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Abstract

The estimation and inference of human predictive uncer-
tainty have great potential to improve the sampling efficiency
and prediction reliability of human-in-the-loop systems for
smart healthcare, smart education, and human-computer in-
teractions. Predictive uncertainty in humans is highly inter-
pretable, but its measurement is poorly accessible. Contrar-
ily, the predictive uncertainty of machine learning models, al-
beit with poor interpretability, is relatively easily accessible.
Here, we demonstrate that the poor accessibility of human
uncertainty can be resolved by exploiting simple and univer-
sally accessible deterministic neural networks. We propose a
new model for human uncertainty inference, called proxy en-
semble network (PEN). Simulations with a few benchmark
datasets demonstrated that the model can efficiently learn hu-
man uncertainty from a small amount of data. To show its
applicability in real-world problems, we performed behav-
ioral experiments, in which 64 physicians classified medical
images and reported their level of confidence. We showed
that the PEN could predict both the uncertainty range and
diagnoses given by subjects with high accuracy. Our results
demonstrate the ability of machine learning in guiding human
decision making; it can also help humans in learning more
efficiently and accurately. To the best of our knowledge, this
is the first study that explored the possibility of accessing hu-
man uncertainty via the lens of deterministic neural networks.

1 Introduction
Sample efficient learning involves the ability to distinguish
between “what it knows and what it does not.” This can be
quantified in the form of an uncertainty. An uncertainty is
caused by a limited amount of available data or the lim-
ited ability of the learning agent to glean information from
the given data. By assessing an uncertainty during decision
making, an agent can choose whether to decide by itself or
“go to oracle.”(Cohn, Ghahramani, and Jordan 1996). Fur-
thermore, the evaluation of uncertainty enables the explo-
ration of learning strategies for improving sample efficiency
under limited resource conditions.

Uncertainty in information is dealt with by various types
of learning such as active and one-shot learning (Gal, Is-
lam, and Ghahramani 2017; Lee, O’Doherty, and Shimojo
2015; Tong 2001; Peterson et al. 2019). Also, it is useful for
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human and probabilistic models in which different choices
can be made from the same input data. A challenge in these
applications is that sometimes an agent provides an accu-
rate response by coincidence or, in another situation, it does
not provide reliable predictions even if it has learned ade-
quately. It is, therefore, important to consider the uncertainty
as well as accuracy in the performance assessment of learn-
ing agents.

Although the information on uncertainty is available with
respect to humans and machine learning (ML) models, there
is a sharp contrast between them. First, quantifying the
amount of uncertainty in “deep” heavy ML models is a chal-
lenging task. The Bayesian neural network (BNN), which
uses the prior distribution of model parameters to calculate
their posterior distribution for the given data, can efficiently
estimate the uncertainty of deep neural networks (DNNs);
however, it is not highly scalable (Gal 2016). For non-
Bayesian ML models, the Monte-Carlo (MC) dropout and
ensemble methods could be pragmatic solutions (Gal and
Ghahramani 2016; Lakshminarayanan, Pritzel, and Blundell
2017; Liu et al. 2019). Thus, the amount of uncertainty can
be assessed at a low cost. In other words, ML models are
easily accessible despite poor interpretability.

Obtaining the uncertainty information in human decision-
making is costly and labor-intensive. Also, other variables
like the average level of uncertainty may affect uncertainty
indicating that it is poorly accessible; however it is not diffi-
cult to interpret in comparison to the ML model (Barthelmé
and Mamassian 2009), posing a significant challenge in the
optimization of human-in-the-loop systems for smart health-
care, smart education, and human-computer interactions.

To resolve the poor accessibility of human uncertainty,
we exploit the high accessibility of deterministic ML algo-
rithms. We propose a “proxy ensemble network” (PEN), a
neural network model that performs inference on human un-
certainty from a small amount of data. We perform simu-
lations to show the efficiency of learning and demonstrate
the applicability of the algorithm to real-world problems
through behavioral experiments. Note that while previous
studies have attempted to compare the information process-
ing of artificial neural networks (ANNs) with human corti-
cal information processing for image recognition, our study
shows that deterministic neural networks can accurately ap-
proximate the uncertainty of human experts such as physi-
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(a) Total Uncertainty (b) Epistemic Uncertainty (c) Aleatoric Uncertainty

Figure 1: In our behavioral experiment, 64 physicians were presented with 50 test images 4 times in different trials. They were
instructed to submit their binary classification results and confidence level. (See Section. 4.4) Uncertainty was calculated for
each image and each subject (See Section 3.2). The 50 images were grouped according to the consistency of the response
(100%, 75%, and 50%). Each line shows the average uncertainty for each subject (Blue line: CXR-A, Green line: CXR-B).

cians. The contributions of our study can be summarized as
follows.

• We examined human uncertainty from a BNN per-
spective and showed that decision uncertainty can be
inferred by a deterministic ensemble of ANNs. This
suggests that the ability of the ANN to assess uncer-
tainty can compensate for the poor accessibility of
human uncertainty.
• Our results show that ML can not only guide human

perceptual decision making, but it can also help hu-
mans learn more efficiently and accurately.
• We show the applicability of PENs in an area of

smart healthcare. We performed a large-scale behav-
ioral experiment in which 64 physicians (M.D.) per-
formed1 medical image classification, including dif-
ficult cases to make an accurate diagnosis, and re-
ported the uncertainty level of each decision.

2 Related Works
2.1 Uncertainty in Deep Neural Networks
Designing an algorithm for calculating the uncertainty of
DNNs is challenging. The total amount of uncertainty
is defined as the sum of the predictive, model (epis-
temic), and data (aleatoric) uncertainties (Liu et al. 2019;
Der Kiureghian and Ditlevsen 2009; Kingma, Salimans, and
Welling 2015; Kendall and Gal 2017; Malinin and Gales
2018; Chai 2018). First, the model uncertainty is caused
by the inaccurate estimation of model parameters; hence, it
can be resolved with training. The model uncertainty is es-
timated using the posterior distribution of the model param-
eters of a given dataset. Recent studies used the Bayesian
inference (BI) or MC sampling. The BI method can di-
rectly calculate the uncertainty of a model in principle,
but its applicability is limited owing to poor scalability.
Alternatively, the MC sampling method can approximate
the posterior distribution using an ensemble network or a

1The dataset and details of experiments can be downloaded
from : https://github.com/brain-machine-intelligence/PEN

MC dropout strategy during test time (Gal and Ghahramani
2016; Kingma, Salimans, and Welling 2015). Second, data
uncertainty arises from data bias or sensory noise. To quan-
tify data uncertainty, a method to compute the variance of
data by adding the maximum-likelihood loss during training
was proposed (Kendall and Gal 2017). Another approach is
a test time augmentation method (Wang et al. 2018).

2.2 Computational Models for Human Perception
Recent studies have compared the information processing
of ANNs with human sensory processing. For example, the
relationship between human subjective uncertainty and ob-
jective uncertainty in the perception of visual stimuli was
examined (Barthelmé and Mamassian 2009). Several stud-
ies demonstrated the importance of stochasticity in DNNs
for developing computer vision systems and computational
models of human perception (McClure 2018; Nakada, Chen,
and Terzopoulos 2018). A few studies examined the op-
timization of the structure of DNNs to better understand
the computational mechanisms of human visual percep-
tion(Yamins et al. 2013, 2014). Some studies explored the
concept of computational constructs of human uncertainty
(Grinband, Hirsch, and Ferrera 2006; Hramov et al. 2018;
van Bergen and Jehee 2019); however, little is known about
human uncertainty inference.

3 Proxy Ensemble Network (PEN)
Here, we present a new model, called PEN, that learns to
predict the output and uncertainty of a BNN model for
new data in the test phase. First, we formulate our research
question (Section 3.1). As prerequisites for the implemen-
tation, we examine the distinctive characteristics of uncer-
tainty (Section 3.2). We then discuss the possibility of quan-
tifying the uncertainty of the BNN based on a function of
models and data (Section 3.3), by inferring the expectation
and range of the model outputs (Section 3.4). We then pro-
vide a justification for why and how the BNN can model the
uncertain nature of human behavior (Section 3.5). Finally,
the detailed PEN process is summarized in Sections 3.6.
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Figure 2: Overview of the proposed system : (A) Proposed framework of human uncertainty inference. (B) Simulation or human
behavioral experiment

3.1 Problem Formulation

Suppose that there is a Bayesian CNN model that is trained
arbitrarily for multi-class classification (K classes), referred
to as an “original” model here. We show a simple process of
finding a “proxy” model that enables us to predict the clas-
sification output of an original model and the range of un-
certainty for untrained data. We consider i.i.d input datasets
X = {xn}Nn=1. The softmax (Luce 1959) output of the orig-
inal model for image x can be expressed as ŷ, which is a K-
dimensional probability vector. This provides the model out-
put set, D̂ = {xn, ŷn}Nn=1. Because the output of the BNN
depends on the neural weights sampled from the weight
distribution, the model can provide a different D̂ even for
the same input set X(Chai 2018). We use w to denote the
weights of the original model that are sampled differently
each time. Note that w can be considered as a random vari-
able defined in the model weight probability space,W . The
probability of w for the given W is expressed as p(w|W).
We refer to the model as a function, f , and use ŷ = fw(x)
to indicate the dependence of f on x and w. We then train
a proxy model to maximize the likelihood of the proba-
bilistic distribution p(ŷ|x;θ) with a subset of D̂, where θ
is the deterministic parameter of the proxy model, by find-
ing the maximizer, θ∗, that satisfies argmaxθp(ỹ|x;θ), and
use ỹ = fθ(x) to indicate the dependence of f on x and θ.
Following the Bayesian setting in which a collection of net-
works forms an ensemble θ ∈ Θ, the predicted distribution
of the new output, ŷ′, for the new input x′ is given by

p(ỹ′|x′; Θ) ≈ p(ỹ′|x′; D̂) =

∫
Ω

p(ỹ′|x′; θ)p(θ|D̂)dθ.

(1)

We argue that both the expectation of fw(x′) and the range
of uncertainty, which is expressed as entropy H[ŷ′|x′; w],
can be predicted by estimating the probability distribution
of empirical p(ŷ′|x′; Θ); this distribution can be modeled as
an ensemble of deterministic neural networks composed of
the sub-optimally trained parameter θ. We call this ensemble
a PEN. Note that a PEN is not meant for learning the correct
(ground truth) label for an input; it is intended to provide the
uncertainty approximation of the original model by learning
the probability distribution of the output labels given by the
BNN model or a human subject (Section 3.5).

3.2 Uncertainty Estimation for BNNs
The total uncertainty of a BNN can be estimated by repeated
sampling, and this can be decomposed into aleatoric and
epistemic uncertainty.
Total Uncertainty. In some studies, uncertainty is measured
by the entropy of the softmax function output (Gal, Islam,
and Ghahramani 2017). The entropy can be obtained with
one sampling for input x in the BNN as follows.

H[ŷ|x; w] = −
∑
k

p(ŷ = k|x; w) log p(ŷ = k|x; w),

(2)
where p(ŷ = k|x; w) is the predicted softmax output for
class k using weights w from p(w) for input x. Similarly,
the total (predictive) uncertainty for input x in the model is
given by the following information entropy (Chai 2018):

H[ŷ|x;W] = −
∑
k

p(ŷ = k|x;W) log p(ŷ = k|x;W).

(3)
However, in practice it is impossible to integrate over w to
estimate W . Alternatively, we can calculate the amount of
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uncertainty by sampling from a variational distribution of
weights. For instance, M repetitive samplings can be per-
formed to estimate the total amount of uncertainty.

H[ŷ|x;W] ≈ −
∑
k

( 1

M

∑
m

p(ŷ = k|x; w(m))
)

log
( 1

M

∑
m

p(ŷ = k|x; w(m))
)
, (4)

where w(m) is the m-th sample of weights.
Aleatoric Uncertainty. A deterministic neural network does
not offer any information about the output distribution for
the training data, thereby making it difficult to collect
the confidence information (Gal and Ghahramani 2016).
This type of uncertainty is called the aleatoric uncertainty,
which is caused by the uncertain nature of data or sen-
sory noise (Hüllermeier and Waegeman 2019). Because it
is impossible to accurately measure the aleatoric uncertainty
Ew∼p(w|W)

[
H[ŷ|x; w]

]
, we use repetitive sampling again

to estimate the average entropy across different weights,
w(m), associated with each sampling.

Ew∼p(w|W)

[
H[ŷ|x; w]

]
≈

− 1

M

∑
m

∑
k

p(ŷ = k|x; w(m)) log p(ŷ = k|x; w(m)).

(5)

Epistemic Uncertainty. In the BNN, epistemic uncertainty
refers to the type of uncertainty in the model parameters. It
is given by the difference between the total uncertainty and
aleatoric uncertainty:

I[ŷ,w|x;W] = H[ŷ|x;W]−Ew∼p(w|W)

[
H[ŷ|x; w]

]
. (6)

3.3 Estimating Uncertainty with Function of
Models and Data

Uncertainty can be expressed as a function of the model (W)
and data (x). Following the discussion in Section 3.2, the es-
timate of uncertainty converges to a constant as the number
of sampling, M, increases. This implies that when M→ ∞,
the uncertainty terms become a deterministic function. In
such cases, the total uncertainty, UT(x;W), aleatoric un-
certainty, UA(x;W), and epistemic uncertainty, UE(x;W)
are defined as follows.

UT(x;W) ≡ H[ŷ|x;W], (7)

UA(x;W) ≡ Ew∼p(w|W)

[
H[ŷ|x; w]

]
, (8)

UE(x;W) ≡ I[ŷ,w|x;W]. (9)
Similarly, each uncertainty estimated by a finite number

of sampling can be defined as ÛT(x;W), ÛA(x;W) and
ÛE(x;W), respectively. Similarly, the mean vector fW(x)
can be obtained by sampling fw(x) infinitely.

The entropy calculated from fW(x) is equal to
UT(x;W). If fw(x) is sampled only once, instead of M
times, the output ŷ and its entropy are limited within a
certain range. The theoretical minimum value of the en-
tropy of ŷ is equal to UA(x;W), assuming that there is

no uncertainty in the model parameters. Moreover, assum-
ing p(w|W) follows a Gaussian distribution such that fw(x)
will have the highest likelihood value at fW(x); thus, the
expectation of the entropy is equal to UT(x;W). Because
UT(x;W) − UE(x;W) = UA(x;W), the entropy range
is [UT(x;W)-UE(x;W), UT(x;W) + UE(x;W)], and ŷ
is an output vector that satisfies this entropy condition.

In other words, the uncertainty can be defined as the en-
tropy of the mean vector of ŷ obtained by infinite sampling.
When obtained with finite sampling, it corresponds to an
estimated uncertainty. The output boundary of the random
variable corresponds to the range of entropy value obtained
with single sampling.

3.4 PEN: Inferring the Expectation and Range of
Original Model Outputs

The classification for x′ of the original model can be pre-
dicted with fΘ(x′), which is the simple average of vectors
(denoted as ỹ′) outputs by the ensemble members for x′.
To predict the entropy range of the original model, the un-
certainty of the PEN should be considered. The total uncer-
tainty can be calculated at the ensemble level for unseen data
x′ as follows.

H[ỹ′|x′; Θ] =
∑
k

( 1

M

∑
m

p(ỹ′ = k|x′; θ(m))
)
×

log
( 1

M

∑
m

p(ỹ′ = k|x′; θ(m))
)
, (10)

where m is the ensemble number, and M is the total number
of members. The total uncertainty of the ensemble for x′ can
be decomposed into the uncertainty in the original model,
the epistemic uncertainty of the ensemble, and the aleatoric
uncertainty of the ensemble as follows.

H[ỹ′|x′; Θ] ≈ H[ŷ′|x′;W] + UE(x′; Θ) + UA(x′; Θ).
(11)

The likelihood, L(x|ŷ), of D̂’s constituent tuples (x, ŷ)
sampled from the original model can have various distribu-
tions. When sampling fw(x), if UE(x;W) for x is small,
it is likely to be sampled at a point close to fW(x) with
high likelihood, as discussed in the section 3.3. However, if
UE(x;W) is large, it is more likely to be sampled at a point
farther from fW(x). Thus, it is highly likely that the likeli-
hood of the sampled fw(x) is inversely proportional to that
of UE(x;W). At the ensemble level of a PEN, all data for
D̂ are included in the learning stage, but the ensemble mem-
ber networks that constitute the PEN learn different subsets
of D̂. Suppose that a member of the ensemble (θ′) learns
(x, ŷ), which is sampled with low likelihood and predicts
x∗ close to x in terms of data distance. The output fθ

′
(x∗)

of the PEN member (θ′) is close to ŷ, but the member (θ′′),
not participating in the learning of (x, ŷ), outputs fθ

′′
(x∗)

close to fW(x∗). This is because member θ′′ only learns
data excluding x and makes predictions about x∗; therefore,
it will output a prediction, fW(x∗), with a high likelihood
instead of a result that approaches ỹ′, which is the expected
output of the original model. The difference in outputs of
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the PEN members is reflected in UE(x∗; Θ). These obser-
vations motivated us to use this difference for quantifying
the entropy range, UE(x∗; Θ), of the original model. Be-
cause the ground truth label can be seen as an output with
zero entropy, the aleatoric uncertainty in the original model
can be viewed as the difference between the entropy of the
model and the ground truth label of the data (herein referred
to as absolute data uncertainty). From the perspective of the
PEN, the ground truth label is not a label with zero entropy,
but a label reflecting the inherent data uncertainty perceived
by the original model. The aleatoric uncertainty of the PEN
denotes the absolute value of the difference between the ab-
solute data uncertainty estimate from the PEN and that from
the original model; therefore, we assume that UA(x′; Θ) in
Eq. (11) can be ignored. Then expected total uncertainty in
the original model can be estimated as follows.

UT(x′;W) ≈ H[ỹ′|x′; Θ]−UE(x′; Θ). (12)

Assuming that UE(x′; Θ) reflects the magnitude of the en-
tropy range in the original model for x′, the entropy range
of fw(x′) ⊂ [0, 1] can be approximated by incorporating the
epistemic uncertainty of PEN from Eq. (12) as follows.[

H[ỹ′|x′; Θ]−UE(x′; Θ)− α
√

UE(x′; Θ),

H[ỹ′|x′; Θ]−UE(x′; Θ) + α
√

UE(x′; Θ)

]
. (13)

This range can be rewritten as follows, by introducing em-
pirical boundary constants bL and bR.

[
H
[
ỹ′|x′; Θ

]
− bL

√
UE(x′; Θ)− err,

H
[
ỹ′|x′; Θ

]
− bR

√
UE(x′; Θ) + err

]
, (14)

where bL > bR, and err denotes the error bound. The pa-
rameters and error correction constraints associated with the
estimated bounds of the entropy range were determined em-
pirically. (Section 4.1)

3.5 Modeling Human Perception with Bayesian
Agents

The neurobiological mechanisms of uncertainty processing
are not fully known. However, evidence suggests that there
is high stochasticity in the expression of uncertainty in the
human brain (Ma et al. 2006; Fiser et al. 2010; Berkes et al.
2011; Orbán et al. 2016). Additionally, humans are good at
reporting the level of their confidence. For example, they
would report a low confidence value for the inputs that do
not belong to any class.

We argue that the visual classification by human subjects
can be modeled as a BNN through our experimental results.
Our human experiments dealt with chest X-ray(CXR) im-
ages with binary labels (i.e, normal vs. abnormal). In our
experiment, human subjects were presented with an image
x; then, they were asked to submit answers and the cor-
responding level of confidence at four different instances.

Herein, we call this process behavioral sampling. A confi-
dence level c places constraints on their choice probability
of a subject as follows. For the binary classification prob-
lem, ŷ = 〈 c2 + 1

2 ,
1
2 −

c
2 〉 when the first class is selected, and

〈 12 −
c
2 ,

c
2 + 1

2 〉 when the second class is selected (where,
0 ≤ c ≤ 1). Therefore, the value of the answer submit-
ted by a subject for each image can be expressed as a two-
dimensional probability vector from a softmax function. We
also explored the possibility of modeling behavioral patterns
with BNNs (Frenkel, Schrenk, and Martiniani 2017). As
shown in Figure 1, we found that different responses were
often reported for each sampling for the same x and subject.
This enabled us to calculate the approximated uncertainty
for image x of each subject. Interestingly, the higher the cor-
respondence of the responses, the lower the total and epis-
temic uncertainties. Therefore, by introducing the human be-
havioral parameter w for the behavioral sampling of each
subject, analogous to w in BNNs, we can consider a human
subject as a Bayesian agent (original model), ŷ = fw(x),
and approximate its behavior distribution.

3.6 Overview of the Proposed Framework
The proposed framework consists of a subject module (orig-
inal model) and a PEN system (Figure 2). The subject mod-
ule is a BNN model or a real human subject. In our behav-
ioral experiments, a subject module indicated real human
subjects. Prior to this main experiment, we also ran simu-
lations in which the BNN-like model (human model agent,
HMA) was used as a subject module (Section 4.3). The over-
all process can be defined as follows. In the subject module,
sampling was performed for the image set X only once to
obtain the training dataset D̂ of the PEN. For the image set
X′, multiple samplings were independently performed 1000
and 4 times in the simulation and human behavior experi-
ment, respectively, to obtain the test dataset D̂′ of the PEN.
The range of entropy is equal to the range of uncertainty;
thus, we evaluated the performance of the PEN using a met-
ric comparing its predicted range for X′ and D̂′.

4 Experimental Results
We verified the applicability of the PEN concept to simula-
tions using several well-known datasets (Netzer et al. 2011;
Xiao, Rasul, and Vollgraf 2017; Tschandl, Rosendahl, and
Kittler 2018) to demonstrate that the PEN algorithm can in-
fer the range and classification of the entropy reflecting the
human visual decision uncertainty in real-world problems.
As the applicability of the PEN was confirmed in our sim-
ulation experiment, a behavioral sampling experiment was
conducted on human subjects. All collected data were in-
cluded in the analyses. As a result of our experiment, PEN

bL bR err

Human experiments 4 1 0.12-UE(x
′;Θ∗)

Simulation experiments 4 1 0.20-UE(x
′;Θ∗)

Table 1: Boundary constant and error.
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Datasets Image size K Number of
PEN-training data

Number of
PEN-test data PUIA(%) PUFIR(%) CA(%)

SVHN 32×32×3 10 10000 1000 95.7±0.3 3.4±0.2 84.7±0.2
Fashion-MNIST 28×28×1 10 10000 1000 82.2±3.2 24.1±1.0 82.7±0.7

HAM10000 224×224×3 7 1000 515 95.2±0.6 22.2±1.1 81.6±1.7
CXR-A 224×224×1 2 220 50 80.2±4.6 19.4±2.9 92.8±1.4
CXR-B 224×224×1 2 220 50 75.8±5.3 20.0±2.3 79.8±7.8

Table 2: Results of simulation experiments with baseline.

Scenario 1 / Scenario 2 Add 1 layer / Subtract 1 layer

Datasets PUIA(%) PUFIR(%) CA(%) PUIA(%) PUFIR(%) CA(%)

SVHN 94.0 / 53.8 3.0 / 22.0 84.7 / 83.5 95.5 / 91.4 4.1 / 5.0 83.2 / 83.6
Fashion-MNIST 76.2 / 66.2 24.3 / 30.7 82.7 / 79.6 80.0 / 75.8 24.5 / 25.9 81.3 / 80.6

HAM10000 92.2 / 74.7 21.7 / 39.9 81.6 / 74.8 95.8 / 90.9 19.5 / 25.9 82.1 / 78.0
CXR-A 70.6 / 44.5 21.3 / 43.8 92.8 / 57.5 74.7 / 70.2 18.3 / 26.6 82.7 / 83.0
CXR-B 60.7 / 64.9 19.4 / 23.0 79.8 / 78.8 71.5 / 57.4 16.4 / 29.7 81.1 / 77.9

Table 3: Results of the ablation study. Scenario 1: Prediction performance in case of uncertainty estimation range for each data
is applied equally in the estimation stage of the simulation. Scenario 2 : Prediction performance in case of random parameter
sampling (MC dropout) is not applied at the output stage of HMA. Add 1 layer : Prediction performance when one layer was
added from the baseline. Subtract 1 layer : Prediction performance when one layer was subtract from the baseline.

learned the predictive uncertainty distribution of the subject
and predicted the uncertainty range and classification of the
data to be sampled to the subject with high accuracy.

4.1 PEN Architecture and Training
Architecture. The generation of dataset D̂ is contingent on
the behavioral parameter. Therefore, the architecture of the
PEN with the most appropriate capacity to fit D̂ might be
the same as the hypothetical model representing the human
behavioral parameter probability spaceW . Among the sev-
eral ANN architectures that model the computational pro-
cess of the human visual cortex, CORnet-Z (Kubilius et al.
2018) which is a simple feedforward CNN architecture, was
adopted as the base architecture in this study. However, this
does not mean that CORnet-Z is best suited for modeling
the human visual decision uncertainty; further examination
is required to explore more biologically plausible architec-
tures.
Training. We used a 5 fold cross-validation ensemble ap-
proach, wherein we cross-divided the training dataset into
training and validation datasets, and independently trained a
network.
Inference boundary. The inference boundary constants
used in Eq. (14) are summarized in Table 1.

4.2 Performance Metrics
The range of uncertainty for each data predicted by the PEN
and the uncertainty of the subject calculated by the entropy
are expressed between 0 and 1. The following metrics were
defined to evaluate the performance of each subject.
Predictive Uncertainty Inference Accuracy (PUIA). It is
defined as the percentage of reported uncertainty of the sub-
ject (HMA), which included in the PEN prediction range.

Predictive Uncertainty False Inference Rate (PUFIR). It
is defined as the value of the percentage of predicted range,
which does not overlap with the reported range of the subject
(HMA) over total the entropy range [0,1].
Classification Accuracy (CA). It is defined as the percent-
age of correct prediction of PEN for the classification results
(reported label) reported by the subject (HMA).

4.3 Simulation Study
The simulation involved sampling the behavior of a trained
CNN model (HMA) instead of a human subject. The HMA
generates output by applying an independent MC dropout to
all independent input data in the training and test phase. For
convenience, we divide each dataset into sub-datasets H, P,
and T (Figure 2). The HMA was trained with H. From the
trained HMA, PEN–training datasets were obtained by per-
forming behavioral sampling once with P. PEN–test datasets
were obtained by performing 1000 behavioral sampling with
each image in T. We verified that the trained PEN predicted
the uncertainty range and classification label by the HMA.
CXR data consisted of H with separate images, other than
those used in human experiments. As presented in Table 2,
PEN demonstrated a high predictive performance in simu-
lation experiments. In Figure 3, the predicted range of PEN
and the actual output of HMA are shown for each dataset.
Ablation Study. To verify whether the epistemic uncer-
tainty of the PEN is related to the magnitude of uncertainty
range of the original model, the performance was evalu-
ated using the average epistemic uncertainty for the total
test dataset instead of each uncertainty value of the test
datasets. This implies that Eq. (14) was calculated using
1
N

∑
x′∈X′ UE(x′; Θ) instead of UE(x′; Θ), where X′ de-

notes the sets of N PEN-test datasets (Scenario 1). In ad-
dition, to verify the impact of MC dropout sampling when
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Figure 3: Simulation results for each dataset (only 50 data is displayed). (Green dotted line: predictive uncertainty inference
range, Blue dot: HMA output(1000 sampling) per each test data)

Baseline Add 1 layer Subtract 1 layer

PUIA(%) PUFIR(%) CA(%) PUIA(%) CA(%) PUIA(%) CA(%)

CXR-A 74.7±12.9 50.4±11.3 70.6±7.9 80.8±7.9 67.5±8.8 32.8±28.2 68.2±8.7
CXR-B 79.5±20.1 46.6±13.2 64.6±9.3 82.4±6.6 62.7±9.1 51.0±39.4 65.0±9.1

Table 4: Summary of behavioral experiment results (For all 64 subjects). Shows the mean and standard deviation of the predic-
tion performance of each trained PEN for all subjects. We compared performance of the PEN trained with a baseline architecture
with those trained with an architecture in which one layer was added or subtracted from the baseline, respectively.

obtaining the PEN–training dataset we conducted an ab-
lation study that applied the MC dropout to obtain the
PEN–test dataset without applying the MC dropout to ob-
tain the PEN–training dataset (Scenario 2). Both results ex-
hibited poor PEN performance in comparison to the baseline
versions (Table 3). These results demonstrate the relation-
ship between the epistemic uncertainty of x′ for PEN, the
predictive uncertainty range of the original model, and the
importance of MC sampling in this process.
Architecture Variation. To show that the most appropri-
ate architecture of the PEN is the same as the HMA to be
simulated, the performance of the PEN was compared by
removing or adding one layer from the baseline. Here, base-
line means that the architecture of the HMA and PEN are the
same. The performance of the PEN with a smaller capacity
than the baseline decreased significantly in all areas. In the
simulation with an additional single layer, PUIA exhibited
similar or slightly improved performance in comparison to
the baseline, but CA demonstrated similar or slightly worse
performance (Table 3).

4.4 Human Experiments
A CXR image was used in the behavior sampling experi-
ment of human subjects. The CXR image contains a signifi-
cant amount of information and is widely used in clinical sit-
uations, however, it is difficult to interpret owing to its high
uncertainty (Pham et al. 2020). Two types of datasets were
used in the experiment. CXR-A is labeled as normal or ab-
normal and CXR-B is labeled as edema or pneumonia diag-
nosis, and the two datasets are independent. The experimen-
tal dataset consisted of 270 images each. Each experimental
dataset A and B consisted of 270 images that were divided
into 220 and 50 images for the PEN–training and PEN–test
datasets, respectively. The data for PEN training and test

were randomly classified in advance, and the same settings
were applied to all subjects. The experimental dataset was
constructed by extracting images from the MIMIC-CXR
dataset (Johnson et al. 2019a,b) and the CheXpert dataset
(Irvin et al. 2019). To create the CXR datasets, labeled
images were randomly chosen from the MIMIC-CXR and
CheXpert datasets. A physician in our team then checked
each image to discard all the incorrectly labeled images. As
a result, the CXR-A and CXR-B datasets consist of 270 im-
ages in total.

All subjects were clinical physicians with an M.D and of-
ficial government license. Human subject behavior sampling
involved showing each image on a computer display with
a size of 1024 × 1024 for 5 s. It required maximum con-
centration and received binary classification and confidence
ranging 0 and 100. Images for the PEN test were sampled
4 times; the sampling for the same image was performed
on different days to preclude memory interference. The sub-
ject ware prohibited from learning any chest X-ray images
during the experiment period. To obtain the maximum ac-
curate subjective confidence for each sampling, the subjects
were informed beforehand that they will be awarded with
high prizes in proportion to reporting high confidence with
correct answers or low confidence with incorrect answers.
In Figure 1, when the subjects reported that the uncertainty
of the images was high in the PEN–test datasets, the clas-
sification responses for the images appeared to be inconsis-
tent. Note that PEN-test datasets have been sampled multiple
times, and the amount of each uncertainty can be calculated.
It also appears that the epistemic uncertainty is associated
with response mismatch, whereas the aleatoric uncertainty
is less likely to be associated with response mismatch. This
suggests the possibility that aleatoric uncertainty does not
account for inconsistent choices.
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Data Collection. We collected two sets of human behavior
data, each consisting of the 64 physicians’ medical diagno-
sis and their corresponding confidence values for each image
of CXR-A and CXR-B dataset, respectively. Fifty images
were sampled 4 times, making 840 responses per subject.
The datasets also include a true label of each image, de-
termined based on three votes from “Oracle” (radiologist).
Although the current study does not make use of the true
labels, we believe that this information would be useful for
potential follow-up studies.
Summary of our results. The subjects had different prior
knowledge related chest imaging; thus there was a differ-
ence between the estimated decision boundary and aver-
age uncertainty for chest imaging. The experimental results
demonstrated that the PEN exhibits a highly accurate uncer-
tainty prediction performance of an average of 75% or more
for both experimental datasets (Table 4). The average CA
for CXR-B was found to be rather low at 65% because the
frequency of the inconsistent responses of the subjects that
were repeatedly sampled for the PEN test is high. Unlike the
simulation, the PUFIR exhibited a weak indicator because in
human experiments, we sampled only 4 times for testing the
PEN. The change in performance under the condition where
a PEN layer was added or removed was similar to that in the
simulation experiment. This provides implications for a fun-
damental approach to design neural networks architecture
for human uncertainty modeling studies.

5 Conclusions
We proposed a new conceptual framework to understand hu-
man perceptual uncertainty from the perspective of BNNs
and demonstrated that human uncertainty can be approx-
imated through deterministic ensemble neural networks.
The proposed model, called the PEN, can learn the ex-
pected value of human perceptual uncertainty as a func-
tion of behavioral parameters and predict the range of hu-
man uncertainty by efficiently inferring the uncertainty of
the ensemble. This concept verified the practical applica-
bility through large-scale medical image interpretation ex-
periments by medical physicians, which involved real-world
data with a wide range of perceptual uncertainty. Human un-
certainty information is required for establishing an optimal
learning strategy; however, a major limitation here is that
this information can only be obtained by examining the sam-
plings. Correspondingly, this study offered a new paradigm
for uncertainty inference that efficiently resolves the diffi-
culty of accessing human uncertainty information. In ad-
dition, our research is based on the premise that process-
ing human uncertainty information and performing visual
decision-making are similar to the process of the BNN.
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