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Abstract

Generative adversarial networks (GANs) are quickly becom-
ing a ubiquitous approach to procedurally generating video
game levels. While GAN generated levels are stylistically
similar to human-authored examples, human designers often
want to explore the generative design space of GANs to ex-
tract interesting levels. However, human designers find latent
vectors opaque and would rather explore along dimensions
the designer specifies, such as number of enemies or obsta-
cles. We propose using state-of-the-art quality diversity al-
gorithms designed to optimize continuous spaces, i.e. MAP-
Elites with a directional variation operator and Covariance
Matrix Adaptation MAP-Elites, to efficiently explore the la-
tent space of a GAN to extract levels that vary across a set
of specified gameplay measures. In the benchmark domain of
Super Mario Bros, we demonstrate how designers may spec-
ify gameplay measures to our system and extract high-quality
(playable) levels with a diverse range of level mechanics,
while still maintaining stylistic similarity to human authored
examples. An online user study shows how the different me-
chanics of the automatically generated levels affect subjective
ratings of their perceived difficulty and appearance.

Introduction
Algorithms that procedurally generate content often need to
adhere to a desired style or aesthetics. For example, genera-
tive adversarial networks (GANs) (Goodfellow et al. 2014;
Karras et al. 2018) generate realistic looking images after
training on a large dataset of human specified examples. At
the same time, for these algorithms to be useful in practice,
they need to enable generation of a diverse range of content,
across a range of attributes specified by a human designer.
For a GAN, this requires either sifting through thousands of
randomly generated examples, which is cost-prohibitive, or
controlling the GAN output by “steering” it in latent space
towards a desired distribution, which is a challenging prob-
lem (Jahanian, Chai, and Isola 2020).

When desired attributes can be formulated as an objective,
one approach is to explore the latent space using derivative-
free optimization algorithms such as CMA-ES (Hansen
2016). Bontrager et al. (2018) named this approach latent
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Figure 1: Mario scenes returned by the CMA-ME quality di-
versity algorithm, as they cover the designer-specified space
of two level mechanics: number of enemies and number of
tiles above a given height. The color shows the percentage
of the level completed by an A* agent, with red indicating
full completion.

variable evolution (LVE). Later, Volz et al. (2018) pro-
posed using GANs to automatically author Mario levels and
demonstrated how LVE can extract level scenes with specific
attributes from latent space.

The LVE approach is limited to attributes that are eas-
ily specifiable as an objective. A human designer may not
know exactly what kind of content they want, but instead
have some intuition on how they would vary content when
exploring GAN generated levels. For example, the designer
may want to have levels that are of varying difficulty; while
it is hard to specify difficulty as an objective, a designer
can choose from automatically generated levels of different
number of enemies or obstacles.

We call the above problem latent space illumination
(LSI). Formally, given an objective function and additional
functions which measure different aspects of gameplay, we
want to extract a collection of game scenes that collec-
tively satisfy all output combinations of the gameplay mea-
sures. For each output combination, the representative scene
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should maximize the objective function.
Quality diversity (QD) algorithms (Pugh, Soros, and Stan-

ley 2016) are a class of algorithms designed to discover a
diverse range of high-quality solutions with several special-
ized variants designed to explore continuous search spaces.

Our goal in this paper is twofold: First, we wish to find
out whether QD algorithms are effective in illuminating the
latent space of a GAN, in order to generate high-quality level
scenes with a diverse range of desired level characteristics,
while still maintaining stylistic similarity to human-authored
examples. Second, we want to compare the state-of-the-art
QD algorithms in this domain and provide quantitative and
qualitative results that illustrate their performance.

A large-scale experiment shows that the QD algorithms
MAP-Elites, MAP-Elites (line) and CMA-ME significantly
outperform CMA-ES and random search in finding a di-
verse range of high-quality scenes.1 Additionally, CMA-ME
outperformed the other tested algorithms in terms of diver-
sity and quality of the returned scenes. We show gener-
ated scenes, which exhibit an exciting range of mechanics
and aesthetics (Fig. 1). A user study shows that the diverse
range of level mechanics translates to different subjective
ratings of each scenes’ difficulty and appearance, highlight-
ing the promise of quality diversity algorithms in generating
diverse, high-quality content by searching the latent space of
generative adversarial networks.

Background
Procedural Content Generation. Procedural content gen-
eration (PCG) refers to creating game content algorithmi-
cally, with limited human input (Shaker, Togelius, and Nel-
son 2016). Game content can be any asset (e.g., game me-
chanics, rules, dialog, models, etc) required to realize the
game for its players. Pioneering work in PCG dates back to
the 1980s to address memory limitations for storing large
video game levels on computers. The growing interest in re-
alistic graphics in the 1990’s necessitated the development
of procedural modelling algorithms (Smelik et al. 2014) to
generate complex models such as trees and terrain to ease
the burden on graphic artists. Much PCG research in both
industry and academia has focused on generating playable
levels. In general, the problem of generating content that
fulfils certain constraints can be approached by evolution-
ary solutions (Togelius et al. 2011) or constraint satisfaction
methods (Smith and Mateas 2011). An emerging area of re-
search is PCG via machine learning (PCGML) which aims
to leverage recent advancements in machine learning (ML)
to generate new content by treating existing human authored
content as training data (Summerville et al. 2018). Previous
work in PCGML has enabled automatic generation of video
game levels for the Super Mario Bros. using LSTMs (Sum-
merville and Mateas 2016), Markov Chains (Snodgrass and
Ontañón 2014) and probabilistic graphical models (Guzdial
and Riedl 2016).

Two recent advancements in PCGML are studies by Volz
et al. (2018) and Giacomello, Lanzi, and Loiacono (2018)

1The source code of the algorithms is available at https://github.
com/icaros-usc/MarioGAN-LSI.

who independently demonstrated the successful applica-
tion of generative adversarial networks (GANs) to gener-
ate playable video game levels in an unsupervised way
from existing video game level corpora. Volz et al. (2018)
adapted the concept of latent variable evolution (LVE) (Bon-
trager et al. 2018) to extract Mario scenes from the latent
space of a GAN that targeted specific gameplay features.
That work searched the latent space of the GAN utilizing
the popular Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) (Hansen and Ostermeier 2001) for latent
variable inputs that would make the GAN produce level
scenes with desired properties. Scenes with targeted game-
play features were obtained through carefully crafted single-
objective functions, named fitness functions, that carefully
balanced weighted distance from desired gameplay proper-
ties on the generated scenes.
Quality Diversity. While the approach employed by Volz
et al. (2018) demonstrated a promising synergy between
generative models and evolutionary computation for PCG,
other works in PCG displayed the potential of quality di-
versity (QD) to generate meaningfully diverse video game
content (Gravina et al. 2019). Unlike traditional optimiza-
tion methods, QD algorithms aim to generate high quality
solutions that differ across specified attributes. Consider the
example of generating Mario levels with specific proper-
ties. Instead of incorporating the number of enemies or floor
tiles into the fitness function, a QD algorithm can treat these
measures as attributes. The QD algorithm still has the ob-
jective of finding solvable Mario levels, but must find lev-
els that contain all combinations of attributes (number of
enemies, percentage of floor coverage). Mouret and Clune
(2015) coined the term illumination algorithms for quality
diversity (QD) algorithms that create an organized mapping
between solutions and their associated attributes, which are
called behavioral characteristics (BCs). After the QD algo-
rithm generates an organized palette of scenes, stitching al-
gorithms can combine several scenes together to form a co-
hesive level (Green et al. 2020).

Developed concurrently with our approach is
CPPN2GAN (Schrum, Volz, and Risi 2020), which
generates full levels for both Super Mario Bros and Zelda.
The paper proposes optimizing the latent space of a GAN
with a special type of encoding, a compositional pattern
producing network (CPPN, (Stanley 2007)), which captures
patterns with regularities. The paper introduces a type of
latent space illumination with a vanilla version of the quality
diversity algorithm MAP-Elites (Mouret and Clune 2015),
described in the next section. It focuses on simultaneously
searching several latent vectors at once to generate a full
level created by “stiching” together GAN-generated scenes.
Instead, our focus is on assessing the performance of QD
algorithms in generating a variety of scenes with desired
characteristics, and in measuring modern MAP-Elites
variants that excel at the exploration of continuous domains.
Our work is also related with conditional generative mod-
els (Hald et al. 2020; Snodgrass and Ontañón 2014; Ping
and Dingli 2020). While it is possible to condition GANs
on desired BCs, there is no guarantee that the generated
scenes will have the properties specified by the conditioning
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input. Additionally, conditional generative models require
retraining for each new set of BCs a human designer wishes
to explore, where LSI can search the latent space of the
same generative model without retraining.
MAP-Elites. MAP-Elites (Mouret and Clune 2015) is a QD
algorithm that searches along a set of explicitly defined
attributes called behavior characteristics (BCs). These at-
tributes collectively form a Cartesian space named the be-
havior space, which is tessellated into uniformly spaced grid
cells. MAP-Elites maintains the highest performing solution
for each cell in behavior space (an elite) with the product
of the algorithm being a diverse archive of high performing
solutions. The archive is initially populated with randomly
sampled solutions. The algorithm then generates new so-
lutions by selecting elites from the archive at random and
perturbing each elite with small variations. The objective
of the algorithm is both to expand the archive, maximizing
the number of filled cells, and to maximize the quality of
the elite within each cell. How the behavior space is tessel-
lated is the focus of a variety of recent algorithms (Smith,
Tokarchuk, and Wiggins 2016; Fontaine et al. 2019).
MAP-Elites (line). A common characteristic of many tasks
is that high-performing solutions that exhibit diverse behav-
iors share significant similarities in their “genotype”, that
is in their search space parameters. Therefore, Vassiliades
and Mouret (2018) propose a variational operator, called
“Iso+LineDD” which captures correlations between elites.
When generating a new solution, in addition to applying a
random variation to an existing elite, the operator adds a sec-
ond random variation directed towards a second elite, essen-
tially nudging the variation distribution towards other high
performing solutions. We denote MAP-Elites with this op-
erator ME (line).
CMA-ES. The Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) is a second-order derivative-free op-
timizer for single-objective optimization of continuous
spaces (Hansen 2016). The algorithm belongs to a family of
algorithms named evolution strategies (ES), which special-
ize in optimizing continuous spaces by sampling a popula-
tion of solutions, called a generation of solutions, and grad-
ually moving the population towards areas of highest fitness.
CMA-ES models the sampling distribution of the population
as a multivariate normal distribution. The algorithm adjusts
its sampling distribution by ranking solutions based on their
fitness and estimating a new covariance matrix that maxi-
mizes the likelihood of future successful search steps.
CMA-ME. The Covariance Matrix Adaptation MAP-Elites
(CMA-ME) (Fontaine et al. 2020) is a recent hybrid algo-
rithm which incorporates CMA-ES into MAP-Elites. The al-
gorithm improves the efficiency in which new archive cells
are discovered and the overall quality of elites within the
archive. CMA-ME maintains a number of individual CMA-
ES-like instances, named emitters. We use a specific type
of emitter named improvement emitter, which was shown to
outperform MAP-Elites and ME (line) in the strategic card
game Hearthstone (Fontaine et al. 2020). Improvement emit-
ters rank solutions by prioritizing those that fill previously
undiscovered cells in the archive. Solutions that belong to
existing cells in the map are subsequently ranked based

on the improvement in fitness over existing cells. This en-
ables improvement emitters to dynamically adapt their goals
based on feedback from how the archive changes.

Mario Scene Evaluation
We used the Mario AI Framework2 to evaluate each of the
generated scenes. We evaluate each scene by treating it as a
playable level; actual levels are longer and can be generated
by “stiching” together multiple scenes (Green et al. 2020).

Following previous work (Volz et al. 2018; Awiszus,
Schubert, and Rosenhahn 2020), we approximate playabil-
ity of a scene by how far through the scene A* reaches;
Specifically, we define as “fitness” of a scene the amount
of progress by an AI agent playing the scene (percentage of
completion in the horizontal direction). We use the A* agent
that won the 2009 Mario competition.3 We additionally de-
fine three different types of behavioral characteristics (BCs),
which allow for a diverse set of level mechanics.4

Representation-Based. We define a set of BCs that capture
stylistic aspects of the Mario scene’s representation, based
on the distribution of tiles. These BCs do not depend on the
agent’s playthrough:

1. Sky tiles: These are game objects, e.g., blocks, ques-
tion blocks, coins, that are above a certain height value.
A large number implies that there are many game ele-
ments above ground, and the player would need to jump
to higher tiles.

2. Number of enemies: A larger number of enemies gener-
ally results in higher difficulty and requires the player to
perform more jumps to navigate throughout the scene.

Agent-Based. We incorporate the agent-based BCs of previ-
ous work (Khalifa et al. 2018), which are computed after one
playthrough by the agent. The BCs are binary, representing
whether the playthrough satisfied a given condition. This re-
sults in an 8-dimensional BC-space. The 8 conditions are:
(1) performing a jump, (2) performing a high jump (height
of jump is above a certain threshold), (3) performing a long
jump (horizontal distance is above a certain threshold), (4)
stomping on an enemy, (5) killing an enemy using a koopa
shell, (6) having an enemy die because of falling out of the
scene, (7) collecting a mushroom, and (8) collecting a coin.
KL-Divergence. A common goal in procedural content
generation is to generate scenes with different degrees of
stylistic similarity to human-designed examples. We use the
tile pattern Kullback–Leibler divergence metric (Lucas and
Volz 2019) to measure the structural similarity between two
Mario scenes. We picked two stylistically different human-
designed scenes from the Mario AI Framework, shown in
Fig. 2, and we set the behavior characteristics to be the tile
pattern KL-divergence between the ground truth scene and
generated scene, resulting in a 2-dimensional BC space.

2https://github.com/amidos2006/Mario-AI-Framework
3https://www.youtube.com/watch?v=DlkMs4ZHHr8
4One could also combine the BCs from the three different types,

e.g., have an archive with KL-divergence and number of enemies.
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Figure 2: Ground truth scenes 1 (left) and 2 (right) for KL-divergence metric.

Experiments
Our experiments compare the performance of random
search, CMA-ES, MAP-Elites, MAP-Elites (line) and
CMA-ME on the problem of latent space illumination.

We ran each of the 5 algorithms for 20 trials, 10,000 eval-
uations each, for each of the three different BC combina-
tions. This resulted in a total of 300 trials. We ran all trials
in parallel in a university cluster with multiple nodes run-
ning on dual Intel Xeon L5520 processors. Each trial lasted
approximately 7 hours.
GAN Model. We use a deep convolutional GAN (DCGAN)
as in the study by Volz et al. (2018), trained with the WGAN
algorithm (Martin Arjovsky and Bottou 2017). Following
their implementation, we encode the training levels by rep-
resenting each of the 17 different tile types by a distinct inte-
ger, which is converted to an one-hot encoded vector, before
passed as input to the discriminator. We pad each training
level to a 64 × 64 matrix, and since there are 17 channels,
one for each possible tile type, each input scene to the dis-
criminator is 17×64×64. For the generator, we set the size
of the latent vector to be 32, resulting in a 32-dimensional
continuous search space. We refer the reader to the study
by Volz et al. (2018) for the details of the architecture.

We train the DCGAN with RMSprop for 5000 iterations,
a learning rate of 5e−5 and a batch size of 32. The discrimi-
nator iterates 5 times before the generator iterates once. We
used for training 15 original levels from the Mario AI com-
petition framework.5 Fig. 2 shows scenes from two levels of
the training data.

To evaluate the different search algorithms, we input the
latent vector of size 32 to the generator, and we crop the
17 × 64 × 64 output to a 17 × 16 × 56 playable level for
evaluation.
Search Parameters and Tuning. We tuned each algorithm
based on how well it covered the representation-based be-
havior space and we then used the same parameters for
all three behavioral characteristics. We set population size
λ = 17 and mutation power σ = 0.5 for CMA-ES. A sin-
gle run of CMA-ME deploys 5 improvement emitters with
λ = 37. We set the mutation power for CMA-ME and
MAP-Elites σ = 0.2. For ME (line), we set the isotropic
mutation σ1 = 0.02 and the mutation for the directional dis-
tribution σ2 = 0.2. The initial population for MAP-Elites
and ME (line) was 100.

In random search, we generate solutions by sampling di-
rectly the GAN’s latent space from the same distribution that

5https://github.com/amidos2006/Mario-AI-Framework/tree/
master/levels/original

we used to train the generator network: a normal distribu-
tion with zero mean and variance equal to 1. We used the
same method to generate solutions for the initial population
of MAP-Elites and ME (line).
Map Sizes. We performed an initial run of the experiment
and we observed the maximum and minimum of values of
the behavioral characteristics covered by each algorithm.
This provided a rough estimate of the range of each BC.

For the representation-based BCs, we set the range of sky
tiles to [0,150] and the number of enemies to [0,25]. The
map size was 151 × 26, where each cell corresponded to
an integer value of the BC. The eight agent-based binary
BCs form an eight-dimensional map of 28 = 256 cells.
Finally, we set the KL-divergence ranges to [0, 4.5] for
both groundtruth levels, and the resolution of the map was
60× 60.
Metrics. We evaluate all five algorithms, random search,
CMA-ES, MAP-Elites, ME (line) and CMA-ME, with re-
spect to the diversity and quality of solutions returned. For
comparison purposes, we assign the solutions by CMA-ES
and random search to a grid location on what their BC would
have been and populate a pseudo-archive.
Percentage of valid cells: This is the percentage of scenes
in the archive returned by the algorithm that are completed
from start to end by the A* agent, which is equivalent to
having a fitness of 1.0. This is an indication of the quality of
the solutions found.
Coverage: This is the percentage of cells in the archive pro-
duced by an algorithm, computed as the number of cells
divided by the total map size. The measure indicates how
much of the behavior space is covered.
QD-Score: The QD-Score metric was proposed by Pugh
et al. (2015) as the sum of fitness values of all elites in the
archive and has become a standard QD performance mea-
sure. The measure distills both the diversity and quality of
elites in the archive into a single value.

Results
Performance. Table 1 summarizes the performance of each
algorithm. Fig. 3 shows improvement in QD-score over eval-
uations for each algorithm, with 95% confidence intervals.

First, we observe that all QD algorithms, i.e., MAP-Elites,
ME (line) and CMA-ME outperform CMA-ES and random
search in the representation-based and KL-divergence BCs.
This is expected, since CMA-ES optimizes only for one ob-
jective, the playability of the scenes, rather than exploring
a diverge range of level behaviors. Random search works
poorly; the reason is that we sample from the same distri-
bution that we used for training the GAN, thus the gener-
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Representation-Based BCs Agent-Based BCs KL-Divergence
Algorithm Valid / All Coverage Valid / Found QD-Score Valid / All Coverage Valid / Found QD-Score Valid / All Coverage Valid / Found QD-Score

Random 8.35% 11.1% 75.3% 385.1 7.09% 8.9% 79.7% 20.2 5.10% 12.5% 40.8% 331.5
CMA-ES 7.44% 8.0% 93.0% 308.6 7.43% 8.3% 89.6% 19.8 4.11% 7.5% 54.8% 210.6
ME 15.15% 19.4% 78.1% 692.5 7.66% 8.8% 87.0% 20.4 9.98% 15.5% 64.4% 485.6
ME (line) 15.31% 18.9% 81.0% 682.7 7.06% 8.2% 86.1% 18.9 10.18% 15.4% 66.1% 488.0
CMA-ME 16.35% 21.5% 76.1% 776.8 7.90% 9.4% 84.0% 21.6 11.08% 17.4% 63.7% 551.3

Table 1: Results: Average percentage of cells with fitness 1.0 (Valid / All), percentage of cells found (Coverage), percentage of
cells found with fitness 1.0 (Valid / Found), and QD-score after 10,000 evaluations.

(a) Representation-based BCs (b) Agent-based BCs (c) KL-divergence

Figure 3: QD-Scores over time for each behavioral characteristic.

Figure 4: Archive for the KL-divergence behavioral characteristic metric.

ated solutions follow the tile distribution of the training data,
which covers only a small portion of the behavior space.

Second, CMA-ME outperforms the other QD algo-
rithms in the representation-based and KL-divergence BCs.
This matches previous work (Fontaine et al. 2020), where
CMA-ME outperformed these algorithms in the Hearthstone
strategic game domain. We attribute this to the fact that
CMA-ME benefits by sampling from a dynamically chang-
ing Gaussian (as in CMA-ES) rather than a fixed distribu-
tion shape. Fig. 4 shows three example archives of elites for
CMA-ME, MAP-Elites and CMA-ES, illustrating the ability
of CMA-ME to cover larger areas of the map.

We observe that ME (line) performs similarly to
MAP-Elites. ME (line) relies on the assumption that differ-
ent elites in the archive have similar search space parame-
ters. We estimated the similarity of the elite hypervolume
as defined in Vassiliades and Mouret (2018), and found low
mean values for the representation-based (0.60) and the KL-
divergence (0.58) maps, which explains the lack of improve-
ment from the operator in this domain.

On the other hand, in the 8 binary agent-based BCs all al-
gorithms perform similarly to random search. All of the al-
gorithms performed poorly on these BCs, where each algo-
rithm discovers less than 10% of possible mechanic combi-
nations. The main reason lies in the way the A* agent plays
the levels; the agent is designed to reach the right edge of
the screen as fast as possible, without caring much about
its score. This forces the agent to avoid triggering gameplay
mechanics. For example, in Fig. 6(right) the agent rushes
to the end without collecting the coins in the beginning of
the level. The same holds for the training data; the human-
authored levels covered only 20 out of the 28 = 256 cells of
the map, and there was no training level where the agent col-
lected a mushroom or a coin. This makes the task of finding
levels that trigger these BCs even more challenging.
Generated Levels. We demonstrate generated levels by the
CMA-ME algorithm that illustrate its ability to generate a
diverse range of high-quality solutions.

Figure 5 shows four generated scenes from an archive
generated by a single run of CMA-ME using the
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Figure 5: Generated scenes using CMA-ME for small and large values of sky tiles and number of enemies.

Min Number of Mechanics Max Number of Mechanics

Figure 6: Playable scenes with minimum (left) and maximum (right) sum value (6) of the 8 binary agent-based BCs.

Large KL-1

Small KL-1

Small KL-2 Large KL-2

Figure 7: Generated scenes using CMA-ME for small and large values of KL-divergence to each of the two groundtruth scenes.

representation-based BCs. We selected the scenes from the
map that had extreme values of the two BCs, the number
of sky tiles and number of enemies. The scenes are signifi-
cantly diverse, with the scene that maximizes each BC being
filled with enemies and having multiple tiles above ground.
Despite the large number of sky tiles at the level in the top-
right, the agent finishes the scene without reaching most of
them. This is a limitation of the representation-based BCs,
which evaluate a scene based on the distribution of tiles and
not on the agent’s playthrough.

We address the above limitation with agent-based BCs.
Fig. 6 shows two scenes generated by CMA-ME that mini-
mize and maximize the sum of the agent-based BC values.
The first scene has 0 value for all BCs and the agent simply
runs a straight path towards the exit, while the second scene
allows the agent to exhibit a variety of behaviors, including
different types of jumps, stomping on an enemy and killing

an enemy with a shell.
Finally, Fig. 7 shows four scenes with small and large KL-

divergence to each of the two groundtruth scenes in Fig. 2.
The scene that is stylistically similar to both groundtruths
(bottom-left) combines ground tiles with gaps that force the
agent to jump. The top left level maximizes divergence with
the first groundtruth scene and minimizes divergence with
the second; this results in the scene not having any ground
tiles. Interestingly, the scene in the top right maximizes KL-
divergence to both groundtruth scene by having tile types
and enemies unseen in any of the groundtruth scenes.

User Studies
We have shown how to automatically generate levels that ex-
hibit a diverse range of desired characteristics. Ultimately,
the mechanical diversity of the generated levels should
translate to perceptual diversity in how human players per-
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ceive the scenes. Our user study is motivated by Sturtevant
et al. (2020), which demonstrates how mechanically similar
levels can greatly vary in difficulty. Therefore, we conducted
two user studies, where we asked users about their percep-
tion of scenes generated with the representation-based BCs
and the KL-divergence BCs generated with CMA-ME.6

Hypotheses.
H1. The perceived difficulty of the generated scenes in-
creases with the number of sky tiles and enemies.
H2. The perceived similarity of the generated scenes relative
to the two groundtruth scenes decreases for larger values of
KL-divergence.
Scene Difficulty. We expect scenes that that have more sky
tiles and larger number of enemies to be perceived as more
challenging by human players. We picked 10 scenes uni-
formly from the representation-based archive, and presented
to the users videos of the playthrough of an AI agent for each
of the scenes in randomized order.

Dependent Measures. We asked participants to rate how
difficult it would be for a human player to complete the
scene on a Likert scale from 1 (very easy) to 7 (very hard).
At the end of the survey, we also asked them to briefly men-
tion the factors affecting their rating.

Subject Allocation. We recruited human participants
through Amazon’s Mechanical Turk service, and took sev-
eral measures to ensure reliability of the results. All partici-
pants had approval rate of over 95% and had completed more
than 50 tasks. We asked users a control question that tested
their attention to the task, and eliminated data associated
with a wrong answer, as well as incomplete data. We only
considered users that had intermediate or higher experience
of playing video games, resulting in 91 samples.

Analysis. We fit a mixed-effects ordinal regression model
to the data, with the number of sky tiles and number of ene-
mies as fixed effects and the participant id as random effect.
We normalized the numbers of sky tiles and enemies so that
their range would be between 0 and 1. We found that both the
number of sky tiles (β = 4.35, t(817) = 11.56, p < 0.001)
and number of enemies (β = 0.94, t(817) = 2.48, p =
0.001) significantly predicted the perceived difficulty of the
levels, supporting H1. The β values indicate that the num-
ber of sky tiles has a stronger effect on the difficulty of the
level, compared to the number of enemies. This is because
the AI agent attempted to complete the level as fast as pos-
sible and it ignored enemies most of the time. Indeed, most
participants reported the frequency and length of jumps as
the main factor affecting their rating.
Similarity to Groundtruth Scenes. We expect scenes with
smaller KL-divergence values to be perceived as more sim-
ilar to the two groundtruth scenes of Fig. 2. In our second
user study, we picked 10 scenes uniformly from the KL-
divergence archive and presented them to participants.

Dependent Measures. We asked participants to rate how
similar they considered the automatically generated scene to
each of the two groundtruth scenes, on a Likert scale from 1

6Images of the selected scenes and videos of their playthrough
by the AI agent are uploaded at: https://icaros-usc.github.io/LSI-
Mario-Level-Generation/.

Figure 8: (Left) KL-divergence values of selected level
scenes from the KL-divergence archive in Fig. 4-left. Each
scene is assigned a unique color in the plot. (Right) Reverse
mean ratings of similarity of the same scenes by participants.
Level scenes that are identical between the two plots have
the same color.

(very different) to 7 (very similar).
Subject Allocation. We recruited human participants

through the Amazon’s Mechanical Turk service and fol-
lowed the same selection process as in the previous study,
resulting in 86 samples.

Analysis. We fit two mixed-effects ordinal regression
models to the data, one for each of the groundtruth lev-
els, with the KL-divergence to that level as fixed effect and
the participant id as random effect. The KL-divergence met-
ric significantly predicted the perceived similarity for both
groundtruth scenes (β1 = −1.24, t(773) = −10.97, p <
0.001 and β2 = −0.40, t(773) = −8.84, p < 0.001), sup-
porting H2. Fig. 8 contrasts the KL-divergence metrics of
the selected scenes with their (reverse) mean ratings by the
participants. While the two plots differ in scale, we see that
the metrics capture well the perceived similarity.

Conclusion
We explored the use of QD algorithms to search the la-
tent space of trained generator networks, to create content
that has a diverse range of desired characteristics, while re-
taining the style of human-authored examples. In particular,
we described an implementation where the QD algorithms
MAP-Elites, MAP-Elites (line) and CMA-ME were used to
search the latent space of a DCGAN trained on level scenes
from Super Mario Bros. In this problem, CMA-ME was su-
perior to other tested algorithms in terms of coverage and
QD-score, indicating that it finds a more diverse and high-
quality set of level scenes.

QD algorithms extract a collection of scenes in a single
run, rather than just one scene returned by optimization-
based methods; their use is thus recommended when a
collection of diverse, high-quality content is desired. We
are excited about extending this work to search the latent
spaces of other generative models, such as variational au-
toencoders (Doersch 2016) and generative pretraining mod-
els (Chen et al. 2020). Finally, we are excited about combin-
ing our approach with intelligent trial and error algorithms
to create personalized levels (González-Duque et al. 2020).

5928



Acknowledgements
We would like to thank Sebastian Risi for his feedback on a
preliminary version of this work.

References
Awiszus, M.; Schubert, F.; and Rosenhahn, B. 2020. TOAD-
GAN: coherent style level generation from a single example.
In Proceedings of the AAAI Conference on Artificial Intel-
ligence and Interactive Digital Entertainment, volume 16,
10–16.

Bontrager, P.; Roy, A.; Togelius, J.; Memon, N.; and Ross,
A. 2018. DeepMasterPrints: Generating masterprints for
dictionary attacks via latent variable evolution. In 2018
IEEE 9th International Conference on Biometrics Theory,
Applications and Systems (BTAS), 1–9. IEEE.

Chen, M.; Radford, A.; Child, R.; Wu, J.; Jun, H.; Dhariwal,
P.; Luan, D.; and Sutskever, I. 2020. Generative Pretrain-
ing from Pixels. In Proceedings of the 37th International
Conference on Machine Learning.

Doersch, C. 2016. Tutorial on variational autoencoders.
arXiv preprint arXiv:1606.05908 .

Fontaine, M. C.; Lee, S.; Soros, L. B.; de Mesentier Silva,
F.; Togelius, J.; and Hoover, A. K. 2019. Mapping Hearth-
stone Deck Spaces through MAP-Elites with Sliding Bound-
aries. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO ’19, 161–169. New York,
NY, USA: ACM. ISBN 978-1-4503-6111-8. doi:10.
1145/3321707.3321794. URL http://doi.acm.org/10.1145/
3321707.3321794.

Fontaine, M. C.; Togelius, J.; Nikolaidis, S.; and Hoover,
A. K. 2020. Covariance Matrix Adaptation for the Rapid
Illumination of Behavior Space. Proceedings of the Genetic
and Evolutionary Computation Conference .

Giacomello, E.; Lanzi, P. L.; and Loiacono, D. 2018.
DOOM level generation using generative adversarial net-
works. In 2018 IEEE Games, Entertainment, Media Con-
ference (GEM), 316–323. IEEE.
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