
Learning to Sit: Synthesizing Human-Chair Interactions via Hierarchical Control

Yu-Wei Chao,1∗ Jimei Yang,2 Weifeng Chen,3 Jia Deng4

1NVIDIA
2Adobe Research

3University of Michigan, Ann Arbor
4Princeton University

ychao@nvidia.com, jimyang@adobe.com, wfchen@umich.edu, jiadeng@cs.princeton.edu

Abstract

Recent progress on physics-based character animation has
shown impressive breakthroughs on human motion synthe-
sis, through imitating motion capture data via deep reinforce-
ment learning. However, results have mostly been demon-
strated on imitating a single distinct motion pattern, and do
not generalize to interactive tasks that require flexible mo-
tion patterns due to varying human-object spatial configu-
rations. To bridge this gap, we focus on one class of in-
teractive tasks—sitting onto a chair. We propose a hierar-
chical reinforcement learning framework which relies on a
collection of subtask controllers trained to imitate simple,
reusable mocap motions, and a meta controller trained to exe-
cute the subtasks properly to complete the main task. We ex-
perimentally demonstrate the strength of our approach over
different non-hierarchical and hierarchical baselines. We also
show that our approach can be applied to motion prediction
given an image input. A supplementary video can be found
at https://youtu.be/3CeN0OGz2cA.

Introduction
The capability of synthesizing realistic human-scene inter-
actions is an important basis for simulating human living
space, where robots can be trained to collaborate with hu-
mans, e.g. avoiding collisions or expediting the completion
of assistive tasks.

Motion capture (mocap) data, by offering high quality
recordings of articulated human pose, has provided a cru-
cial resource for human motion synthesis. With large mocap
datasets and deep learning algorithms, kinematics-based ap-
proaches have recently made rapid progress on motion syn-
thesis and prediction (Fragkiadaki et al. 2015; Jain et al.
2016; Holden, Saito, and Komura 2016; Ghosh et al. 2017;
Bütepage et al. 2017; Martinez et al. 2017; Holden, Komura,
and Saito 2017; Zhou et al. 2018; Li et al. 2018; Gui et al.
2018a,b; Yan et al. 2018). However, the lack of physical
interpretability in the synthesized motion has been a ma-
jor limitation of these approaches. Such problem becomes
impermissible when it comes to motions that involve sub-
stantial human-object or human-human interactions. With-
out modeling the physics, the sythensized interactions are
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Figure 1: Synthesizing the motion of sitting. Top left: Input
image and 3D chair detection. Top right: Physics simulated
environment for learning human-chair interactions. Bottom:
Two examples of synthesized motions.

often physically unrealistic, e.g. body parts penetrating ob-
stacles or not reacting to collision. This generally limits the
use of these approaches to either non-interactive motions,
or a carefully set up virtual scene with high fidelity to the
captured one.

The graphics community has recently witnessed impres-
sive progress on physics-based character animation (Peng
et al. 2017, 2018a,b). These approaches, through imitating
mocap examples via deep reinforcement learning, can syn-
thesize realistic motions in physics simulated environments.
Consequently, they can adapt to different physical con-
texts and thus attain a better generalization performance for
interaction-based motions, e.g. walking on uneven terrain
or stunt performance under obstacle disturbance. Nonethe-
less, these approaches still suffer from a drawback—a single
model is trained for performing a single task with a distinct
motion pattern (often time from a single mocap clip). As a
result, they might not generalize to higher-level interactive
tasks that require flexible motion patterns. Take the example
of a person sitting down on a chair. A person can start in
any location and orientation relative to the chair (Fig. 1). A
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fixed motion pattern (e.g. turn left and sit) will be incapable
of handling such variations.

In this paper, we focus on one class of high-level interac-
tive tasks—sitting onto a chair. As earlier mentioned, there
are many possible human-chair configurations and different
configurations may require different sequences of actions to
accomplish the goal. For example, if the human is facing the
chair, it needs to walk, turn either left or right, and sit; if
the human is behind the chair, it needs to walk, side-walk
and sit. To this end, we propose a hierarchical reinforcement
learning (RL) method to address the challenge of general-
ization. Our key idea is the use of hierarchical control: (1)
we assume the main task (e.g. sitting onto a chair) can be
decomposed into several subtasks (e.g. walk, turn, sit, etc.),
where the motion of each subtask can be reliably learned
from mocap data, and (2) we train a meta controller using
RL which can execute the subtasks properly to “complete”
the main task from a given configuration. Such strategy is
in line with the observation that humans have a repertoire of
motion skills, and different subset of skills is selected and
executed for different high-level tasks.

Our contributions are two folds: (1) we extend the prior
work on physics-based motion imitation to the context of
higher-level interactive tasks using a hierarchical approach,
and (2) we experimentally demonstrate the strength of our
approach over different non-hierarchical and hierarchical
baselines. We also show in the supplementary video that our
approach can be applied to motion synthesis in human living
space with the help of 3D scene reconstruction.

Related Work
Kinematics-based Models Kinematic modeling of hu-
man motions has a substantial literature in both vision and
graphics domains. Conventional methods such as motion
graphs (Kovar, Gleicher, and Pighin 2002) require a large
corpus of mocap data and face challenges in generalizing
to new behaviors in new context. Recent progress in deep
learning enables researchers to explore more efficient algo-
rithms to model human motions, again, from large-scale mo-
cap data. The focus in the vision community is often mo-
tion prediction (Fragkiadaki et al. 2015; Jain et al. 2016;
Ghosh et al. 2017; Bütepage et al. 2017; Martinez et al.
2017; Zhou et al. 2018; Li et al. 2018; Villegas et al. 2018;
Gui et al. 2018a,b; Yan et al. 2018), where a sequence of mo-
cap poses is given as historical observation and the goal is
to predict future poses. Recent work has even started to pre-
dict motions directly from a static image (Chao et al. 2017;
Walker et al. 2017; Yao et al. 2018). In the graphics com-
munity, the focus has been primarily on motion synthesis,
which aims to synthesis realistic motions from mocap exam-
ples (Yamane, Kuffner, and Hodgins 2004; Agrawal and van
de Panne 2016; Holden, Saito, and Komura 2016; Holden,
Komura, and Saito 2017). Regardless of the focus, this class
of approaches still faces the challenge of generalization due
to the lack of physical plausibility in the synthesized motion,
e.g. foot sliding and obstacle penetrations.

Physics-based Models Physics simulated character ani-
mation has a long history in computer graphics (Liu, van

de Panne, and Yin 2016; Liu and Hodgins 2017; Peng et al.
2017; Liu and Hodgins 2018; Peng et al. 2018a; Clegg et al.
2018; Peng et al. 2018b). Our work is most related to the
recent work by Peng et al. (Peng et al. 2017, 2018a), which
trained a virtual character to imitate mocap data using deep
reinforcement learning. They demonstrated robust and re-
alistic looking motions on a wide array of skills including
locomotion and acrobatic motions. Notably, they have used
a hierarchical model for the task of navigating on irregular
terrain (Peng et al. 2017). However, their meta task only re-
quires a single subtask (i.e. walk), and the meta controller
focuses solely on steering. We address a more complex task
(i.e. sitting onto a chair) which requires the execution of di-
verse subtasks (e.g. walk, turn, and sit). Another recent work
that is closely related to ours is that of Clegg et al. (Clegg
et al. 2018), which addressed the task of dressing also with a
hierarchical model. However, their subtasks are executed in
a pre-defined order, and the completion of subtasks is deter-
mined by hand-coded rules. In contrast, our meta controller
is trained and is free to select any subtask at any time point.
This is crucial when the main task cannot always be com-
pleted by a fixed order of subtasks.

Humanoid control in physics simulated environments is
also a widely-used benchmark task in the RL community.
Some have investigated how to ease the design of the reward
function, but focused less on realistic motions (Heess et al.
2017; Merel et al. 2017). Our work is closest to a few re-
cent work on hierarchical control of humanoids (Merel et al.
2019a,b; Peng et al. 2019). However, they focus mainly on
locomotion related tasks.

Hierarchical Reinforcement Learning Our model is in-
spired by a series of recent work on hierarchical control
in deep reinforcement learning (Heess et al. 2016; Kulka-
rni et al. 2016; Tessler et al. 2017). Although in different
contexts, they share the same attribute that the tasks of con-
cern have high-dimensional action space, but can be decom-
posed into simpler, reusable subtasks. Such decomposition
may even help in generalizing to new high-level tasks due to
the shared subtasks.

Object Affordances Our work is connected to the learn-
ing of object affordances in the vision domain. Affordances
express the functionality of objects and how humans can in-
teract with them. Prior work attempted to detect affordances
of a scene, represented as a set of plausible human poses,
by training on large video corpora (Delaitre et al. 2012;
Zhu, Zhao, and Zhu 2015; Wang, Girdhar, and Gupta 2017).
Instead, we learn the motion in a physics simulated envi-
ronment using limited mocap examples and reinforcement
learning. Another relevant work also detected affordances
using mocap data (Gupta et al. 2011), but focused only on
static pose rather than motion.

Overview
Our main task is the following: given a chair and a skele-
tal pose of a human in the 3D space, generate a sequence
of skeletal poses that describes the motion of the human sit-
ting onto the chair from the given pose (Fig. 1). Our system
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Figure 2: Left: Overview of the hierarchical system. Right: Illustration of the subtasks.

builds upon a physics simulated environment which con-
tains an articulated structured humanoid and a rigid body
chair model. Each joint of the humanoid (except the root)
can receive a control signal and produce dynamics from the
physics simulation. The goal is to learn a policy that controls
the humanoid to successfully sit on the chair.

Fig. 2 (left) illustrates the hierarchical architecture of our
policy. At the lower level is a set of subtask controllers, each
responsible for generating the control input of a particular
subtask. As illustrated in Fig. 2 (right), we consider four
subtasks: walk, left turn, right turn, and sit. To synthesize
realistic motions, the subtask policies are trained on mocap
data to imitate real human motions. At the higher level, a
meta controller is responsible for controlling the execution
of subtasks to ultimately accomplish the main task. The sub-
task and meta controller run at 60 Hz and 2Hz respectively,
and the physics simulation runs at 240 Hz.

Subtask Controller
A subtask controller is a policy network π(at|st) that maps
a state vector st to an action at at each timestep t. The state
representation s is extracted from the current configuration
of the simulation environment, and may vary for different
subtasks. For example, turn requires only proprioceptive in-
formation of the humanoid, while sit requires not only such
information, but also the pose of the chair relative to the hu-
manoid. The action a is the signal for controlling the hu-
manoid joints for each subtask. We use a humanoid model
with 21 degrees of freedom, i.e. a ∈ R21. The network
architecture is fixed across the subtasks: we use a multi-
layer perceptron with two hidden layers of size 64. The out-
put of the network parameterizes the probability distribution
of a, modeled by a Gaussian distribution with a fixed di-
agonal covariance matrix, i.e. π(a|s) = N (µ(s),Σ) and
Σ = diag({σi}). We can generate at at each timestep by
sampling from π(at|st).

Each subtask is formulated as an independent RL prob-
lem. At timestep t, the state st given by the simulation en-

vironment is fed into the policy network to output an ac-
tion at. The action at is then fed back to the simulation en-
vironment to generates the state st+1 at the next timestep
and a reward signal rt. The design of the reward function is
crucial and plays a key role in shaping the style of the hu-
manoid’s motion. A heuristically crafted reward may yield
a task achieving policy, but may result in unnatural looking
motions and behaviors (Heess et al. 2017). Inspired by (Peng
et al. 2018a), we set the reward function of each subtask by
a sum of two terms:

rsub = rS + rG. (1)

where rS encourages similar motion to the mocap reference
and rG encourages the achievement of the subtask goal. We
use a consistent similarity reward rS across all subtasks:

rS = ωprp + ωvrv, (2)

where rp and rv encourage the similarity of local joint an-
gles qj and velocities q̇j between the humanoid and the ref-
erence motion, and ωp and ωv are the respective weights.
Specifically,

rp = exp

−αp
∑
j

d(qj , q̂j)
2


rv = exp

−αv
∑
j

(q̇j − ˆ̇qj)
2

 ,

(3)

where d(·, ·) computes the angular difference between two
angles. We empirically set ωp = 0.5, ωv = 0.05, αp = 1,
and αv = 10. Next, we detail the state representation s and
the goal reward rG for each subtask.

1) Walk The state swalk ∈ R52 consists of a 50-d pro-
prioceptive feature and a 2-d goal feature that specifies an
intermediate walking target. The proprioceptive feature in-
cludes the local joint angles and velocities, the height and
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Figure 3: State representation of the humanoid and chair.
The red and green dots on the humanoid denote the root and
non-root joints. The red dots on the ground and chair denote
the walk target and the center of the seat surface.

linear velocity of the root (i.e. torso) as well as its pitch and
roll angles, and a 2-d binary vector indicating the contact of
each foot with the ground (Fig. 3). Rather than walking in
random directions, target-directed locomotion (Agrawal and
van de Panne 2016) is necessary for accomplishing high-
level tasks. Assuming a target is given, represented by a 2D
point on the ground plane, the 2-d goal feature is given by
[sin(ψ), cos(ψ)]>, where ψ is the azimuth angle to the tar-
get in the humanoid centric coordinates. The generation of
targets will be detailed in the Meta Controller section.

We observe that it is challenging to directly train a target-
directed walking policy with mocap examples. Therefore we
adopt a two-stage training strategy where each stage uses a
distinct goal reward. In the first stage, we encourage simi-
lar steering patterns to the reference motion, i.e. the linear
velocity of the root v ∈ R3 should be similar between the
humanoid and reference motion:

rG = 0.5 · exp

(
−10 ·

∑
i

(vi − v̂i)2
)
. (4)

In the second stage, we reward motion towards the target:

rG = 0.1 · 1

1 + exp(10 · V walk)
, (5)

where V walk = (Dwalk
t+1 − Dwalk

t )/δt. Dwalk
t denotes the

horizontal distance between the root and the target, and δt is
the length of the timestep.

2) Left/Right Turn The states slturn, srturn ∈ R50

reuse the 50-d proprioceptive feature from the walk subtask.
The goal reward encourages the rotation of the root to be
matched between the humanoid and reference motion:

rG = 0.1 · exp

(
−10 ·

∑
i

d(θi, θ̂i)
2

)
, (6)

where θ ∈ R3 consists of the root’s pitch, yaw, and roll.

3) Sit The sit subtask assumes that the humanoid is ini-
tially standing roughly in front of the chair and facing away.
The task is simply to lower the body and be seated. Differ-
ent from walk and turn, the state for sit should capture the
pose information of the chair. Our state ssit ∈ R57 con-
sists of the same 50-d proprioceptive feature used in walk
and turn, and additionally a 7-d feature describing the state
of the chair in the humanoid centric coordinates. The 7-d
chair state includes the displacement vector from the pelvis
to the center of the seat surface, and the rotation of the chair
in the humanoid centric coordinates represented as a quater-
nion (Fig. 3). The goal reward encourages the pelvis to move
towards the center of the seat surface:

rG = 0.5 · (−V sit), (7)

where V sit = (Dsit
t+1−Dsit

t )/δt andDsit
t is the 3D distance

between the pelvis and the center of the seat surface.

Meta Controller
The meta controller is also a policy network and shares the
same architecture as the subtask controllers. We reuse the
57-d state representation from the sit subtask which con-
tains both the proprioceptive and chair information. Rather
than directly controlling the humanoid joints, the output ac-
tion ameta now controls the execution of subtasks. Specif-
ically, ameta = {aswitch, atarget} consists of two compo-
nents. aswitch ∈ {walk, left turn, right turn, sit} is a discrete
output which at each timestep picks a single subtask out of
the four to execute. atarget ∈ R2 specifies the 2D target for
the walk subtask, which is used to compute the goal state in
swalk. Note that atarget is only used when the walk subtask
is picked for execution. The output of the policy network
parameterizes the probability distributions of both aswitch

and atarget, where aswitch is modeled by a categorical dis-
tribution as in standard classification problems, and atarget
is modeled by a Gaussian distribution following the subtask
controllers.

The meta task is also formulated as an independent RL
problem. At timestep t, the policy network takes the state
smeta
t from the simulation environment and output an action
ameta
t . ameta

t then triggers one specific subtask controller to
generate the control signal for the humanoid joints. The con-
trol signal is finally fed back to the simulation to generate the
next state smeta

t+1 and a reward rmeta
t . Rather than evaluating

the similarity to a mocap reference, the reward now should
be providing feedback on the main task. We adopt a reward
function that encourages the pelvis to move towards and be
in contact with the seat surface:

rmeta =

{
1 if zcontact = 1

0.5 · (−V sit) otherwise.
(8)

zcontact indicates whether the pelvis is in contact with the
seat surface, which can be detected by the physics simula-
tor. V sit is defined as in Eq. 7.

Training
Since the subtasks and meta task are formulated as indepen-
dent RL problems, they can be trained independently using
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Figure 4: Curriculum learning for the meta controller. Hu-
manoid spawn location is initially set to less challenging
states (Zone 1), and later moved to more challenging states
(Zone 2 and 3).

standard RL algorithms. We first train each subtask con-
trollers separately, and then train the meta controller using
the trained subtask controllers. All controllers are trained in
a standard actor-critic framework using the proximal policy
optimization (PPO) algorithm (Schulman et al. 2017).

1) Subtask Controller The training of the subtasks is di-
vided into two stages. First, in each episode, we initialize
the pose of the humanoid to the first frame of the reference
motion, and train the humanoid to execute the subtask by
imitating the following frames. This enables the humanoid
to perform the subtasks from the initial pose of the refer-
ence motion, but does not guarantee successful transitions
between subtasks (e.g. walk→turn), which is required for
the main task. Therefore in the second stage, we fine-tune
the controllers by setting the initial pose to a sampled end-
ing pose of another subtask, similar to the policy sequencing
method in (Clegg et al. 2018). For turn and sit, the initial
pose is sampled from the ending pose of walk and turn, re-
spectively.

2) Meta Controller While our goal is to have the hu-
manoid sit down regardless of where it starts in the envi-
ronment, the task’s difficulty highly depends on the initial
state: if it is already facing the seat, it only needs to turn and
sit, while if it is behind the chair, it needs to first walk to the
front and then sit down. Training can be challenging when
starting from a difficult state, since the humanoid needs to
by chance execute a long sequence of correct actions to re-
ceive the reward for sitting down. To facilitate training, we
propose a multi-stage training strategy inspired by curricu-
lum learning (Zaremba and Sutskever 2014). The idea is to
begin the training from easier states, and progressively in-
crease the difficulty when the training converges. As illus-
trated in Fig. 4, we begin by only spawning the humanoid
on the front side of the chair (Zone 1). Once trained, we
change the initial position to the lateral sides (Zone 2) and
continue the training. Finally, we train the humanoid to start
from the rear side (Zone 3).

Succ Rate (%) Min Dist (m)
Kinematics – 1.2656 ± 0.0938
Physics (Peng et al. 2018a) 0.00 1.3316 ± 0.1966
walk→left turn→sit 25.16 0.3790 ± 0.2326(Clegg et al. 2018)
walk→right turn→sit 0.92 0.7948 ± 0.2376(Clegg et al. 2018)
walk / left turn / sit 29.38 0.3913 ± 0.2847
walk / right turn / sit 23.01 0.3620 ± 0.2378
Full Model 31.61 0.3303 ± 0.2393

Table 1: Comparison of our approach with the non-
hierarchical and hierarchical baselines in the Easy setting.

Results
Data and Implementation Details The mocap references
for each subtask are collected from the CMU Graphics Lab
Motion Capture Database 1. We extract relevant motion
segments and retarget the motion to our humanoid model.
We use a 21-DoF humanoid model provided by the Bullet
Physics SDK (Coumans and Bai 2016–2019). Motion retar-
geting is performed using a Jacobian-based inverse kinemat-
ics method (Holden, Saito, and Komura 2016). Our simula-
tion environment is based on OpenAI Roboschool (Schul-
man et al. 2017) 2, which uses the Bullet physics en-
gine (Coumans and Bai 2016–2019). We use a randomly se-
lected chair model from ShapeNet (Chang et al. 2015). The
PPO algorithm for training is based on the implementation
from OpenAI Baselines (Dhariwal et al. 2017).

Evaluation of Main Task We adopt two different met-
rics to quantitatively evaluate the main task: (1) success rate
and (2) minimum distance. We declare a success whenever
the pelvis of the humanoid has been continuously in contact
with the seat surface for 3.0 seconds. We report the success
rate over 10,000 trials by spawning the humanoid at random
locations. Note that the success rate evaluates task comple-
tion with a hard constraint and does not reveal the progress
when the humanoid fails. Therefore we also compute the
per-trial minimum distance (in meters) between the pelvis
and the center of the seat surface, and report the mean and
standard deviation over the 10,000 trials.

As noted in the last section, the task can be challenging
when the initial position of the humanoid is unconstrained.
To better analyze the performance, we consider two different
initialization settings: (1) Easy and (2) Hard. In the Easy set-
ting, the humanoid is initialized from roughly 2 meters away
on the front half plane of the chair (i.e. Zone 1 in Fig. 4),
with an orientation roughly towards the chair. The task is ex-
pected to be completed by simply walking forward, turning
around, and sitting down. In the Hard setting, humanoid is
initialized again from roughly 2 meters away but on the lat-
eral and rear sides of the chair (i.e. Zone 2 and 3 in Fig. 4).
It needs to walk around the chair to sit down successfully.

1http://mocap.cs.cmu.edu.
2https://blog.openai.com/roboschool/.
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Figure 5: Qualitative results of our approach and the baselines. Row 1 and 2 show failure cases from the kinematics and physics
baselines, respectively. The former violates physics rules (e.g. sitting in air), and both do not generalize to new human-chair
configurations. Row 3 to 4 show two successful cases and row 5 shows one failure cases from our approach.

Subtask Initial Pose Succ Rate (%)
left turn mocap 87.02

right turn mocap 67.59
sit mocap 99.25

Subtask Initial Pose Succ Rate (%)
w/o FT w/ FT

left turn walk 0.09 51.12
right turn walk 1.96 58.31

sit left or right turn 32.94 87.41

Table 2: Evaluation of individual subtasks.

Easy Setting We benchmark our approach against various
baselines in this setting. We start with two non-hierarchical
baselines. The first is a kinematics-based method: we select a
mocap clip with a holistic motion sequence that successively
performs walking, turning, and sitting on a chair. When a
trial begins, we align the first frame of the sequence to the
humanoid’s initial pose by aligning the yaw of the root. Once
aligned, we simply use the following frames of the sequence
as the kinematic trajectory of the trial. Note that this method
is purely kinematic and cannot reflect any physical interac-
tions between the humanoid and chair. The second method
extends the first one to a physics-based approach: we use the
same kinematic sequence but now train a controller to im-
itate the motion. This is similar to (Peng et al. 2018a) and
equivalent to training a subtask controller except the subtask
is holistic (i.e. containing walk, turn, and sit in one reference
motion). Both methods are considered non-hierarchical as
neither performs task decomposition.

0.50 0.36 0.13 0.01

0.03 0.59 0.07 0.32

0.01 0.00 0.96 0.03

0.00 0.00 0.01 0.99

walk l turn r turn sit
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l turn

r turn

sit

(a) left side

0.51 0.01 0.48 0.00

0.07 0.18 0.18 0.56

0.01 0.01 0.67 0.30

0.00 0.00 0.00 1.00

walk l turn r turn sit

walk

l turn

r turn

sit

(b) right side

Figure 6: Transition matrices from two sides of the chair.

Tab. 1 shows the quantitative results. For the kinematics
baseline, the success rate is not reported since we are un-
able to detect physical contact between the pelvis and chair.
However, the 1.2656 mean minimum distance suggests that
the humanoid on average remains far from the chair. For
the physics baseline, we observe a similar mean minimum
distance (i.e. 1.3316). The zero success rate is unsurprising
given that the humanoid is unable to get close to the chair
in most trials. As shown in the qualitative examples (Fig. 5),
the motion generated by the kinematics baseline (row 1) is
not physics realistic (e.g. sitting in air). The physics base-
line (row 2), while following physics rules (e.g. falling on
the ground eventually), still fails in approaching the chair.
These holistic baselines perform poorly since they simply
imitate the mocap example and repeat the same motion pat-
tern regardless of their starting position.

We now turn to a set of hierarchical baselines and our ap-
proach. We also consider two baselines. The first one always
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Figure 7: Qualitative results on the Hard setting. The humanoid can sit down successfully when starting from the back side of
the chair.

Succ Rate (%) Min Dist (m)

Zone 1 31.61 0.3303 ± 0.2393

Zone 2 w/o CL 0.00 0.5549 ± 0.2549
Zone 2 10.01 0.5526 ± 0.3303

Zone 3 w/o CL 4.05 0.5636 ± 0.2263
Zone 3 w/ CL 7.05 0.5262 ± 0.2602

Table 3: Comparison of the Easy and Hard settings. The cur-
riculum learning strategy improves the performance.

executes the subtasks in a pre-defined order, and the meta
controller is only used to trigger transitions (i.e. a binary
classification). Note that this is in similar spirit to (Clegg
et al. 2018). We consider two particular orders: walk→left
turn→sit and walk→right turn→sit. The second one is a de-
generated version of our approach that uses either only left
turn or right turn: walk / left turn / sit and walk / right turn /
sit.

As shown in Tab. 1, hierarchical approaches outperform
non-hierarchical approaches, validating our hypothesis that
hierarchical models, by breaking a task into reusable sub-
tasks, can attain better generalization. Besides, our approach
outperforms the pre-defined order baselines. This is because:
(1) the main task cannot always be completed by a fixed
order of subtasks, and (2) fixing the order increases train-
ing difficulty because certain missing transitions (e.g. left
turn→walk) are necessary for recovery from mistakes. Fi-
nally, our full model outperforms the baselines that only al-
low turning in one direction. This suggests the two turning
subtasks are complementary and being used in different sce-
narios, e.g. in Fig. 5, walk→right turn→sit when starting
from the chair’s right side (row 3), and walk→left turn→sit
when starting from the chair’s left side (row 4).

Analysis As can be seen in Tab. 1, the success rate is still
low even with the full model (i.e. 31.61%). This can be at-
tributed to three factors: (1) failures of subtask execution,
(2) failures due to subtask transitions, and (3) an insufficient
subtask repertoire. First, Tab. 2 (top) shows the success rate
of individual subtasks, where the initial pose is set to the first
frame of the reference motion (i.e. as in stage one of subtask
training). We can see the execution does not always succeed
(e.g. 67.59% for right turn). Second, Tab. 2 (bottom) shows
the success rate for the same subtasks, but with the initial
pose set to the last frame of the execution of another subtask

(i.e. as in stage two of subtask training). With fine-tuning the
success rate after transitions can be significantly improved,
although still not perfect. Finally, Fig. 5 (row 5) shows a
failure case where the humanoid needs a “back up” move
when it is stuck in the state of directly confronting the chair.
Building a more diverse subtask skill set is an interesting
future research problem.

To analyze the meta controller’s behavior, we look at the
statistics on the switching between subtasks. Fig. 6 shows
the subtask transition matrices when the humanoid is started
either from the right or left side of the chair. We can see that
certain transitions are more favored in certain starting areas,
e.g. walk→left turn is favored over walk→right turn when
started from the left side. This is in line with the earlier ob-
servation that the two turning subtasks are complementary.

Hard Setting We now increase the task’s difficulty by ini-
tializing the humanoid in Zone 2 and 3 (Fig. 4), and show
the effect of the proposed curriculum learning (CL) strategy.
Tab. 3 shows the results from different initialization zones.
First, we observe a severe drop in the success rate when the
humanoid is spawned in Zone 2 and 3 (e.g. from 31.61% to
4.05% for “Zone 3 w/o CL”). However, the success rate is
higher in both zones when the proposed curriculum learning
strategy is applied (e.g. from 4.05% to 7.05% in Zone 3).
This suggests that a carefully tailored curriculum can im-
prove the training outcome of a challenging task. Note that
the difference in the minimum distance is less significant
(e.g. 0.5549 for “Zone 2 w/o CL’ versus 0.5526 for “Zone
2”), since without CL the humanoid can still approach the
chair, but will fail to turn and sit due to the difficulty in
learning. Fig. 7 shows two successful examples when the hu-
manoid is spawned from the rear side of the chair. Interest-
ingly, the humanoid learns a slightly different behavior (e.g.
walk→sit without turn) compared to when starting from the
front side (row 3 and 4 in Fig. 5).

Conclusion
We address motion synthesis of an interactive task—sitting
onto a chair. We introduce a hierarchical reinforcement
learning approach which relies on a collection of subtask
controllers trained to imitate reusable mocap motions, and
a meta controller trained to execute the subtasks properly to
complete the main task. We experimentally demonstrate the
strength of our approach over different non-hierarchical and
hierarchical baselines, and show an application to motion
prediction given an image.
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Ethical Impact
The immediate impact of our work is a new virtual envi-
ronment and benchmark for synthesizing human sitting mo-
tions. This will facilitate follow-up work in this area. Ulti-
mately our work will be a small step towards simulating hu-
man actions and activities. This is the key to building virtual
environments with realistic human agents, an important tool
for training collaborative robots to safely interact and work
alongside humans as mentioned in the introduction.

References
Agrawal, S.; and van de Panne, M. 2016. Task-based loco-
motion. In SIGGRAPH.
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