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Abstract

Often—for example in war games, strategy video games,
and financial simulations—the game is given to us only as
a black-box simulator in which we can play it. In these set-
tings, since the game may have unknown nature action distri-
butions (from which we can only obtain samples) and/or be
too large to expand fully, it can be difficult to compute strate-
gies with guarantees on exploitability. Recent work (Zhang
and Sandholm 2020) resulted in a notion of certificate for
extensive-form games that allows exploitability guarantees
while not expanding the full game tree. However, that work
assumed that the black box could sample or expand arbitrary
nodes of the game tree at any time, and that a series of exact
game solves (via, for example, linear programming) can be
conducted to compute the certificate. Each of those two as-
sumptions severely restricts the practical applicability of that
method. In this work, we relax both of the assumptions. We
show that high-probability certificates can be obtained with a
black box that can do nothing more than play through games,
using only a regret minimizer as a subroutine. As a bonus, we
obtain an equilibrium-finding algorithm with Õ(1/

√
T ) con-

vergence rate in the extensive-form game setting that does not
rely on a sampling strategy with lower-bounded reach prob-
abilities (which MCCFR assumes). We demonstrate experi-
mentally that, in the black-box setting, our methods are able
to provide nontrivial exploitability guarantees while expand-
ing only a small fraction of the game tree.

1 Introduction
Computational equilibrium finding has led to many recent
breakthroughs in AI in games such as poker (Bowling
et al. 2015; Brown and Sandholm 2017; Moravčı́k et al.
2017; Brown and Sandholm 2019b) where the game is fully
known. However, in many applications, the game is not
fully known; instead, it is given only via a simulator that
permits an algorithm to play through the game repeatedly
(e.g., Wellman 2006; Lanctot et al. 2017; Tuyls et al. 2018;
Areyan Viqueira, Cousins, and Greenwald 2020). The algo-
rithm may never know the game exactly. While deep rein-
forcement learning has yielded strong practical results in this
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setting (Vinyals et al. 2019; Berner et al. 2019), those meth-
ods lack the low-exploitability guarantees of game-theoretic
techniques, even with infinite samples and computation. Fur-
thermore, the standard method of evaluating exploitability of
a strategy—computing the equilibrium gap of the strategy—
is to compute a best response for each player. This, however,
assumes the whole game to be known exactly.

Recently, Zhang and Sandholm (2020) defined a notion of
certificate for imperfect-information extensive-form games
that can address these problems.1 A certificate enables veri-
fication of the exploitability of a given strategy without ex-
ploring the whole game tree. However, that work has a few
limitations that reduce its practical applicability. First, they
assume a black-box model that allows sampling or expand-
ing arbitrary nodes in the game tree. Yet most simulators
only allow the players to start from the root of the game,
and chance nodes in the simulator affect the path of play,
so exploration by jumping around in the game tree is not
supported. Second, their algorithm requires an exact game
solver, for example, a linear program (LP) solver, to be in-
voked repeatedly as a subroutine. This reduces the ability of
the algorithm to scale to cases in which LP is impractical
due to run time or memory considerations.

In this paper, we address both of these concerns. We give
algorithms that create certificates in extensive-form games in
a simple black-box model, with either an exact game solver
or a regret minimizer as a subroutine. We show that our al-
gorithms achieve convergence rate O(

√
log(T )/T ) (hiding

game-dependent constants). This matches, up to a logarith-
mic factor, the convergence rate of regret minimizers such as
counterfactual regret minimization (CFR) (Zinkevich et al.
2007; Brown and Sandholm 2019a) or its stochastic vari-
ant, Monte Carlo CFR (MCCFR) (Lanctot et al. 2009; Fa-
rina, Kroer, and Sandholm 2020)—while also providing ver-
ifiable equilibrium gap guarantees unlike those prior tech-
niques suitable for the black-box setting. In particular, we
are also able to compute ex-post exploitability bounds with-
out knowing the exact game or iterating through all its se-
quences. In contrast, previous techniques would need to rely

1Gatti and Restelli (2011) explore the problem in extensive-
form games of perfect information with infinite strategy spaces.
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on either their worst-case convergence bounds, which are at
least linear (and usually worse) in the number of information
sets (Lanctot et al. 2009), or else know the exact game to
perform an exact best-response computation. We prove that
this convergence rate is optimal for the setting. We demon-
strate experimentally that our method allows us to construct
nontrivial certificates in games with good sample efficiency,
namely, while taking fewer samples than there are nodes in
the game.

As a side effect, our algorithm is, to our knowledge,
the first extensive-form game-solving algorithm that en-
joys Õ(N/

√
T ) (where N is the number of nodes) Nash

gap convergence rate in two-player zero-sum games in
the model-free setting, without the problematic assump-
tion of having an a priori strategy with known lower-
bounded reach probabilities on all nodes that is required
by MCCFR. Farina, Schmucker, and Sandholm (2021) only
achieves poly(N)/

√
T convergence against an arbitrary,

fixed strategy (which is not an exploitability bound), and
Farina and Sandholm (2021) has weaker convergence rate
poly(N)/T 1/4. Unlike in the latter two papers, which are
regret minimizers, though, we are controlling both players
during the learning.

Our techniques also work for games where payoffs can be
received at internal nodes (not just at leaves), and for coarse-
correlated equilibrium in general-sum multi-player games.

Game abstraction has commonly been used to reduce
game tree size prior to solving (Billings et al. 2003; Gilpin
and Sandholm 2006; Brown and Sandholm 2015; Čermák,
Bošansky, and Lisý 2017). Practical abstraction techniques
without exploitability guarantees were used in achiev-
ing superhuman performance in no-limit Texas hold’em
poker in the Libratus (Brown and Sandholm 2017) and
Pluribus (Brown and Sandholm 2019b) agents. There has
been research on abstraction algorithms with exploitability
guarantees for specific settings (Sandholm and Singh 2012;
Basilico and Gatti 2011) and for general extensive-form
games (e.g., Gilpin and Sandholm 2007; Lanctot et al. 2012;
Kroer and Sandholm 2014, 2015, 2016, 2018), but these are
not scalable for large games such as no-limit Texas hold’em,
and the guarantees depend on the difference between the ab-
stracted game and the real game being known.

2 Notation and Background
We study extensive-form games, hereafter simply games. An
extensive-form game consists of:

(1) a set of players P , usually identified with positive inte-
gers 1, 2, . . . n. Nature, a.k.a. chance, will be referred to
as player 0. For a given player i, we will often use −i to
denote all players except i and nature.

(2) a finite tree H of nodes, rooted at some root node ∅. The
edges connecting a node h to its children are labeled with
actions. The set of actions at h will be denoted A(h). h �
z means z is a descendant of h, or z = h.

(3) a map P : H → P ∪ {0}, where P (h) is the player who
acts at node h (possibly nature).

(4) for each player i, a utility function ui : H → R. It will
be useful for us to allow players to gain utility at internal
nodes of the game tree. Along any path (h1, h2, . . . , hk),
define u(h1 → hk) =

∑k
i=1 u(hi) to be the total utility

gained along that path, including both endpoints. The goal
of each player is to maximize their total reward u(∅ → z),
where z is the terminal node that is reached.

(5) for each player i, a partition of player i’s decision points,
i.e., P−1(i), into information sets (or infosets). In each
infoset I , every h ∈ I must have the same set of actions.

(6) for each node h at which nature acts, a distribution σ0(·|h)
over the actions available to nature at node h.

We will use (G, u), or simply G when the utility function
is clear, to denote a game. G contains the tree and infor-
mation set structure, and u = (u1, . . . , un) is the profile of
utility functions.

For any history h ∈ H and any player i ∈ P , the sequence
si(h) of player i at node h is the sequence of information
sets observed and actions taken by i on the path from ∅ to
h. In this paper, all games will be assumed to have perfect
recall: if h1, h2 ∈ I and i acts at I , then si(h1) = si(h2).

A behavior strategy (hereafter simply strategy) σi for
player i is, for each information set I at which player i acts,
a distribution σi(·|I) over the actions available at that in-
foset. When an agent reaches information set I , it chooses
action a with probability σi(a|I). A tuple σ = (σ1, . . . , σn)
of behavior strategies, one for each player i ∈ P , is a strat-
egy profile. A distribution over strategy profiles is called a
correlated strategy profile, and will also be denoted σ. The
reach probability σi(h) is the probability that node h will be
reached, assuming that player i plays according to strategy
σi, and all other players (including nature) always choose
actions leading to h when possible. Analogously, we de-
fine σ(h) =

∏
i∈P∪{0} σi(h) to be the probability that h

is reached under strategy profile σ. This definition naturally
extends to sets of nodes or to sequences by summing the
reach probabilities of all relevant nodes.

Let Si be the set of sequences for player i. The sequence
form of a strategy σi is the vector x ∈ RSi given by x[s] =
σi(s). The set of all sequence-form strategies is the sequence
form strategy space for i, and is a convex polytope (Koller,
Megiddo, and von Stengel 1994).

The value of a profile σ for player i is ui(σ) :=
Ez∼σ ui(∅ → z). The future utility of a profile starting at
h is u(σ|h); that is, u(σ|h) = Ez∼σ|h u(h→ z).

The best response value u∗i (σ−i) for player i against an
opponent strategy σ−i is the largest achievable value; i.e.,
u∗i (σ−i) = maxσi

ui(σi, σ−i). A strategy σi is an ε-best re-
sponse to opponent strategy σ−i if ui(σi, σ−i) ≥ u∗i (σ−i)−
ε. A best response is a 0-best response.

A strategy profile σ is an ε-Nash equilibrium (which we
will call ε-equilibrium for short) if all players are playing ε-
best responses. A Nash equilibrium is a 0-Nash equilibrium.

We also study finding certifiably good strategies for the
game-theoretic solution concept called coarse-correlated
equilibrium. In such equilibrium, if σ is correlated, the de-
viations σi when computing best response are not allowed
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to depend on the shared randomness. A correlated strategy
profile σ is a coarse-correlated ε-equilibrium if all players
are playing ε-best responses under this restriction.

2.1 ε-Equilibria within Pseudogames
We now define pseudogames, first introduced by Zhang and
Sandholm (2020).

Definition 2.1. A pseudogame (G̃, α, β) is a game in which
some nodes do not have specified utility but rather have
only lower and upper bounds on utilities. Formally, for each
player i, instead of the standard utility function ui, there are
lower and upper bound functions αi, βi : H → R.

We will always use ∆ to mean β−α. For α and β, we will
use the same notation overloading as we do for the utility
function u. For example, α(h → z) and α(σ|h) have the
corresponding meanings.

Definition 2.2. (G̃, α, β) is a trunk of a game (G, u) if:

(1) G̃ can be created by collapsing some internal nodes of G
into terminal nodes (and removing them from information
sets they are contained in), and

(2) for all nodes h of G, all players i, and all strategy profiles
σ, we have αi(σ|h) ≤ ui(σ|h) ≤ βi(σ|h).

It is possible for information sets to be partially or totally
removed in a trunk game. Next we state the basics of equi-
librium and coarse-correlated equilibrium in pseudogames.

Definition 2.3. A (coarse-correlated) ε-equilibrium of
(G̃, α, β) is a (correlated) profile σ such that the equilibrium
gap β∗i (σ−i)− αi(σ) of each player i is at most ε.

Definition 2.4. A (coarse-correlated) ε-certificate for a
game G is a pair (G̃, σ), where G̃ is a trunk of G and σ

is a (coarse-correlated) ε-equilibrium of G̃.

Proposition 2.5 (Zhang and Sandholm 2020). Let (G̃, σ)
be an ε-certificate for game G. Then any strategy profile in
G created by playing according to σ in any information set
appearing in G̃ and arbitrarily at information sets not ap-
pearing in G̃ is a ε-equilibrium in G.

Though the above proposition was stated only for Nash
equilibrium by Zhang and Sandholm (2020), we observe that
it applies to coarse-correlated equilibria as well.

2.2 The Zero-Sum Case
A two-player game is zero sum if u1 = −u2. In this case,
we refer to a single utility function u; it is understood that
Player 2’s utility function is −u. In zero-sum games, all
equilibria have the same expected value; this is called the
value of the game, and we denote it by u∗. In the zero-sum
case, we use a slightly different notion of ε-equilibrium of a
pseudogame, which will make the subsequent results tighter.

Definition 2.6. A two-player pseudogame (G̃, α, β) is zero-
sum if α2 = −β1 and β2 = −α1.

As alluded to above, in this situation, we will drop the
subscripts, and write α and β to mean α1 and β1. In partic-
ular, (G̃, α) and (G̃, β) are zero-sum games.

Definition 2.7. An ε-equilibrium of a two-player zero-sum
pseudogame (G̃, α, β) is a profile (x∗, y∗) for which the
Nash gap β∗(y∗)− α∗(x∗) is at most ε.

In zero-sum games, we need not concern ourselves with
correlation, since at least one player can always deviate to
playing independently of the other player and not lose utility.
In particular, a coarse-correlated ε-equilibrium remains an
ε-equilibrium if the correlations are removed.

2.3 Regret Minimizers
Online convex optimization (OCO) (Zinkevich 2003) is
a rich framework through which to understand decision-
making in possibly adversarial environments.
Definition 2.8. LetX ⊆ Rn be a compact, convex set. A re-
gret minimizerAX onX is an algorithm that acts as follows.
At each time t = 1, 2, . . . T , the algorithmAX outputs a de-
cision xt ∈ X , and then receives a linear loss `t : X → R,
which may be generated adversarially.

The goal is to minimize the cumulative regret

RT := max
x∈X

T∑
t=1

[
`t(x

t)− `t(x)
]
.

For example, CFR and its modern variants achieve O(
√
T )

regret in sequence-form strategy spaces.
The connection between OCO and equilibrium-finding in

games is via the following observation. Let (σ1, . . . , σT ) be
any sequence of strategy profiles, and let σ̄ be the correlated
strategy profile that is uniform over σ1, . . . , σT . Suppose
that player i generated her strategy at each timestep via a
regret minimizer, and achieved regret RT . Then, by defini-
tion of regret, i is playing an ε-best response to σ̄, where
ε = RT /T . Thus, in particular, if all players are playing
using a regret minimizer with sublinear regret, the average
strategy profile σ̄ converges to a coarse-correlated equilib-
rium.

3 Black-Box Model and Problem Statement
Let (G, u) be an n-player game, which we assume to be
given to us as a black box. Given a profile σ, the black box
allows us to sample a playthrough from G under σ. We also
assume that, at every node h, the black box gives the actions
and corresponding child nodes available at h, as well as cor-
rect (but not necessarily tight) bounds [α(h → ∗), β(h →
∗)] on the utility u(h → z) of every terminal descendant
z � h:

α(h→ ∗) ≤ min
z�h

u(h→ z) ≤ max
z�h

u(h→ z) ≤ β(h→ ∗).

Our goal in this paper is to develop equilibrium-finding algo-
rithms that give anytime, high-probability, instance-specific
exploitability guarantees that can be computed without ex-
panding the rest of the game tree, and are better than the
generic guarantees given by the worst-case runtime bounds
of algorithms like MCCFR. More formally, our goal is, af-
ter t playthroughs, to efficiently maintain a strategy profile
σt and bounds εi,t on the equilibrium gap of each player’s
strategy (or, in the zero-sum case, a single bound εt on the
Nash gap) that are correct with probability 1− 1/ poly(t).
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4 Lower Bound
Before proceeding to algorithms, we prove a lower bound on
the sample complexity of computing such a strategy profile.
Let γ > 0 be an arbitrary constant. Consider a multi-armed
bandit instance in which the left arm has some unknown re-
ward distribution over {0, 1}, and the right arm always gives
utility 1/2. Let p be the probability that the left arm gives
1. We will consider the two games, G− and G+, in which,
respectively, the left arm gives p = 1/2−ε and p = 1/2+ε,
where ε = Θ(

√
γ log(t)/t), and the Θ hides only an abso-

lute constant. Suppose t samples of the left arm are taken
(the right arm would not be sampled by an optimal algo-
rithm, since its value is already known). We will say that the
algorithm has selected the correct arm if σt assigns a higher
probability to the better arm than it does to the worse arm.
Then the following two facts are simultaneously true.

(1) By binomial tail bounds, no algorithm can select the cor-
rect arm with probability better than 1−Θ(1/tγ).

(2) In the event that an algorithm fails to select the correct
arm at time t, its equilibrium gap is Θ(ε).

Thus, we have the following theorem.2

Theorem 4.1. Any algorithm that provides the guarantees
described in Section 3 must have εi,t = Ω(

√
log(t)/t).

We will now describe algorithms matching this bound.

5 Exploration and Confidence Sequences
We now describe our main theoretical construction: a notion
of confidence sequence for games, that enables us to con-
struct high-probability certificates from playthroughs. LetA
be an exploration policy that generates, possibly adaptively,
a profile σt at each timestep t.

Definition 5.1. A confidence sequence for a game G is a
sequence of pseudogames (Ĝt, α̂t, β̂t) created by the fol-
lowing protocol. Start with Ĝ0 containing only a root node
∅ and trivial reward bounds (that is, β̂0(∅) = β(∅ → ∗) and
α̂0(∅) = α(∅ → ∗)). At each time t:

(1) Query A to obtain profile σt

(2) Play a single game of G according to σt.

(3) Create Ĝt from Ĝt−1 as follows.
(a) Expand all nodes3 on the path of play.
(b) For each chance node h in Ĝt:

2The dependence of the game on t in the above argument is
fine. To prove the theorem, we only need to give a game G and
time t for which no algorithm can achieve εi,t = O(

√
log(t)/t)

with sufficiently high probability.
3It is also valid to expand only the first new node on the path

of play, that is, the first node on the sampled trajectory that is not
previously expanded. That does not change any of our theoretical
results. To expand a node means to add all of its children to the
game tree, adjusting the upper- and lower-bound functions as nec-
essary. Other nodes at a given information set are not necessarily
added when one node is; it is therefore possible for information sets
to be partially added in a pseudogame.

(i) If h was encountered on the path of play, update
σ̂t0(·|h) for each according to the action observed at
h to be the empirical frequency of play.

(ii) Let

ρ(h) =

√
1

2th
(|Ah| log 2 + log t2Ctn). (5.2)

where th is the number of times h has been sampled
(including on this iteration), and Ct is the number
of chance nodes in Ĝt. Now set β̂ti (h) = ui(h) +
ρ(h)∆(h→ ∗), and α̂ti(h) = ui(h)−ρ(h)∆(h→ ∗).

We will use (Gt, αt, βt) to denote the pseudogame with
the same game tree as Ĝt, but with the exact correct nature
probabilities (that is, no sampling error, and ρ(h) = 0).
Theorem 5.3 (Correctness). For any time t and exploration
policyA, with probability at least 1− 2/t2, for every profile
σ and player i, we have α̂ti(σ) ≤ αi(σ) ≤ βi(σ) ≤ β̂ti (σ).

Proofs are in the appendix, which can be found on the
arXiv version at https://arxiv.org/abs/2009.07384. In this
case, we will call the sequence correct at time t. These prob-
abilities can be strengthened to any inverse polynomial func-
tion of t by replacing t2 in Equation (5.2) with a suitably
larger polynomial.

Extra domain-specific information about the chance dis-
tributions can easily be incorporated into the bounds. For
example, if two chance nodes are known to have the same
action distribution, their samples can be merged. If the dis-
tribution of a chance node is known exactly, no sampling
is necessary at all, and the number of chance nodes Ct in
Equation (5.2) may be decremented accordingly.
Definition 5.4. For an exploration policy A creating a con-
fidence sequence (Ĝt, α̂t, β̂t), the cumulative uncertainty
Ui,T for player i after the first T iterations is given by

Ui,T :=
T∑
t=1

∆̂t
i(σ

t).

This can be thought of as the regret of an online optimizer
that plays σt at time t, and then observes loss β̂ti − α̂ti. In a
sense, the next result is the main theorem of our paper, and
we find it the most surprising result of the paper. All our
convergence guarantees stated later in the paper rely on it.
Theorem 5.5. Suppose that the true rewards are bounded in
[0, 1]. Then for all times T , all players i, and any exploration
policy A, we have

EUi,T ≤ 2CT
√

2TM +NT

where NT is the number of total nodes in ĜT ,

M = max
chance nodes h

(
|Ah| log 2 + log 2T 2CTn

)
,

and the expectation is over the sampling of games and (if
applicable) the randomness of A.

M is a constant that depends on the final pseudogame
ĜT . Importantly, it does not depend on the actual game G!
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This makes it possible for our approach to give meaningful
exploitability guarantees while not exploring the full game.
For fixed underlying game and confidence, M increases as
Θ(log T ), and hence Ui,T increases as O(

√
T log T ) for a

fixed game.

6 Solving Games via Confidence Intervals
The above discussion leads naturally to algorithms that gen-
erate certificates, which we will now discuss.

Algorithm 6.1 Two-player zero-sum certificate finding

1: Input: black-box zero-sum game
2: Initialize confidence sequence (Ĝ0, α̂0, β̂0)
3: for t = 1, 2, . . . do
4: Solve (Ĝt−1, α̂t−1) and (Ĝt−1, β̂t−1) exactly to ob-

tain equilibria (
¯
xt−1,

¯
yt−1) and (x̄t−1, ȳt−1).

5: Create next pseudogame Ĝt by sampling one
playthrough according to some profile σt

Definition 6.2. The Nash gap bound εt at time t of Algo-
rithm 6.1 is the difference between the values of the games
with utility functions β̂∗t and α̂∗t. Formally, εt = β̂∗t− α̂∗t.
Proposition 6.3. Assuming that the confidence sequence is
correct at time t, the pessimistic equilibrium (

¯
xt, ȳt) com-

puted by Algorithm 6.1 is an εt-equilibrium of Gt.
This allows us to know (with high probability) when we

have found an ε-equilibrium, without expanding the remain-
der of the game tree, even in the case when chance’s strategy
is not directly observable. The choice of exploration policy
in Line 5 is very important. We now discuss that.
Definition 6.4. The optimistic exploration policy is σt =
(x̄t−1,

¯
yt−1); that is, both players explore according to the

optimistic pseudogame.

Proposition 6.5. Under the optimistic policy, εt ≤ ∆̂t(σt).
Together with Theorem 5.5, this immediately gives us a

convergence bound on Algorithm 6.1:
Corollary 6.6. Suppose we use optimistic exploration, and
the true game G has rewards bounded in [0, 1]. Let ε∗T be
the known bound on the Nash gap of the best pessimistic
equilibrium found so far; that is, ε∗T = mint≤T εt. Then

E ε∗T ≤ 2CT

√
2M

T
+

1

T
NT .

where again the expectation is over the sampling of games
and randomness of A.

We thus use optimistic exploration in our experiments
(Section 8). This is not the same kind of bound that is
achieved by MCCFR and related algorithms. Those algo-
rithms guarantee an upper bound on exploitability as a func-
tion of total number of iterations; here, we bound the num-
ber of samples. After every sample, our Algorithm 6.1 solves
the entire pseudogame generated so far. This may be expen-
sive (though, since the game solves can be implemented as
LP solves with warm starts from the previous iteration, in

practice they are still reasonably efficient). However, as in
Zhang and Sandholm (2020), our convergence guarantee has
the distinct advantage of being dependent only on the current
pseudogame, not the underlying full game. Furthermore, as
the experiments later in this paper show, in practice, ε∗T is
usually significantly smaller than its worst-case bound.

In several special cases, Algorithm 6.1 corresponds natu-
rally to known algorithms and results.

(1) Perfect information and deterministic: Assuming the
game solves return pure strategies (which is always pos-
sible here), Algorithm 6.1 is exactly the same as Algo-
rithm 6.7 of Zhang and Sandholm (2020). In particular, in
the two-player case, it is equivalent to incremental alpha-
beta search; in the one-player case, it is equivalent to A*
search (Hart, Nilsson, and Raphael 1968), where the up-
per bound β(h → ∗) corresponds to the heuristic lower
bound on the total distance from the root to the goal.

(2) Nature probabilities known: Algorithm 6.1 is very similar
(but not identical, due to the simpler black-box model) to
Algorithm 6.7 of Zhang and Sandholm (2020).

(3) Multi-armed stochastic bandit: Algorithm 6.1 is, up
to a constant factor in Equation (5.2), equivalent to
UCB1 (Auer, Cesa-Bianchi, and Fischer 2002), and
Corollary 6.6 matches the worst-case O(

√
T log T ) de-

pendence on T in the regret bound of UCB1. The worse
dependence on the number of arms can be remedied by a
more detailed analysis, which we skip here.
Algorithm 6.1 and Algorithm 6.7 from Zhang and Sand-

holm (2020) may seem similar to the extensive-form double-
oracle algorithm (Bošanskỳ et al. 2014). However, ours does
not compute best responses in the full game G, but rather
only in the current pseudogame G̃. Thus, we maintain the
guarantee of never needing to use any information about
the game beyond what is given by the simulator during
the limited sampling—neither while solving nor while com-
puting exploitability bounds. To our knowledge, this work
and Zhang and Sandholm (2020) are the first to achieve this
guarantee.

In practice, due to the computational cost of the game
solves, we recommend running several samples per game
solve. This enhances computational efficiency in domains
where the game is not prohibitively large for LPs, or sam-
ples are relatively fast to obtain.

7 Faster Iterates via Regret Minimization
A major weakness of Algorithm 6.1 is its reliance on an
exact game solver as a subroutine, which can be slow or
even infeasible computationally. Could we replace the exact
solver with a single iteration of some iterative game solver,
and still maintain the Õ(1/

√
T ) convergence rate? In this

section we show how to do this with regret minimizers.

7.1 Extendable Regret Minimizers
We now define a class of regret minimizers, which we coin
extendable, which we can use to achieve the goal mentioned
above. Intuitively, for an extendable family of regret mini-
mizers, expending a leaf of the pseudogame does not change
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the behavior or regret of the regret minimizer, so long as the
past losses do not depend on the actions taken at the new in-
formation set, which is always the case with our algorithms
because they have never visited the new information set.
Thus, when working with a extendable family A, it makes
sense to speak about “running A on a game G”, even if in-
formation sets may be added toG over time. We will exploit
this language. For example, CFR (thus also MCCFR, since
it is nothing but CFR with stochastic gradient estimates (Fa-
rina, Kroer, and Sandholm 2020)) is a extendable family. In
this case, the function φ described below simply initializes
regrets at the new information set to 0.

Formally, let L(X) be the set of linear functions on X .
Consider a regret minimizerAX onX . We will think ofAX
as maintaining a state st ∈ SX . At any time t, the algorithm
outputs strategy xt ← xX(st) for some map xX : SX → X ,
and after observing loss `t, the algorithm updates the state
via st+1 ← uX(st, `t), where uX : SX × L(X) → SX is
an update function. As such, AX can be thought of as a pair
(xX , uX). For example, when X is the n-simplex and AX
is regret matching (Hart and Mas-Colell 2000), SX is Rn,
the update function is uX(st, `t) = st + `t − 〈`t, xX(st)〉,
and the strategy is xC(st)(i) ∝ [st(i)]+.
Definition 7.1. Let A = {AX} be a family of regret mini-
mizers, one for each extensive-form strategy space X . A is
extendable if for every X and every X ′ ⊆ X × Rm formed
by adding a decision point (with m actions) to X , there is a
function φ : SX → SX′ such that for every state s ∈ SX :

(1) xX′(φ(s)) agrees with xX(s) in X , and
(2) for every loss function ` ∈ L(X), we have φ(uX(s, `)) =

uX′(φ(s), (`, 0)), where (`, 0)∈L(X ′)=L(X)×L(Rm).

7.2 Putting It Together

Algorithm 7.2 Certificate-finding with regret minimization

1: Input: black-box game, extendable family Ai for each
player i

2: Initialize confidence sequence (Ĝ0, α̂0, β̂0)
3: for t = 1, 2, . . . do
4: Query each Ai to obtain a strategy σti
5: Submit loss −β̂ti (·, σt−i) to Ai

6: Create next pseudogame Ĝt by sampling one
playthrough according to σt

Even in the two-player zero-sum case, this algorithm is
not the exact generalization of Algorithm 6.1. That general-
ization would involve independently solving the lower- and
upper-bound games (Ĝt, α̂t) and (Ĝt, β̂t) using a total of
four regret minimizers, not two. This algorithm has no need
to store or refer to pessimistic strategies. It suffices to use
only the optimistic strategy. As usual when dealing with re-
gret minimization, we will discuss convergence of the aver-
age (optimistic) strategy played by each player.
Proposition 7.3. Suppose that the true rewards are bounded
in [0, 1]. After t iterations of the for loop on Line 3, assum-
ing the correctness of the confidence sequence at time t, the

average optimistic profile σ̄t forms a coarse-correlated ap-
proximate equilibrium of Gt, in which the equilibrium gap
for player i is at most εi,t = β̂∗ti (σ̄t−i)− α̂ti(σ̄t).

Thus, Algorithm 7.2 is an anytime algorithm whose equi-
librium gap bound at any time t can be easily computed
by linear passes through the pseudogame Ĝt. In the two-
player zero-sum case (wherein, for notation, β = β1 and
α = −β2 and σ̄t = (x̄t,

¯
yt)), we can use the slightly tighter

εt = β̂∗t(
¯
yt)− α̂∗t(x̄t) as a Nash gap bound.

7.3 Convergence Rate
Annoyingly, it is not the case in general that εi,t =

Õ(Nt/
√
t). A counterexample is provided in the appendix.

Intuitively, the reason is that, for a fixed strategy σ, the upper
bound β̂t(σ) is not a monotonically nonincreasing function
of t; indeed, for strategies σ that are not sampled very fre-
quently, β̂t(σ) may fluctuate by large amounts even when
t is large. However, the nonmonotonicity of β̂t is, in some
sense, necessary to achieve the high-probability correctness
guarantee. If β̂t does not increase over time, then the prob-
ability that it is an incorrect bound remains constant, rather
than decreasing polynomially with time as would be desired.

To study the convergence rate of Algorithm 7.2, then, we
will instead analyze the quantity

ε̄i,T = max
σi

1

T

T∑
t=1

[
β̂ti (σi, σ

t
−i)− α̂ti(σt)

]
+O

(
1√
T

)
=

1

T
[Ri,T + Ui,T ] +O

(
1√
T

)
where theO hides only an absolute constant. This quantity is
identical to εi,t except that it uses β̂ti with σt−i instead of β̂Ti
to match the regret term, and has an extra error term added.

Proposition 7.4. With probability 1−O(1/
√
T ), ε̄i,T is an

actual equilibrium gap bound.

By Theorem 5.5, UT = Õ(NT
√
T ). Thus, this theorem

matches the worst-case convergence of any algorithm with
regret Õ(NT /

√
T ), up to a logarithmic factor. For example,

using CFR and variants thereof matches the bound of Corol-
lary 6.6 with iterates that are linear time in the size of the
pseudogame. With MCCFR, the iterates can be made even
faster, and due to Farina, Kroer, and Sandholm (2020), even
outcome-sampling MCCFR can be used without breaking
the Õ(NT /

√
T ) runtime bound.

Unfortunately, there is a further problem. It is often un-
wieldy to compute ε̄i,T . For example, if using outcome-
sampling MCCFR, one may not even have access to the
true bounds β̂t(·, σt−i) (and similar for α) but only stochas-
tic estimates β̃t(·, σ̃t−i) with the correct conditional expec-
tation (Farina, Kroer, and Sandholm 2020). In that case, the
stochastic estimate may be used as a substitute to create a
stochastic equilibrium gap bound

ε̃i,T = max
σi

1

T

T∑
t=1

[
β̃ti (σi, σ

t
−i)− α̃ti(σt)

]
+O

(
M

√
1

T
log T

)
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Figure 1: Convergence of Algorithm 6.1 and Algorithm 7.2 in 4-rank Goofspiel and 13-card limit Leduc4. To be consistent
with the other algorithms, one “iteration” of MCCFR consists of one accepted loss vector per player. For the other algorithms,
one “iteration” is one playthrough. In all cases, we show both the provable equilibrium gap β̂∗t(σt) − α̂∗t(σt) and the true
equilibrium gap β∗t(σt)−α∗t(σt). The exception is MCCFR, which on its own does not give provable equilibrium gaps in the
same way. The horizontal line in the Nash gap graphs is at the game’s reward range (Goofspiel has reward range [−10, 10] and
13-rank Leduc has [−13, 13], so the lines are at 20 and 26, respectively). The vertical line in both graphs is at the number of
nodes in the game (Goofspiel has 54,421 nodes and 13-rank Leduc has 166,366).

where M is a bound on the norm of the estimates; i.e.,∣∣∣β̃ti (σi, σ̃ti)− β̃ti (σ′i, σ̃ti)∣∣∣ ≤ M for every pair of strategies
σi, σ

′
i. As discussed by Farina, Kroer, and Sandholm (2020),

with a uniform sampling vector, we can achieve M ≤ NT .
Proposition 7.5. With probability 1−1/T , for every time T
and player i, we have ε̃i,T ≥ ε̄i,T .

Thus, in particular, we have:

Corollary 7.6. ε∗i,T := min(εi,T , ε̃i,T ) = Õ(NT /
√
T ) is

an equilibrium gap bound with probability 1−O(1/
√
T ).

This is the desired result. In practice, ε̃i,T is trivial until
T = Ω(N2

T ), and εi,T is almost always a better bound. Thus,
4The MCCFR convergence plots start at 103 iterations because

computing the best response requires a relatively expensive pass
through the whole game tree, so we only perform it once every 103

iterations

in our experiments, we use only εi,T . For this reason and for
clarity, we have not bothered to specify the constants in the
big-Os. Nevertheless, it is desirable theoretically to be able
to define a quantity ε∗i,T that has both Õ(NT /

√
T ) conver-

gence and (high-probability) correctness. As before, the cor-
rectness probability can be raised to any inverse-polynomial
function of T by a suitable change to Equation (5.2).

As an equilibrium-finding algorithm, Algorithm 7.2 is a
“weaker” version of just running the underlying regret min-
imizers on the full game: instead of each regret minimizer
getting access to the true losses, they only get access to an
upper bound. However, its main advantage over regret min-
imization is, as before, its ability to give a equilibrium gap
bound that can be computed without full knowledge of the
remainder of the game or exact nature action probabilities.

Finally, Algorithm 7.2 has an unintuitive property.

Warning 7.7. If Ai are stochastic regret minimizers (e.g.
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Sampling-limited Compute-limited
Unknown nature distributions Algorithm 6.1 with LP solver Algorithm 7.2 with a CFR variant

(e.g., outcome-sampling MCCFR)Known nature distributions Algorithm 6.7 of Zhang and Sandholm (2020)

Table 1: Algorithms we suggest by use case in two-player zero-sum games. Sampling-limited means that the black-box game
simulator is relatively slow or expensive compared to solving the pseudogames. Compute-limited means that the simulator is
fast or cheap compared to solving the pseudogames. In general-sum games, only Algorithm 7.2 is usable.

MCCFR), instead of submitting −β̂ti (·, σt−i), it may be
tempting to submit a noisy (sampled) version of−βti (·, σt−i).
Then the actual equilibrium gap β∗ti (σ̄t−i)−αti(σ̄t) will con-
verge, but the provable equilibrium gap ε̄i,t may not. A coun-
terexample is provided in the appendix.

7.4 The Case of Known Nature Probabilities:
MCCFR Without Uniform Sampling

If the nature probabilities are assumed to be known exactly,
Warning 7.7 does not apply, since the actual bounds (αt, βt)

and the sampled bounds (α̂t, β̂t) are the same. Even in this
case, Algorithm 7.2 is still noteworthy: if we run it with
outcome-sampling MCCFR, the result is an MCCFR-like
algorithm (i.e., an equilibrium finder in the black-box case)
that operates without an a-priori “uniform sampling strat-
egy”. Indeed, the iterations only require a uniform sampling
strategy over the current pseudogame, not the full game!

That algorithm is not quite a regret minimizer in the usual
sense: its convergence rate depends on the uncertainty of the
sampling method, and is tied to the fact that the sampling in
Line 6 of Algorithm 7.2 uses the current strategy.

8 Experiments
We conducted experiments on two common benchmarks:

(1) k-rank Goofspiel. At each time t = 1, . . . , k, both players
simultaneously place a bid for a prize. The prizes have
values 1, . . . , k, and are randomly shuffled. The valid bids
are also 1, . . . , k, each of which must be used exactly once
during the game. The higher bid wins the prize; in case of
a tie, the prize is split. The winner of each round is made
public, but the bids are not. Our experiments use k = 4.

(2) k-rank heads-up limit Leduc poker (Southey et al. 2005),
a small two-player variant of poker played with one hole
card per player and one community card. Our experiments
use a full range of poker ranks (k = 13).

We tested four algorithm variants. Except in the last case,
which we will describe, all certificate-finding algorithms as-
sume that the nature distributions are independent of player
actions. In Goofspiel, we assume further that the nature dis-
tributions are independent of past nature actions, which is
true (nature always plays uniformly at random).

(1) MCCFR with outcome sampling (OS-MCCFR) (Lanctot
et al. 2009) (MCCFR). This algorithm requires the game
tree to be fully expanded, and does not give a (nontrivial)
certificate. However, it does give a benchmark for actual
equilibrium gap convergence.

(2) Algorithm 7.2 with OS-MCCFR as the regret minimizer
(Cert-MCCFR).

(3) Algorithm 6.1, with LP for the game solves (Cert-LP).
Since the LP solves are relatively expensive, we only re-
compute the LP solution every 100 playthroughs sampled.
This does not change the asymptotic performance of the
algorithm. We use Gurobi v9.0.0 (Gurobi Optimization,
LLC 2019) as the LP solver.

(4) Algorithm 6.1, except with no assumptions on relation-
ships between nature distributions (Cert-LP-Indep).

Figure 1 shows the results. As expected, all the algorithms
show a long-term convergence rate of roughly Θ̃(1/

√
t). All

certificate-finding algorithms find nontrivial provable certifi-
cates with fewer samples than it would take to expand the
whole game tree, showing the efficacy of our method.

9 Conclusion and Future Research
We developed algorithms that construct high-probability
certificates in games with only black-box access. Our
method can be used with either an exact game solver (e.g.,
LP solver) as a subroutine or a regret minimizer such as
MCCFR. Table 1 shows which algorithm we recommend
based on the use case. As a side effect, we developed an
MCCFR-like model-free equilibrium-finding algorithm that
converges at rate O(

√
log(t)/t), and does not require a

lower-bounded sampling vector. We are, to our knowledge,
the first to obtain this result. Our experiments show that
our algorithms produce nontrivial certificates with very few
samples.

This work opens many avenues for future research.
(1) Is there a “cleaner” way to fix the problem introduced

in Section 7.3? For example, a different confidence se-
quence may fix the problem, or it could be the case that
εi,T is small for most times t (or even only a constant frac-
tion), which would show that mint≤T εi,T = Õ(1/

√
T ),

matching Corollary 6.6.
(2) Is it possible to adapt Algorithm 7.2 to work with a

generic extensive-form iterative game solver, for exam-
ple, first-order methods such as EGT (Hoda et al. 2010;
Kroer, Farina, and Sandholm 2018)?

(3) In many practical games, there are nature nodes h for
which, under a particular profile σ, every child of h has
similar utility: the range of utilities of the children of h
under σ is far smaller than [α(h → ∗), β(h → ∗)]. Is
it possible to incorporate this sort of information into the
confidence-sequence pseudogames without losing perfect
recall (which is needed for efficient solving)?
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