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Abstract

Inverse multiobjective optimization provides a general frame-
work for the unsupervised learning task of inferring param-
eters of a multiobjective decision making problem (DMP),
based on a set of observed decisions from the human expert.
However, the performance of this framework relies critically
on the availability of an accurate DMP, sufficient decisions of
high quality, and a parameter space that contains enough in-
formation about the DMP. To hedge against the uncertainties
in the hypothetical DMP, the data, and the parameter space,
we investigate in this paper the distributionally robust ap-
proach for inverse multiobjective optimization. Specifically,
we leverage the Wasserstein metric to construct a ball cen-
tered at the empirical distribution of these decisions. We then
formulate a Wasserstein distributionally robust inverse mul-
tiobjective optimization problem (WRO-IMOP) that mini-
mizes a worst-case expected loss function, where the worst
case is taken over all distributions in the Wasserstein ball.
We show that the excess risk of the WRO-IMOP estimator
has a sub-linear convergence rate. Furthermore, we propose
the semi-infinite reformulations of the WRO-IMOP and de-
velop a cutting-plane algorithm that converges to an approxi-
mate solution in finite iterations. Finally, we demonstrate the
effectiveness of our method on both a synthetic multiobjec-
tive quadratic program and a real world portfolio optimiza-
tion problem.

Introduction
Inverse multiobjective optimization provides a compelling
tool to learn humans’ decision making scheme or emulate
their behaviors (Dong and Zeng 2020). Its goal is to infer the
parameters of the multiobjective decision making problem
(DMP), based on a set of observed decisions from the human
experts. More precisely, it seeks to learn θ given {yi}i∈[N ]

that are observations of the Pareto optimal solutions of the
multiobjective optimization problem (MOP):

min
x

{f1(x, θ), f2(x, θ), . . . , fp(x, θ)}
s.t. x ∈ X(θ),

where θ indicates the true but unknown parameter for the
expert’s multiobjective DMP.

*Work was done prior to joining Amazon
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This tool is generally applicable in many scenerios. These
underlying multiobjective decision making schemes, once
obtained, would presumably play critical roles in various as-
pects, such as assisting agents in automating the process of
providing professional services for clients. For example, the
modern portfolio theory—risk and profit are two objectives
to optimize—is often used by portfolio managers when buy-
ing or selling stocks on behalf of clients (Markowitz 1952).
To automate the portfolio management, one could leverage
the portfolio manager’s investment records to learn the key
parameters of this model, e.g., the risk aversion score or ex-
pected returns of the assets.

Despite its widely applications, inverse multiobjective op-
timization relies critically on the availability of an accurate
decision making model, sufficient decisions of high qual-
ity, and a parameter space that contains as much informa-
tion about the objective functions or constraints as possible.
In practice, however, it is highly unlikely that all of these
critical factors would be satisfied. For example, outliers in a
limited amount of decisions would render the empirical dis-
tribution of decisions deviate from the true distribution, and
thus significantly weaken the predictive power of the inverse
optimization multiobjective estimator. We note that this is-
sue is not unique for inverse multiobjective optimization
and one can observe similar findings in inverse optimiza-
tion models that has only one objective function (Keshavarz,
Wang, and Boyd 2011; Bertsimas, Gupta, and Paschalidis
2015; Aswani, Shen, and Siddiq 2018; Esfahani et al. 2018;
Dong, Chen, and Zeng 2018).

To hedge against these uncertainties contained in the
hypothetical decision making model, the data and the se-
lected parameter space, we investigate the distributionally
robust approach for inverse multiobjective optimization.
More specifically, motivated by Shafieezadeh-Abadeh, Esfa-
hani, and Kuhn (2015); Gao and Kleywegt (2016); Esfahani
and Kuhn (2018), etc., we use the Wasserstein metric (Vil-
lani 2008) to construct the uncertainty set centered at the em-
pirical distribution of the observed decisions. Subsequently,
we propose a distributionally robust inverse multiobjective
optimization program that minimizes the worst-case risk of
loss, where the worst case is taken over all distributions in
the uncertainty set. By such a distributionally robust frame-
work, we aim to bridge the discrepancy between the lack
of certainties in the information and the expectation for the
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accurate prediction of human’s or robot’s future behavior.

Related Work
Our work is most related to Dong and Zeng (2020), which
proposes the general framework of using inverse multiob-
jective optimization to infer the objective functions or con-
straints of the multiobjective DMP, based on observations
of Pareto optimal solutions. Dong and Zeng (2020) takes
the framework of empirical risk minimization for this un-
supervised learning task, and generally works well when
there are few uncertainties in the model, data or hypothet-
ical parameter space. In contrast, we believe that those un-
certainties inherently root in the applications of inverse mul-
tiobjective optimization, and we aim to hedge against their
influences by adopting the distributionally robust optimiza-
tion paradigm based on Wasserstein metric. We demonstrate
both theoretically and experimentally that our method has
out-of-sample performance guarantees under uncertainties.

Our work draws inspirations from Esfahani et al. (2018),
who develop a distributionally robust approach for inverse
optimization to infer the utility function from sequentially
arrived observations. They aim to mitigate the poor per-
formance of inverse optimization models (Ahuja and Orlin
2001; Keshavarz, Wang, and Boyd 2011; Bertsimas, Gupta,
and Paschalidis 2015; Aswani, Shen, and Siddiq 2018; Es-
fahani et al. 2018; Bärmann, Pokutta, and Schneider 2017;
Dong, Chen, and Zeng 2018) when the learner has imperfect
information. They show that the associated distributionally
robust inverse optimization approach offers out-of-sample
performance guarantees under such a situation. However,
their approach is specially designed for the simpler case
where the DMP has only one objective function. Differently,
our approach considers a more complex situation where the
DMP has multiple objectives. Moreover, instead of using the
suboptimality loss function, we consider another one that
would better capture the learner’s purpose to predict the de-
cision maker’s decisions. Due to the nonconvex nature of our
loss function, extensive efforts are made to develop the algo-
rithm for solving the resulting nonconvex minmax program.

Contributions
We summarize our contributions as follows:
• We present a novel Wasserstein distributionally robust

framework for constructing inverse multiobjective opti-
mization estimator. We use the prominent Wasserstein
metric to construct the uncertainty set centered at the em-
pirical distribution of observed decisions.

• We show that the proposed framework has statistical per-
formance guarantees, and the excess risk of the distribu-
tionally robust inverse multiobjective optimization esti-
mator would converge to zero with a sub-linear rate as
the number of observed decisions approaches to infinity.

• We reformulate the resulting minmax problem as a semi-
infinite program and develop a cutting-plane algorithm
which converges to an approximate solution in finite it-
erations. We demonstrate the effectiveness of our method
on both a multiobjective quadratic program and a portfo-
lio optimization problem.

Problem Setting
Multiobjective Decision Making Problem
We consider a family of parametrized multiobjective deci-
sion making problems with p (≥ 2) objective functions,

min
x∈Rn

{f1(x, θ), f2(x, θ), . . . , fp(x, θ)}
s.t. x ∈ X(θ),

DMP

where θ ∈ Θ is the parameter for the multiobjective DMP.
For easy exposition, we denote f(x, θ) the vector valued
function (f1(x, θ), f2(x, θ), . . . , fp(x, θ))

T . Also, the fea-
sible set X(θ) is characterized as X(θ) = {x ∈ Rn :
g(x, θ) ≤ 0}, where g(x, θ) = (g1(x, θ), . . . , gq(x, θ))

T

is another vector-valued function.
Following Dong and Zeng (2020), we consider a convex

DMP where all objectives and constraints are convex in x
for each θ ∈ Θ.

Definition 1 (Pareto optimality). For a fixed θ, a decision
x∗ ∈ X(θ) is said to be Pareto optimal if there exists no
other decision x ∈ X(θ) such that fi(x, θ) ≤ fi(x

∗, θ) for
all i ∈ [p], and fj(x, θ) < fj(x

∗, θ) for at least one j ∈ [p].

We denote XP (θ) the Pareto optimal set that consists of
all the Pareto optimal solutions. The weighted sum approach
(Gass and Saaty 1955) is often taken to derive a Pareto opti-
mal solution by solving

min wT f(x, θ)
s.t. x ∈ X(θ),

WP

where w = (w1, . . . , wp)T is the nonnegative weight vector
in the (p− 1)-simplex Wp ≡ {w ∈ Rp+ : 1Tw = 1}. When
each w ∈ Rp++, such set is denoted by W +

p . We denote
S(w, θ) the set of optimal solutions of WP, i.e.,

S(w, θ) = arg min
x

{
wT f(x, θ) : x ∈ X(θ)

}
.

We next make a few assumptions to simplify our under-
standing, which are actually mild and appear frequently in
the inverse optimization literature.

Assumption 1. Set Θ is a convex compact set in Rnθ . There
exists D > 0 such that supθ∈Θ‖θ‖2 ≤ D. In addition,
f(x, θ) and g(x, θ) are convex in x for each θ ∈ Θ.

Inverse Multiobjective Optimization
Consider a learner who has access to decision makers’ de-
cisions, but does not know the underlying decision mak-
ing model. In the inverse multiobjective optimization model,
the learner aims to learn the parameter θ in DMP from ob-
served noisy decisions only, and no information regarding
decision makers’ preferences over multiple objective func-
tions is available. We denote y the observed noisy deci-
sion that might carry measurement error or is generated with
bounded rationality of the decision maker, i.e., being subop-
timal. Throughout the paper we assume that y is a random
variable distributed according to an unknown distribution Py

supported on Y .
We next discuss the construction of the loss function for

the unsupervised learning task in Dong and Zeng (2020).
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Given a noisy decision y and a hypothesis θ, the loss
function could ideally be defined as the minimum dis-
tance between y and the XP (θ). For a general DMP, how-
ever, there typically exists no explicit way to characterize
XP (θ). Instead, a sampling approach is adopted to gener-
ate wk ∈ Wp for each k ∈ [K] and approximate XP (θ) as⋃
k∈[K] S(wk, θ). Then, the loss function is defined as

lK(y, θ) = min
x∈

⋃
k∈[K]

S(wk,θ)
‖y − x‖22. (loss function)

By using binary variables, this loss function can be con-
verted into the following problem.

lK(y, θ) = min
zj∈{0,1}

‖y −
∑

k∈[K]

zkxk‖22

s.t.
∑

k∈[K]

zk = 1, xk ∈ S(wk, θ)
(1)

Constraint
∑
k∈[K] zk = 1 ensures that exactly one of Pareto

optimal solutions will be chosen to measure the distance
from y to XP (θ). Hence, solving this optimization problem
identifies somewk with k ∈ [K] such that the corresponding
Pareto optimal solution S(wk, θ) is closest to y.

We make the following assumptions as those in (Dong
and Zeng 2020).

Assumption 2. (a) For each θ ∈ Θ, X(θ) is compact, and
has a nonempty relative interior. Namely, there existsB >
0 such that ‖x‖2 ≤ B for all x ∈ X(θ). The support Y of
the noisy decisions y is contained within a ball of radius
R, where R <∞.

(b) Each function in f is strongly convex on Rn, that is for
each l ∈ [p], ∃λl > 0, ∀x,y ∈ Rn(
∇fl(y, θl)−∇fl(x, θl)

)T
(y − x) ≥ λl‖x− y‖22.

Regarding Assumption 2 (a), we note that assuming the
compactness of the feasible region is very common in in-
verse optimization. The finite support of the observations is
needed since we do not hope outliers have too strong im-
pacts in our learning process. Let λ = minl∈[p]{λl}. It fol-
lows that wT f(x, θ) is strongly convex with parameter λ for
each w ∈ Wp. Therefore, Assumptions 2 (a) - (b) together
ensure that S(w, θ) is a single-valued set for each w and θ.

Given observations {yi}i∈[N ] drawn i.i.d. according to
the distribution Py, the inverse multiobjective optimization
program is given in the following.

min
θ∈Θ

1
N

∑
i∈[N ]

lK(yi, θ). (IMOP)

Statistical properties, algorithm developments, and connec-
tions to other unsupervised learning tasks have been exten-
sively investigated in Dong and Zeng (2020).

Wasserstein Ambiguity Set
Let Y ⊆ Rn be the observation space where the observed
noisy decisions take values. Denote P(Y) be the set of
all probability distributions on Y . From now on, we let the

Wasserstein ambiguity set P be the 1-Wasserstein ball of ra-
dius ε centered at P0:

P = Bε(P0) := {Q ∈P(Y) :W(Q,P0) ≤ ε} , (2)

where P0 is the nominal distribution on Y , ε > 0 is the ra-
dius of the set, and W(Q,P0) is the wasserstein distance
metric of order 1 defined as (Villani 2008; Esfahani and
Kuhn 2018; Gao and Kleywegt 2016)

W(Q,P0) = inf
π∈Π(Q,P0)

∫
Y×Y
‖z1 − z2‖2π(dz1, dz2),

where Π(Q,P0) is the set of probability distributions on Y×
Y with marginals Q and P0.

Wasserstein Distributionally Robust IMOP
In this section, we propose the Wasserstein distributionally
robust IMOP, and show its equivalence to a semi-infinite
program. Subsequently, we present an algorithm to handle
the resulting reformulations, and show its convergence in fi-
nite steps. Finally, we establish the statistical performance
guarantees for the distributionally robust IMOP.

Given observations {yi}i∈[N ] drawn i.i.d. according to
the distribution Py, the corresponding distributionally robust
program of (IMOP) equipped with the Wasserstein ambigu-
ity set is constructed as follows

min
θ∈Θ

sup
Q∈Bε(P̂N )

Ey∼Q [lK(y, θ)] , (WRO-IMOP)

which minimizes the worst case expected loss over all the
distributions in the Wasserstein ambiguity set. Here Bε(P̂N )

is defined in (2), and P̂N is the empirical distribution satis-
fying: P̂N (yi) = 1/N, ∀i ∈ [N ].

Semi-infinite Reformulations
WRO-IMOP involves minimizing a supremum over in-
finitely many distributions, making it difficult to solve. In
this section, we establish the reformulation of WRO-IMOP
into a semi-infinite program.

The performance of WRO-IMOP depends on how the
change of θ affects the objective values. For ∀w ∈
Wp, θ1, θ2 ∈ Θ, we consider the following function

h(x, w, θ1, θ2) = wT f(x, θ1)− wT f(x, θ2).

Assumption 3. ∃κ > 0, ∀w ∈ Wp, ∀θ1 6= θ2 ∈ Θ,
h(·, w, θ1, θ2) is Lipschitz continuous on Y:∀x,y ∈ Y,
|h(x, w, θ1, θ2)− h(y, w, θ1, θ2)| ≤ κ‖θ1 − θ2‖2‖x− y‖2.

Basically, this assumption requires that the objective func-
tions will not change much when either the parameter θ or
the variable x is perturbed. It actually holds in many com-
mon situations, including the multiobjective linear program
(MLP) and multiobjective quadratic program (MQP). As a
motivating example, we give the κ for an MQP.

Example 1. Suppose that f(x, θ) =

(
1
2x

TQ1x + cT1 x
1
2x

TQ2x + cT2 x

)
,

where θ = (Q1, Q2, c1, c2). Under Assumption 2, we know
that ‖y‖2 ≤ R. Then, h(·, w, θ1, θ2) is 2R‖θ1 − θ2‖2-
Lipschitz continuous on Y . That is, we can set κ = 2R.
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Under the previous assumptions, we will establish several
properties of the loss function lK(y, θ), which are ensential
for our reformulation for WRO-IMOP.
Lemma 1. Under Assumptions 1 - 3, the loss function
lK(y, θ) has the following properties:

(a) ∀y ∈ Y, θ ∈ Θ, 0 ≤ lK(y, θ) ≤ (B +R)2.
(b) lK(y, θ) is uniformly 2(B + R)-Lipschitz continuous in

y. That is, ∀θ ∈ Θ, ∀y1,y2 ∈ Y , we have

|lK(y1, θ)− lK(y2, θ)| ≤ 2(B +R)‖y1 − y2‖2.

(c) lK(y, θ) is uniformly 4(B+R)κ
λ -Lipschitz continuous in θ.

That is, ∀y ∈ Y, ∀θ1, θ2 ∈ Θ, we have

|lK(y, θ1)− lK(y, θ2)| ≤ 4(B +R)κ

λ
‖θ1 − θ2‖2.

(a) and (b) of Lemma 1 are built upon direct analysis of
the loss function lK(y, θ). Proof of (c) is much more in-
volved and needs the key observation that the perturbation of
S(w, θ) due to θ is bounded by the perturbation of θ by ap-
plying Proposition 6.1 in (Bonnans and Shapiro 1998). De-
tails of the proof are provided in the supplementary material.

Let

V :=

{
v ∈ RN+1 :V1 ≤ vi ≤ (m+ 1)V2 −mV1, ∀i ∈ [N ],

0 ≤ vN+1 ≤ (V2 − V1)/ε

}
.

where V1 and V2 are the lower and upper bounds for the
loss function lK(y, θ), respectively. By part (a) of Lemma
1, we will set V1 = 0, and V2 = (B + R)2 throughout the
remainder of the paper.

The following theorem presents a tractable reformulation
of the distributionally robust optimization problem WRO-
IMOP and thus constitutes the first main result of this paper.
Theorem 1 (Semi-infinite Reformulation). Under Assump-
tions 1 - 3, WRO-IMOP is equivalent to the following semi-
infinite program:

min
θ,v

ε · vN+1 + 1
N

∑
i∈[N ]

vi

s.t. sup
ỹ∈Y

(lK(ỹ, θ)− vN+1 · ‖ỹ − yi‖2) ≤ vi, ∀i ∈ [N ],

θ ∈ Θ,v ∈ V
(3)

Proof. Under Assumption 1, we know that Θ is compact.
Similarly, Y is also compact under Assumption 2 (a). By
lemma 1 (a), ∀y ∈ Y, θ ∈ Θ, 0 ≤ lK(y, θ) ≤ (B + R)2,
and thus lK(y, θ) is bounded. In addition, by lemma 1 (b),
lK(y, θ) is continuous in y for any y ∈ Θ. Finally, by
Lemma 1 (c), lK(y, θ) is uniformly 4(B+R)κ

λ -Lipschitz con-
tinuous in θ. Hence, applying Corollary 3.8 of (Luo and
Mehrotra 2017) yields the result.

Remark 1. The establishment of Theorem 1 relies on those
properties of lK(y, θ) stated in Lemma 1. Although lK(y, θ)
might not be convex in θ or y, these properties ensure that
strong (Kantorovich) duality holds for the inner problem of
WRO-IMOP.

Next, we will discuss how to incorporate the explicit form
of lK(y, θ) into the constraints of (3). For each i ∈ [N ],
constraints in (3) is equivalent to: ∀ỹ ∈ Y ,

‖ỹ − xk‖22 − vN+1 · ‖ỹ − yi‖2 − vi ≤Mzik,∑
k∈[K]

zik = K − 1, (4)

where the additional constraint
∑
k∈[K] zik = K−1, is im-

posed to ensure that ‖ỹ−xk‖22−vi−vN+1 · ‖ỹ−yi‖2 ≤ 0
for at least one k ∈ [K]. M is an uniform upper bound for
the left-hand side of the first constraint in (4). An appropriate
M could be (B +R)2, since ∀i ∈ [N ], k ∈ [K],

‖ỹ − xk‖22 − vN+1 · ‖ỹ − yi‖2 − vi ≤ ‖ỹ − xk‖22
≤ (B +R)2.

One can verify that (4) is indeed equivalent to the first set
of constraints in (3) without much effort.

Remark 2. We admit that the semi-infinite reformulation in
Theorem 1 might still be valid if some assumption is not sat-
isfied. Consider, for example, one of the objective functions
is known to be strongly convex and the decision makers al-
ways has a positive preference for it.

Algorithm and Analysis of Convergence
Theorem 1 shows that the Wasserstein distributionally in-
verse multiobjective program WRO-IMOP is equivalent to
the semi-infinite program (3). Now, any existing method for
solving the general semi-infinite program can be employed
to solve (3). In particular, we are interested in exchange
methods (Hettich and Kortanek 1993; Joachims, Finley, and
Yu 2009), since our algorithms inherits the spirit of these
methods when applied to solve the minmax problem. The
basic idea is to approximate the infinite set of constraints in
(3) with a sequence of finite sets of constraints. Iteratively,
new constraints are added to the previous set of constraints
by solving a maximum constraint violation problem. This is
repeated until certain stopping criterion is satisfied.

Next, we discuss how to construct the finite problem.
Let Ỹi = {ỹi1, · · · , ỹiJi} ⊆ Y , ∀i ∈ [N ] be a collection

of finite subsets of Y , where each subset has Ji samples.
Then, the associated finite problem of (3) is

min
θ,v

ε · vN+1 + 1
N

∑
i∈[N ]

vi,

s.t. lK(ỹij , θ)− vN+1 · ‖ỹij − yi‖2 ≤ vi,∀j ∈ [Ji], i ∈ [N ],

θ ∈ Θ, v ∈ V .
(5)

By the same arguments for the transformation from con-
straints in (3) to those in (4), constraints in (5) are equivalent
to

‖ỹij − xk‖22 − vN+1 · ‖ỹij − yi‖2 − vi ≤Mzijk,∑
k∈[K]

zijk = K − 1, ∀i ∈ [N ], j ∈ [Ji].
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Algorithm 1 Wasserstein Distributionally Robust IMOP

1: Input: noisy decisions {yi}i∈[N ], weights {wk}k∈K ,
radius ε of Wasserstein ball, and stopping tolerance δ

2: Initialize Ỹi ← ∅, ∀i ∈ [N ]
3: repeat
4: solve (6) with Ỹi, ∀i ∈ [N ], and return an optimal

solution (θ̂, v̂)
5: for i = 1, . . . , N do
6: solve maximum constraint violation problem (7)
7: if CVi > 0 then let Ỹi ← Ỹi ∪ {ỹi} end if
8: end for
9: until maxi∈[N ] CVi ≤ δ

10: Output: a δ-optimal solution θ̂N of (3)

Using the above transformation, (5) can be further cast into
the following finite problem with finitely many constraints:

min
θ,v,xk,zijk

ε · vN+1 + 1
N

∑
i∈[N ]

vi,

s.t. ‖ỹij − xk‖22 − vN+1 · ‖ỹij − yi‖2 − vi ≤Mzijk,

xk ∈ S(wk, θ),∑
k∈[K]

zijk = K − 1,

θ ∈ Θ, v ∈ V , zijk ∈ {0, 1}, ∀i ∈ [N ], j ∈ [Ji], k ∈ [K].
(6)

At each iteration, new constraints are determined to add to
the previous set of constraints in (6) by solving the following
Maximum constraint violation problem: ∀i ∈ [N ],

CVi = max
ỹ∈Y

lK(ỹ, θ̂)− v̂N+1 · ‖ỹ − yi‖2 − v̂i. (7)

Denote ỹi the optimal solution of (7) for each i ∈ [N ].
Whenever we find that CVi > 0, we append ỹi to Ỹi. As
a result, we tighten our approximation for the infinite set
of constraints in (3) by imposing the additional constraint
lK(ỹi, θ̂)− v̂N+1 · ‖ỹi−yi‖2− v̂i ≤ 0 in the next iteration.

With the above assumptions and analysis, we now present
our method to solve WRO-IMOP in Algorithm 1. We also
illustrate the general scheme of Algorithm 1 in Figure 1.

Remark 3. In Step 6, the maximum constraint violation
problem can be solved exactly and efficiently by invoking
solver such as Baron (Sahinidis 1996). Nevertheless, it can
also be solved approximately by decomposing into K sub-
problems, each of which is a possibly nonconvex program
when v̂N+1 < 1. Nevertheless, we note that this nonconvex
problem is a quadratically constrained quadratic program
(QCQP) with a single constraint, and thus can be solved
exactly and efficiently through the so-called S-procedure
(Boyd and Vandenberghe 2004; Pólik and Terlaky 2007).
Additionally, K different subproblems can be solved inde-
pendently and in parallel, allowing a linear speedup of Step
6.

For completeness, we give the convergence proof of Al-
gorithm 1 in the following theorem.

Semi-infinite 
problem (3)

Finite problem (6)

Maximum constraint 
violation problem (7)Add constraints

Figure 1: General scheme of Algorithm 1.

Theorem 2. Under Assumptions 1 - 3, Algorithm 1 con-
verges within (GR0

δ + 1)nθ+N+1 iterations. Here,

G = (1 + 2R +
4(B +R)κ

λ
),

R0 =

√
D2 +N

(
(m+ 1)V2 −mV1

)2
+

(
V2 − V1

ε

)2

.

Remark 4. The proof of convergence is in spirit similar
to that of the cutting plane methods for robust optimization
and distributionally robust optimization (Mutapcic and Boyd
2009; Luo and Mehrotra 2017). In practice, we mention that
the actual number of iterations typically required is much
smaller than (GR0

δ + 1)nθ+N+1 as can be seen in the exper-
iments.

Variants of Algorithm 1 Note that we add ỹi to Ỹi when-
ever Vi > 0 for each i ∈ [N ]. Nevertheless, from the con-
vergence proof, it suffices to add only one ỹi corresponding
to the biggest Vi that are positive. Consequently, we dramat-
ically ease the computational burden in each iteration.

Performance Guarantees
One of the main goals of statistical analysis of learning al-
gorithms is to understand how the excess risk of a data de-
pendent decision rule output by the empirical risk minimiza-
tion depends on the sample size of the observations and on
the ”complexity” of the class Θ. Next, we provide a perfor-
mance guarantee for WRO-IMOP by showing below that the
excess risk of the estimator obtained by solving WRO-IMOP
would converge sub-linearly to zero.
Theorem 3 (Excess risk bound). Define the minimax risk
estimator

θ∗ ∈ arg min
θ∈Θ

{
sup

Q∈Bε(P )

Ey∼Q [lK(y, θ)]

}
,

where P is the distribution from which the observations
{yi}i∈[N ] are drawn, and the minimax empirical risk esti-
mator

θ̂N ∈ arg min
θ∈Θ

{
sup

Q∈Bε(P̂N )

Ey∼Q [lK(y, θ)]

}
.

and P̂N is the empirical distribution of the observations
{yi}i∈[N ].

Under Assumptions 1 - 3, ∀0 < δ < 1, the following
holds with probability at least 1− δ:

sup
Q∈Bε(P )

Ey∼Q

[
lK(y, θ̂N )

]
− sup
Q∈Bε(P )

Ey∼Q [lK(y, θ∗)]

≤ H√
N

+
3(B+R)2

√
log(2/δ)√

2N
,

5918



where H is a constant depending only on D,B,R, nθ, κ:

H = 96

(
3D
√
nθ

κ
+ 2R

)
(B +R).

Remark 5 (Performance Guarantees).
• The bounded support assumption for Y of the noisy deci-

sions is restrictive but seems to be unavoidable for any a
priori guarantees of the type described in Theorem 3. In
future work, we will investigate whether we could obtain
other types of performace guarantees while relaxing Py to
be light-tailed.

• Analogous to the convergence rate of empirical risk min-
imization when ε = 0, we get an O(1/

√
N) excess risk

bound. However, the obtained excess risk bound does not
depend on the radius ε of the Wasserstein ambiguity set.
Similar to Lee and Raginsky (2018), this phenomenon is
due to the fact that we are using the Lipschitz continuity
of the loss function lK(y, θ).

• The right terms in the excess risk bound inequality in-
crease as either D,B,R, nθ grow or κ shrinks, indicat-
ing that the learnability of the decision making model de-
creases. This is consistent with our observation that un-
certainties in the model, data, and parameter space will
enhance the difficulty of learning the parameters through
inverse multiobjective optimization in general.

Experiments
In this section, we provide an MQP and a portfolio opti-
mization problem to illustrate the performance of Algorithm
1. The MISOCPs for IMOP are solved by Gurobi. All the al-
gorithms are programmed with Julia (Bezanson et al. 2017).

Sythetic Data: Learning the Objective Functions of
an MQP
Consider the following multiobjective quadratic optimiza-
tion problem.

min
x∈R2

+

(
f1(x) = 1

2x
TQ1x + cT1 x

f2(x) = 1
2x

TQ2x + cT2 x

)
s.t. Ax ≤ b,

where the parameters of the two objective functions are

Q1 =

[
1 0
0 2

]
, c1 =

[
−0.5
−1

]
, Q2 =

[
2 0
0 1

]
, c2 =

[
−5
−2.5

]
,

and the parameters for the feasible region are

A =

[
1 0
0 1

]
,b =

[
3
3

]
.

We seek to learn c1 and c2 in this experiment. The data
is generated as follows. We first compute Pareto optimal
solutions {xi}i∈[N ] by solving WP with weight samples
{wi}i∈[N ] that are uniformly chosen from W2. Next, the
noisy decision yi is obtained by adding noise to xi for each
i ∈ [N ]. More precisely, yi = xi + εi, where each element

of εi has a uniform distribution supporting on [−0.25, 0.25]
with mean 0 for all i ∈ [N ]. We assume that c1 and c2 are
within [−6, 0]2, and the first elements for them are given.
K = 6 weights from W2 are evenly sampled. The radius
ε of the Wasserstein ambiguity set is selected from the set
{10−4, 10−3, 10−2, 10−1, 1}. We report below the results
with lowest prediction error across all candidate radii. The
stopping criteria δ is set to be 0.1. Then, we implement Al-
gorithm 1 with different N .

To illustrate the performance of the algorithm in a statisti-
cal way, we run 10 repetitions of the experiments. Figure 2a
shows the maximum constraint violation maxi∈[N ] Vi ver-
sus iteration for one repetition when N = 10. As can be
seen in the figure, the algorithm converges very fast. In Fig-
ure 2b, we report the prediction errors averaged over 10 rep-
etitions with both the robust and non-robust approaches for
different N . Here, we use an independent validation set that
consists of 105 noisy decisions generated in the same way as
the training data to compute the prediction error. The exper-
iments suggest that the Wasserstein distributionally robust
approach can significantly reduce the prediction error, espe-
cially when N is small, i.e., we have a very limited number
of observations.

To further illustrate the performance of Algorithm 1, we
randomly pick one repetition and plot the estimated Pareto
optimal sets using both approaches in Figure 2c. We can see
clearly that the estimated Pareto optimal set by the distribu-
tionally robust approach is closer to the real Pareto optimal
set than that of the non-robust approach. Also, one could ex-
pect that the estimated Pareto optimal sets will get closer and
closer to the true one as K and N increase.

Real World Case Study: Learning the Expected
Returns
We consider a portfolio selection problem, where investors
need to determine the fraction of their wealth to invest in
each security in order to maximize the total return and min-
imize the total risk. The classical Markovitz mean-variance
portfolio selection (Markowitz 1952) in the following is fre-
quently employed by analysts.

min

(
f1(x) = −rTx
f2(x) = xTQx

)
s.t. 0 ≤ xi ≤ bi, ∀i ∈ [n],

n∑
i=1

xi = 1,

where r ∈ Rn+ is a vector of individual security expected
returns, Q ∈ Rn×n is the covariance matrix of securities
returns, x is a portfolio specifying the proportions of capital
to be invested in the different securities, and bi is an upper
bound on the proportion of security i, ∀i ∈ [n].

Dataset: The dataset is derived from monthly total returns
of 30 stocks from a blue-chip index which tracks the perfor-
mance of top 30 stocks in the market when the total invest-
ment universe consists of thousands of assets. The true ex-
pected returns and true return covariance matrix for the first
8 securities are given in the supplementary material. Sup-
pose a learner seeks to learn the expected return for the first
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Figure 2: Learning the objective functions of an MQP. (a) Maximum constraint violation versus iteration for N = 15. (b)
Prediction errors for two methods with different N . Results are averaged over 10 repetitions. (c) The Pareto optimal set and
estimated Pareto optimal sets by using IMOP and WRO-IMOP with N = 10.
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Figure 3: Maximum constraint violation versus iteration.

four securities that an analyst uses based on 20 noisy deci-
sions from investors that the analyst serves.

The noisy decision for each investor i ∈ [20] is generated
as follows. We set each upper bound for the proportion of the
8 securities to bi = 1.0, ∀i ∈ [8]. Then, we uniformly sample
20 weights and use them to generate optimal portfolios on
the efficient frontier that is plot in Figure 4. Subsequently,
each component of these portfolios is rounded to the nearest
thousandth, which can be seen as measurement error. The
radius ε of the Wasserstein ambiguity set is selected from
the set {10−4, 10−3, 10−2, 10−1, 1}. The stopping criteria δ
is set to be 0.1.

Figure 3 shows that our algorithm converges in 8 itera-
tions. We also plot the estimated efficient frontiers using
both the robust and non-robust approaches with K = 6 in
Figure 4. We can see that the estimated efficient frontier
of the Wasserstein distributionally robust approach is closer
to the real one than the non-robust approach, showing that
our method in this paper allows for a lower prediction error
when a limited number of decisions observed are accessible.
Note that the first function is not strongly convex. The exper-
iment results suggest that our reformulation is generalizable
to a broader class of problems.

Conclusions and Future Work
In this paper, we present a novel Wasserstein distributionally
robust framework for constructing inverse multiobjective
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Figure 4: The red line indicates the real efficient frontier.
The yellow dots indicates the estimated efficient frontier by
solving WRO-IMOP. The blue dots indicates the estimated
efficient frontier using the non-robust approach.

optimization estimator. We show that the proposed frame-
work has statistical performance guarantees, and the excess
risk of the distributionally robust inverse multiobjective opti-
mization estimator would converge to zero with a sub-linear
rate as the number of observed decisions approaches to infin-
ity. To solve the resulting minmax problem, we reformulate
it as a semi-infinite program and develop a cutting-plane al-
gorithm which converges to an approximate solution in finite
iterations. We demonstrate the effectiveness of our method
on both a multiobjective quadratic program and a portfolio
optimization problem.

We note that the technical assumptions of strong convex-
ity of the objective functions in DMP and bounded support
of the observations might not be fully satisfied in many real
world scenarios. It remains to be seen what will happen if we
relax these assumptions. Without them, these formulations
and algorithm are still valid but performances are unlikely to
be completely guaranteed. For example, we can only guaran-
tee that the optimal objective of the Semi-infinite reformula-
tion in Theorem 1 provides an upper bound for WRO-IMOP.
In future, we will work on extending the current framework
and analysis to scenarios such as when DMP has at least
one strongly convex objective function or data that follows
light-tailed distribution.
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