional terminology is in order. Given an incomplete pro-
file P ∈ Im×n, we say that P possibly (respectively, neces-
sarily) satisfies a specific property if some (respectively, all)
completions of P satisfy that property.

In this section, we address the following questions: Given
an incomplete profile P ∈ Im×n, can we detect easily
whether P admits a completion that conforms to a specific
structure? And if such a completion exists, can we find it?

We know that the problem of detecting whether an incom-
plete m× n profile can be completed in a way such that VI
is satisfied is NP-complete (Klinz, Rudolf, and Woeginger
1995), while Golumbic (1998) showed that the analogous
problem for PART can be solved in polynomial, O(mn),
time.4 We will next design polynomial algorithms for both
SVEI and VEI (with the latter building on the former).

4Since Proposition 4 provides a characterisation of PART via
finitely many forbitten subprofiles, it is not hard to see that check-
ing whether an incomplete profile necessarily has a completion that
satisfies this property can also be done in polynomial time.
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SVEI
The algorithm SVEI-INCOMPLETE is based on three sub-
algorithms, viz., FILLING, GRAPH, and ORDERING. In
what follows, P ∈ Im×n is a profile and L is a linear or-
der over N .

FILLING(P ): First set Pf to P . For an arbitrary cell of
unknown value pi,j in Pf , check whether the matrices
Pf [pi,j |0] and Pf [pi,j |1] contain the forbidden patternX for
SVEI. If they both do, announce “invalid” and exit; if neither
does, continue to the next cell of unknown value in Pf ; if
only one—the matrix Pf [pi,j |x] for x ∈ {0, 1}—does, then
set Pf to Pf [pi,j |1 − x] and continue to the next cell of un-
known value in Pf . When no other cell of unknown value
remains to be considered, return the profile Pf . Repeat this
process nm times—each repetition ensures that at least one
cell that can be filled will indeed be filled, and the thus order
of the selected cell does not matter overall.

GRAPH(P ): Construct the consecutive order graph of P .

ORDERING(P,L): Order the voters in P according to L by
defining the permutation σ ∈ Sn such that σ(i) < σ(j)
whenever (vi, vj) ∈ L. Return the ordered profile Po.

Lemma 1 ensures that the algorithm SVEI-INCOMPLETE,
which we will shortly construct, will be well-defined.

Lemma 1. If the forbidden configuration X for SVEI does
not occur as a pattern in the profile Pf (after FILLING(P )
has been applied), then the consecutive order graph of Pf is
acyclic and can thus be extended to a linear order.

Proof. We prove the contrapositive. Suppose—without loss
of generality on the names of the voters—that there is a cy-
cle v1 → v2 → . . . → vk → v1 in the consecutive order
graph of P . Then, some alternative x1 is approved by v1 and
rejected by v2, some alternative x2 is approved by v2 and re-
jected by v3,. . . , and some alternative xk is approved by vk
and rejected by v1. Without loss of generality, assume that
x1 = a1, x2 = a2, . . ., and xk = ak. Then:

p1,1 = 1 (1a) p1,2 = 0 (1b)
p2,2 = 1 (2a) p2,3 = 0 (2b)

...
...

pk,k = 1 (ka) pk,1 = 0 (kb)
If p1,3 = 1, we obtain a forbidden configuration for SVEI
from Equations (1b), (2a), and (2b). Otherwise, it must be
the case that

p1,3 = 0. (1′)

Continuing with the same reasoning for p1,4, p1,5, etc., we
either reach a step where we locate a forbidden configuration
for SVEI, or deduce that

p1,k = 0. (k′)

But from Equations (1a), (ka), (kb), and (k′), we have that

p1,1 = 1 p1,k = 0

pk,1 = 0 pk,k = 1,

which is a forbidden configuration for SVEI.

0 ? ? 1
0 0 1 0
1 0 1 ?
? ? ? 0


(a) original profile

0 0 1 1
0 0 1 0
1 0 1 ?
0 0 ? 0


(b) filling

v1

v2

v3

v4

(c) graph

v3 v4 v1 v2

(d) linearisation1 1 0 0
1 0 0 0
1 ? 1 0
? 0 0 0


(e) ordering

1 1 0 0
1 0 0 0
1 ? 1 0
1 0 0 0


(f) completing

Figure 3: SVEI-INCOMPLETE: An example.

We are now ready to define our main algorithm.

SVEI-INCOMPLETE(P ): Apply FILLING(P ). If “in-
valid” is announced, exit with failure. Otherwise, apply
GRAPH(Pf ) and extend the resulting graph to a linear
order L. Then, obtain an ordered profile Po by calling
ORDERING(Pf , L). Exit and return Po.

Next, we design an algorithm that completes an incomplete
profile so that SVEI will hold, provided that this is possible.

S-COMPLETING(P ): Repeat the steps below for all rows
i ∈ {1, . . . ,m}. Take the smallest j ∈ {1, . . . , n} such that
pi,j /∈ {0, 1}. If there is no ` < j with pi,` = 0, then set
P to P [pi,j |1]. Otherwise, set P to P [pi,j |0]. Repeat for the
next cell of unknown value in this row.

Proposition 5. SVEI-INCOMPLETE detects in polynomial
time whether a profile of dichotomous preferences possibly
satisfies SVEI. If it does, SVEI-INCOMPLETE also finds an
appropriate order of the voters and S-COMPLETING finds
a suitable completion in polynomial time.

Proof. Indeed, SVEI-INCOMPLETE terminates in polyno-
mial time: FILLING takesO(m3n3) time. We can also con-
struct the consecutive order graph of P in O(mn) time and
extend it to a linear order L in O(n+n2) time (Kahn 1962).
Finally, ORDERING and S-COMPLETING can be done in
O(n2) and O(mn) time, respectively.

Suppose now that FILLING did not announce “invalid”,
which means that a forbidden pattern for SVEI was not de-
tected in Pf . Then, intuitively, GRAPH(Pf ) draws an edge
from vj to v` when vj has to appear before v` in the fi-
nal ordering, and the linear order L that extends the con-
secutive order graph preserves this property. So in the or-
dered profile, for every alternative aj , the voters that ap-
prove it appear in the ordering before those that disap-
prove it, and this also holds after S-COMPLETING. Hence,
SVEI-INCOMPLETE will work correctly and the final
completion will satisfy SVEI.
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(
1 0 0 ?
1 ? 0 1

) (
1 0 0 ?
0 0 1 1

)
Figure 4: Rows corresponding to alternatives that match (on
the left) and that contradict (on the right) each other.

Let us illustrate SVEI-INCOMPLETE with an example.

Example 1. Consider a profile P of dichotomous prefer-
ences as depicted in (a) of Figure 3. Then, FILLING(P )
in step (b) can be easily done: For instance, we see that the
cell with unknown value in the first row and third column
of the matrix has to be assigned with “1” in order to prevent
the creation of a forbidden subprofile with the corresponding
cells of the fourth column and second row. Then, GRAPH(P )
in step (c) is constructed according to the relevant definition.
For step (d), note that v3 has no incoming edges in the con-
secutive order graph, so it should be placed first in the linear
order, and so on. The ordering and completing algorithms
in steps (e) and (f) follow quite straightforwardly once we
know the right sequence of the voters. M

Next, recall that we know exactly what the conditions that
can prevent a complete profile from satisfying SVEI are,
from Proposition 3. Consequently, we can easily detect
whether a profile necessarily satisfies SVEI. The proof of
Lemma 2 is immediate and, as such, omitted.

Lemma 2. An incomplete profile of dichotomous prefer-
ences P necessarily satisfies SVEI if and only if none of the
following matrices occurs as a pattern in P :(
0 1
1 0

)
,

(
? ?
1 0

)
,

(
0 ?
1 ?

)
,

(
? 1
1 ?

)
,

(
0 ?
? 0

)
,

(
0 1
1 ?

)
,

(
0 ?
1 0

)
,

(
? ?
? 0

)
,

(
? ?
? 1

)
,

(
? ?
? ?

)
.

Proposition 6. We can check whether an incomplete pro-
file of dichotomous preferences necessarily satisfies SVEI in
polynomial time.

Proof. The statement is deducible from Lemma 2, since we
can check whether a relevant subprofile occurs as a pattern
in a given incomplete profile in polynomial time.

VEI
Relying on our algorithm for SVEI, we proceed to design an
algorithm for VEI. The key intuition is the following: A pro-
file P satisfies VEI if and only if the profile obtained from
P by cancelling certain rows satisfies SVEI. But which rows
should be cancelled, if any? Loosely speaking, our algorithm
VEI-INCOMPLETE answers that question.

Given a profile P , we say that an alternative ai contradicts
the alternative ak if there exist j, ` ∈ [n] such that pi,j =
1 = 1 − pi,` and pk,j = 0 = 1 − pk,`. Analogously, an
alternative ai matches the alternative ak if there exist j, ` ∈
[n] such that pi,j = pk,j = 1, and pi,` = pk,` = 0. See
Figure 4 for an example, and note that two alternatives may
simultaneously match and contradict each other.

Below we present the algorithm EXPANDING,
used in the algorithm COARSENING that we call in
VEI-INCOMPLETE. The main function of the algorithm
EXPANDING is to expand every set of alternatives A
(within a partition P of A) into a new set A′ ⊇ A by adding
to it alternatives that either match or contradict the elements
of A—in case of a contradiction, the rows corresponding to
alternatives that are added to A are cancelled. The algorithm
COARSENING repeats this process until we know exactly
which rows must be cancelled.

In what follows, P ∈ Im×n is a profile, P is a partition
of the set of alternatives, and A ∈ P is a set of alternatives.

EXPANDING(A,P, P ): Start with setting P ′ = P and
P ′ = P . Then, repeat the following steps for all sets Y ∈ P
(including A). Consider first some B ∈ P .
Check if some ai ∈ A matches some aj ∈ B.
(1) If it does, mark B as used; continue to the next C ∈ P .
(2) Otherwise, check if some ai ∈ A contradicts an aj ∈ B.

(2a) If it does, set P ′ to P [B], mark B as used, and con-
tinue to the next C ∈ P .

(2b) Otherwise, continue to the next C ∈ P .
When there is no other set C ∈ P to consider, return the sets
that are marked as used, the profile P ′, and the partition

P ′ = {
⋃
B∈P
B used

B} ∪ {C ∈ P | C not used }.

COARSENING(P, P ): First, mark all sets in P as not
used. Take a set of alternatives A1 ∈ P and apply
EXPANDING(A1,P, P ), obtaining a new profile P1 and a
new partition P1. Then, take a set A2 ∈ P that is still not
marked as used and apply EXPANDING(A2,P1, P1), obtain-
ing a new profile P2 and a new partitionP2. Repeat until you
find the last set Ak ∈ A that is not marked as used. Apply
EXPANDING(Ak,Pk−1,Pk−1), obtaining a new profile Pk
and a new partition Pk. Return Pk and Pk.

VEI-INCOMPLETE(P ): Apply COARSENING(P, P ) first
for the finest partition P = {{a1}, . . . , {am}}. If there
are alternatives in the same set of the output partition P ′
that contradict each other, then exit with failure. Oth-
erwise, apply COARSENING(P ′, P ′). If in the new out-
put partition P ′′ there are alternatives in the same set
that contradict each other, then exit with failure. Other-
wise, continue by applying COARSENING(P ′′, P ′′), and
so on, until COARSENING(X , Y ) outputs the partition X
and the profile Y for some X and Y . Finally, apply
SVEI-INCOMPLETE(Y ) and order P in accordance with
the obtained output.

COMPLETING(P ): Repeat the steps below for all rows i ∈
{1, . . . ,m}. Take the smallest j ∈ {1, . . . , n} such that
pi,j /∈ {0, 1} and check whether there exists ` > j with
pi,` ∈ {0, 1}. If it does, then find the smallest such ` and
set P to P [pi,j |pi,`]. Otherwise, check whether there exists
` < j with pi,` ∈ {0, 1}. If it does, then find the largest such
` and set P to P [pi,j |pi,`]. Otherwise, set P to P [pi,j |0].
Repeat for the next cell of unknown value in this row.
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Proposition 7. VEI-INCOMPLETE detects in polynomial
time whether a profile of dichotomous preferences possibly
satisfies VEI. If it does, VEI-INCOMPLETE also finds an
appropriate order of the voters and COMPLETING finds a
suitable completion in polynomial time.

Proof. Clearly, VEI-INCOMPLETE will terminate in poly-
nomial time: One application of EXPANDING takes at most
O(m2n2) time, and thus one application of COARSENING
takes O(m3n2) time. So, the coarsest partition will be ob-
tained in O(m4n2) time. Then, SVEI-INCOMPLETE will
be applied, which we know takes O(m2n2) time. It is also
easy to see that COMPLETING takes O(mn2) time.

Moreover, it follows from the relevant definitions that a
profile P satisfies VEI if and only if the profile Ps obtained
from P by cancelling certain rows satisfies SVEI. Suppose
that, after some application of COARSENING, two alterna-
tives ai and ak are in the same set of the partition in the
output. This means that in Ps we must have either both or
neither of the rows i and k cancelled. Now, if ai and ak con-
tradict each other, then the forbidden configuration for SVEI
will occur as a pattern in Ps, and thus Ps will fail SVEI and
P will fail VEI. But suppose that, via VEI-INCOMPLETE,
we obtain the coarsest possible partition of the set of alter-
natives and no alternatives from two different sets contradict
each other; if moreover no alternatives in the same set con-
tradict each other, then the resulting profile Ps will not con-
tain any forbidden configuration for SVEI as a pattern. So
Ps will satisfy SVEI, and thus P will satisfy VEI. Then, in
the order obtained by SVEI-INCOMPLETE applied in P ,
for every alternative ai, the voters that approve it appear in
the ordering either before or after the voters that disapprove
it. This property will be preserved after COMPLETING.

Example 2 demonstrates VEI-INCOMPLETE in practice.

Example 2. Consider a profile P of dichotomous prefer-
ences as depicted in (a) of Figure 5. Starting with step (b),
we apply the coarsening algorithm for P on the finest
partition {{a1}, . . . , {a5}}. We first examine the singleton
set {a1} and expand it into {a1, a4} because the rows 1
and 4 of the matrix match. In the second iteration of expan-
sion, we examine the set {a2} that is not used yet and create
the new set {a2, a3} because the rows 2 and 3 match. Then,
the set {a5} remains unused. But the rows 5 and 3 contradict
each other, so the set that a3 belongs to, namely {a2, a3},
will be cancelled and the singleton {a5} will be expanded
into {a2, a3, a5}. After that round, the first application of
coarsening will be terminated; its second application will
involve the partition {{a1, a4}, {a2, a3, a5}}. Inspecting the
set {a1, a4}, we see that row 4 matches the cancelled row 3
(since they were contradicting each other in the original ma-
trix). So, all alternatives in the set {a2, a3, a5} will now
join {a1, a4}, giving rise to the coarsest possible partition.
Step (d) follows from the algorithm SVEI-INCOMPLETE,
while steps (e) and (f) are straightforward. M

Finally, Proposition 8 is implied by Proposition 2. As ex-
plicitly shown in Lemma 2 and Proposition 6, the check in
fact concerns many more profiles than the five from Propo-
sition 2 to accomodate all possibilities with unknown cells.


? ? ? ? 1 0
? ? 0 1 ? ?
0 1 0 1 ? ?
1 0 ? ? 1 0
1 1 ? 0 ? ?


(a) original profile

{{a1}, {a2}, {a3}, {a4}, {a5}}
{{a1, a4}, {a2}, {a3}, {a5}}
{{a1, a4}, {a2, a3}, {a5}}
{{a1, a4}, {a2, a3, a5}}
{{a1, a2, a3, a4, a5}}
(b) coarsening (via ex-
panding four times)

? ? ? ? 1 0
? ? 1 0 ? ?
1 0 1 0 ? ?
1 0 ? ? 1 0
1 1 ? 0 ? ?


(c) new profile (rows 2
and 3 cancelled)


? 1 ? ? ? 0
? ? 1 ? 0 ?
1 ? 1 0 0 ?
1 1 ? 0 ? 0
1 ? ? 1 0 ?


(d) ordering (via
SVEI-INCOMPLETE)

? 1 ? ? ? 0
? ? 0 ? 1 ?
0 ? 0 1 1 ?
1 1 ? 0 ? 0
1 ? ? 1 0 ?


(e) ordering of original
profile


1 1 0 0 0 0
0 0 0 1 1 1
0 0 0 1 1 1
1 1 0 0 0 0
1 1 1 1 0 0


(f) completing

Figure 5: VEI-INCOMPLETE: An example.

Proposition 8. We can check whether an incomplete pro-
file of dichotomous preferences necessarily satisfies VEI in
polynomial time.

5 Conclusion
We have studied structured dichotomous preferences from
two angles. First, in settings with complete information, we
have obtained forbidden subprofile characterisations that ex-
pand previous work on the topic. Second, in cases with in-
complete information, our main challenge concerned detect-
ing whether an incomplete profile can admit a possible or a
necessary completion within certain restricted domains. Our
questions were answered by locating results in the relevant
literature, as well as by designing new constructive algo-
rithms. Yet, one of them remains open: What is the complex-
ity of determining whether the completion of an incomplete
dichotomous preference profile necessarily satisfies VI?

While the beginning has been made, restricted domains of
dichotomous preferences are certainly worthy of further in-
vestigation. For complete profiles that violate a given prop-
erty, it would be interesting to know the minimum number
of values that need to be swapped to make the property hold.
Such a result would be relevant for applications with noisy
inputs—some pertinent work has been recently conducted
by Rani, Subashini, and Jagalmohanan (2019). Then, regard-
ing cases of incomplete information, one could also study
the probability of a profile to comply with a certain structure
after being randomly completed, or limit the number of cells
with unknown values and conduct a parametrised complex-
ity analysis. All these problems should of course be explored
with respect to different domain restrictions as well.
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