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Abstract

Human-robot shared autonomy techniques for vehicle nav-
igation hold promise for reducing a human driver’s work-
load, ensuring safety, and improving navigation efficiency.
However, because typical techniques achieve these improve-
ments by effectively removing human control at critical mo-
ments, these approaches often exhibit poor responsiveness to
human commands—especially in cluttered environments. In
this paper, we propose a novel goal-blending shared auton-
omy (GBSA) system, which aims to improve responsiveness
in shared autonomy systems by blending human and robot in-
put during the selection of local navigation goals as opposed
to low-level motor (servo-level) commands. We validate the
proposed approach by performing a human study involving
an intelligent wheelchair and compare GBSA to a represen-
tative servo-level shared control system that uses a policy-
blending approach. The results of both quantitative perfor-
mance analysis and a subjective survey show that GBSA ex-
hibits significantly better system responsiveness and induces
higher user satisfaction than the existing approach.

Introduction
Human-robot shared autonomy systems for a navigating ve-
hicle promise to provide all the safety and efficiency of
autonomous systems while retaining the customization and
spontaneity of fine-grained individual control. Examples of
these shared control systems include vehicle “guardian” sys-
tems that intervene during safety-critical situations (Mau-
rer et al. 2018), intelligent wheelchairs which seek to as-
sist users during operation (Simpson et al. 1998), and
shared control teleoperation systems for search-and-rescue,
exploration, and hazardous waste clean-up (Crandall and
Goodrich 2002).

While existing techniques for shared autonomy have been
shown to be successful in certain scenarios, in complex (e.g.,
cluttered) environments, many approaches lack the kind of
responsiveness that would truly deliver on the promise of
these systems. We consider responsiveness to be the qual-
ity of a shared autonomy system that is present when user-
supplied commands induce desired changes in navigation
behavior. In this paper, we operationalize responsiveness as
the Hausdorff distance between a user’s intended path and
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the path actually driven by the vehicle; the lower this dis-
tance, the greater the responsiveness. Unfortunately, neither
of the two dominant paradigms for shared autonomy in the
literature—task-level shared control and servo-level shared
control (see, e.g., (Wang and Liu 2014))—seem to prioritize
responsiveness. Task-level shared control techniques per-
form task inference, but otherwise give full control to either
the human or the robot. Such systems lack responsiveness
in that, if the task dictates that the robot has full control, the
system ignores input from the human that might communi-
cate desired changes in behavior. Servo-level shared control
techniques, on the other hand, provide assistance by combin-
ing the user’s low-level motion commands with those output
by the local motion planner of the robot. However, current
implementations of servo-level systems employ restrictive
safety policies that conservatively limit the responsiveness
of the system in a cluttered environment.

In this work, we explore an alternative approach for
shared autonomy that we refer to as shared goal setting, in
which the human and robot input are blended at the level of
determining a local navigation goal for the vehicle. Shared
goal setting stands in stark contrast to the widely-studied
shared control approach described above: while both rep-
resent approaches to shared autonomy, the former blends
inputs to compute goals while the latter blends inputs to
compute controls. In fact, in the existing literature, the terms
“shared control” and “shared autonomy” are often used in-
terchangabily, reflecting that the majority of existing shared
autonomy approaches opt to blend human and robot inputs
at the lowest level of control.

We hypothesize that safe and responsive shared auton-
omy navigation systems can be achieved through a novel
shared goal setting method called goal blending shared au-
tonomy (GBSA). GBSA interprets a user’s command as in-
formation that informs the selection of a new nearby goal
for a local motion planner, resulting in re-planning, i.e., a re-
sponse from the system. To test this hypothesis, we applied
our method to a simulated robot wheelchair in human exper-
iments to analyze the system performance and gathered user
survey results. Our studies suggest that GBSA is more re-
sponsive than both servo-level and task-level shared control
alternatives, while retaining most of their advantages in user
workload, safety, and navigation efficiency.
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Figure 1: In this paper, we propose a new paradigm for shared autonomy, shared goal setting, and contrast it with the widely-
studied shared control approaches. Shared goal setting blends human and robot input to compute goals instead of motion
controls, thereby enabling safe and responsive navigation in complex environments.

Related Work

While many approaches have been proposed for shared au-
tonomy, previous shared control methods for navigating ve-
hicles mainly fall into two camps: task-level shared control
and servo-level shared control (Wang and Liu 2014).

Servo-level shared control aims to generate a combina-
tion of human and autonomous control inputs at the mo-
tor control level so as to optimize some metric of perfor-
mance (e.g., safety, smoothness, or obedience). One com-
mon servo-level approach is based on policy blending (Dra-
gan and Srinivasa 2013), in which the robot command and
the human command are combined using a weighted aver-
age, where the weights are assigned according to an arbi-
tration function. Proposed arbitration functions might, e.g.,
assign a constant weight to each input, or modify the weights
in real-time according to constraints such as safety, smooth-
ness, and confidence (Poncela et al. 2009; Urdiales et al.
2011; Li, Chen, and Wang 2011; Anderson, Karumanchi,
and Iagnemma 2012; Wang and Liu 2014). The arbitration
weights may severely downweight the human command to
ensure safety in cluttered environments. Anther approach to
servo-level shared control incorporates the human input into
the objective function of a local motion planner such that
the arbitration between the human command and the robot
command is implicitly done in the optimization process of
the motion planner (Erlien, Fujita, and Gerdes 2013; Inigo-
Blasco et al. 2014). Again, the output motion commands of
such a motion planner may deviate from the human inputs
significantly when an obstacle avoidance objective takes ef-
fect. Yet another line of work for shared control at the servo-
level either filters the human commands based on the robot
commands (Erdogan and Argall 2017) or removes the hu-
man’s constraint-violating inputs altogether and completely
replaces them with robot commands (Broad, Murphey, and
Argall 2019). These approaches limit the responsiveness of

the shared control systems since they ignore user commands
in certain scenarios.

Task-level shared control, on the other hand, employs
fully-autonomous takeovers for certain predefined tasks, full
human control for other tasks. When a condition is triggered
(either a certain scenario is detected by the robot or an as-
sistance function is activated manually), the robot takes over
the full control authority from the user to perform the driv-
ing task. In one group of task-level approaches, the robot
generates its behavior using a basic set of motion primitives
such as obstacle avoidance, door passing, wall/corridor fol-
lowing, and docking for the driving task (Connell and Viola
1990; Simpson et al. 1998; Rao et al. 2002; Bruemmer et al.
2005; Xu et al. 2016). In another group of task-level shared
control techniques, the robot is able to navigate toward a
global navigation goal based on a global map, in which the
global navigation goal may be selected from a UI or perhaps
be inferred from the user’s inputs or trajectory (Demeester
et al. 2008; Bonarini et al. 2012; Xu et al. 2016; Javdani
et al. 2018). After the task is completed, the robot relin-
quishes the control back to the user. Therefore, at any time
instant, the vehicle is controlled in only one of two modes:
full manual control or full autonomy. That is, when the robot
is in fully-autonomous mode, the human motion command
is not considered. While some works combine servo-level
and task-level shared control techniques in a single system
(Argall 2016, 2015; Ghorbel et al. 2018; Rakita et al. 2018,
2019), thus far, they are still intrinsically limited in respon-
siveness similar to the servo-level shared control.

To overcome the limitations of both camps, we propose
here a novel goal blending process, which blends control
commands at the local goal level that yields responsiveness
while allowing the robot to manage local motor control en-
tirely for safety. In this manner, both safety and responsive-
ness are achieved at the same time. Since task-level shared
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control approaches are not at all concerned with responsive-
ness, our study will focus on comparing the proposed ap-
proach with servo-level shared control.

Goal Blending Shared Autonomy
We propose here a novel shared goal setting paradigm
called Goal-Blending Shared Autonomy (GBSA) that per-
forms blending at the local goal level of autonomous navi-
gation. GBSA can be used for vehicles navigating in com-
plex (e.g., cluttered) environments in scenarios where: (1)
the user’s intended destination is not given a priori and there
are no pre-specified goal candidates, (2) the human policy is
unknown, and (3) both safety and responsiveness are con-
sidered critical. Existing shared control approaches utilizing
a goal prediction algorithm often assume that the robot has
prior knowledge of the global goal candidates or the human
policy given their goal (Argall 2015; Ghorbel et al. 2018).
These methods limit the goal space of the problem, such that
the solutions are restricted to known environment or targets.
We avoid such restrictive assumptions in our work to make
the solution ready for scenarios in the wild.

Goal Inference and Blending
We now describe how GBSA uses human steering com-
mands to compute a local goal for the motion planner. We
divide this proces into two stages. In the first stage, we trans-
form a user’s steering command u ∈ U into a user goal Gu.
In the second stage, we blend Gu with information from
the autonomous system in order to compute a blended goal
Gb—a feasible local goal coordinate for motion planning.
Fig. 1 depicts the proposed process for doing so.

User goal inference Referring to Fig. 2, the user goal Gu

is computed by first inferring a user goal angle θu relative to
the robot heading, and then setting the goal location based on
the size of the local area under consideration.1 In particular,
given a user steering command u, the user goal angle at time
t is computed according to

θu,t = θu,t−1 + θ
(g)
r,t−1 +Ku(ut) ·∆t− θ(g)r,t

= θu,t−1 +Ku(ut) ·∆t− ωv∆t ,
(1)

where θ(g)r,t denotes the vehicle orientation at time t with re-
spect to a global coordinate system, ωv denotes the angu-
lar velocity of the vehicle, and Ku(·) represents a transform
function from the user command signal to an angle, where
Ku(·) may represent fixed scalar multiplication in the sim-
plest case or, e.g., a nonlinear function that adjusts sensitiv-
ity to the user commands. ∆t is set to be the 1/f , where f is
the control loop frequency. Note that θu,t is not simply the
instantaenous command ut (or Ku(ut)), but rather a trans-
formed and filtered version of that command that depends
on the previous user goal and the state of the platform. Us-
ing θu,t, we determine the inferred user goal location Gu

as
Gu = (Gu,x, Gu,y) = (ρ cos θu, ρ sin θu) , (2)

1Unless otherwise specified, all quantities are represented in the
robot’s local coordinate system.

Figure 2: Depiction of relevant quantities for the proposed
goal-blending shared autonomy (GBSA) system. The user’s
current joystick angle is used to compute θu,t (relative to
the robot’s current heading, which is shown as a dotted blue
line), which is used to infer the user’s goal Gu,t (in dark
yellow circle). The blended goal, Gb,t (in green circle), is
computed using Gu,t and constraint forces ~vr,t (in light blue
arrow) and ~vi,t (in orange arrow) known to the robot.

where ρ is a pre-specified parameter that denotes the dis-
tance at which local goals are to be placed (we use ρ = 2.0m
in our experiments).

Blended goal inference Due to local obstacles, Gu may
not necessarily be a valid (i.e. collision-free) location for
robot navigation, and so the second stage of the proposed
goal inference and blending procedure is to use Gu and
constraint information from the robot to compute a blended
goal Gb. To perform this computation, we employ a physics-
inspired method involving an inertial force, which repre-
sents a temporal smoothness constraint, and a repulsion
force, which represents constraints induced by nearby ob-
stacles.

The inertial force, ~vi, is calculated using the history of
user goals, and is designed to be used in such a way that the
blended goal is consistent with the recent history of inferred
user goals. Let ξu,t = [Gu,t−T+1, . . . ,Gu,t] denote the T
most recent inferred user goal positions, all expressed with
respect to the robot’s local coordinate system at time t, and
let Gu,t = f(ξu,t) represent a filtered goal computed over
those positions. We compute the inertial force ~vi according
to:

~vi,t = Gu,t −Gu,t−1 , (3)

In our experiments, we select T such that ξu,t corresponds
to a time window of one second, and we use an f(·) cor-
responding to the sample mean. If the time window of the
historical goal locations is set too short, the computed iner-
tial force would be subject to larger noise due to numerical
variance between consecutive goal positions. If it is set too
long, the inertial force would not follow the changes of user
goals quickly.

The repulsion force, ~vr, is calculated using information
from the local costmap, and is designed to be used such that
the blended goal will be pushed away from obstacles and
toward collision-free positions. More specifically, ~vr is the
spatial gradient of the local costmap computed at user goal
location Gu, i.e., it points in the direction of the steepest
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Algorithm 1 Overall Flow of GBSA.

1: Initialize a buffer for T most recent user goals, Gu

2: Initialize a buffer for T most recent blended goals, Gb

3: for each t do
4: Obtain a user command, ut
5: Compute a costmap, C, from obstacle detections
6: θu,t ← θu,t−1 +Ku(ut) ·∆t− ωv∆t . Eq. (1)
7: Gu,t ← (ρ cos θu,t, ρ sin θu,t) . Eq. (2)
8: Gu,t ← f([Gu,t−T+1, . . . ,Gu,t])

9: ~vi,t ← Gu,t −Gu,t−1 . Eq. (3)
10: ~vr,t ← spatial gradient of C(Gu,t)

11: Gb,t ← arg minl C(Gu,t +
l(~vi,t+k ~vr,t)
|~vi,t+k ~vr,t| ) . Eq. (4)

12: G∗b,t ← OPTIMIZEGB(Gu,t,Gb,t) . Eq. (6)
13: (vr, ωr)← MOTIONPLANNER(G∗b,t, C)
14: end for

slope in the costmap. If Gu lies inside an obstacle where
there is no gradient in the costmap, we instead compute the
gradient of the costmap at the edge of the obstacle where the
gradient vector is non-zero.

Using the specified inertial and repulsion forces, the
blended goal Gb,t is computed as:

Gb,t = arg min
l

C(Gu,t +
l(~vi,t + k ~vr,t)

|~vi,t + k ~vr,t|
)

s.t. 0 ≤ l < L,

(4)

where both ~vi,t and ~vr,t are normalized to unit vectors for
the computation above, k is a user-specified scalar that de-
termines the relative strength between the inertial force and
the repulsion force, and C(x) is the local costmap value at
position x. We set k = 1.1 based on our desire for blended
goals to be located in front of obstacles, which will happen
if the repulsion force from the obstacle is weighted larger
than the user-goal inertial force. The projection length, l, is
a scalar between 0 and L, where L is the maximum distance
that the blended goal can deviate from the user goal.

Overall System
Having defined how the local motion planner goals are com-
puted from the human steering commands, we can now de-
scribe the overall GBSA system. The system includes four
main functional blocks: the user interface, a perception com-
ponent, the goal inference and blending block, and a mo-
tion planner. The user interface samples the driver steering
commands periodically to form a sequence of driving com-
mands. The perception block builds a local costmap based
on the robot’s sensor data. The goal inference and blending
block, as illustrated in the previous subsection, infers a user
goal from the sequence of driving commands and blends it
with the robot’s obstacle avoidance objective to determine a
local goal. The motion planner takes the local goal and the
costmap to compute a motion command to drive the vehi-
cle. This may include a local path planning algorithm and
a motion controller that computes linear and angular veloc-
ity command (vr, ωr) to control the robot motors in a typi-

(a) Scene 1 (b) Scene 2

Figure 3: Representative wheelchair trajectories from users
using both the PBSA system and our proposed GBSA sys-
tem in (a) Scene 1 and (b) Scene 2, respectively. In Scene 2,
the PBSA user failed to drive through the doorway and had
to retry many times, whereas, in the GBSA experiment, the
same user succeeded in driving through the doorway in her
first attempt.

cal mobile robot implementation. Algorithm 1 illustrates the
overall flow of GBSA.

Human Experiments
We hypothesize that, by performing blending of human and
robot input at the level of local motion goals, GBSA will be
more responsive than other shared autonomy systems with-
out sacrificing safety. To test this hypothesis, we conducted
a human study in a simulated wheelchair where the human
and the robot attempt to collaboratively drive the wheelchair
to accomplish a set of driving tasks. We compared GBSA to
a state-of-the-art shared control system (Urdiales et al. 2011;
Poncela et al. 2009) for settings in which (a) the user’s in-
tended destination is not given a priori and there are no pre-
specified goal candidates, (b) the human policy is unknown,
and (c) in the absence of human input, the robot drives au-
tonomously by attempting to drive straight while avoiding
collisions. We refer to the latter system as policy blending
shared autonomy (PBSA). To the best of our knowledge,
PBSA is the most appropriate baseline that can work in sce-
narios adhering to (a)-(c). We did not compare against task-
level shared control systems here because we are interested
in techniques that continually incorporate human input—
task-level techniques continually monitor the state and pre-
scribe either full human control or full robot control.

The users operated and compared the GBSA and PBSA
systems in two scenarios: (1) Scene 1: driving through a
doorway without obstacles (Fig. 3a), and (2) Scene 2: driv-
ing through a doorway in a cluttered environment (e.g., two
static pedestrians near the door, as shown in Fig. 3b). As
an experimental mechanism, we requested that participants
follow as closely as possible a guidance path that we drew
on the ground but was unknown to the autonomous system,
and we assumed that participants complied with this request.
Providing a fixed guidance path to each participant allows us
to fairly compare results across different participants. In this
setting, we quantify responsiveness of the shared autonomy
system by measuring the deviation of the vehicle trajectory
from the guidance path. The user workload, efficiency, and
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safety are characterized by the intervention time, travel time,
total number of backups, and total number of collisions, re-
spectively (the definitions of these metrics will be described
later in this section). All of the metrics were compared be-
tween the PBSA and GBSA systems in which the robots in
both systems had no knowledge about the guidance path.

Experimental Setup
Apart from the modules for human and robot goal blend-
ing, the rest of PBSA and GBSA systems were identical, in-
cluding modules for perception, localization, user interface,
user command sampling, path planning, and the robot’s mo-
tor controller. The simulated wheelchair is equipped with a
simulated SICK LMS111 laser scanner and basic odome-
try sensors for robot perception and localization. The local
path planning module uses the elastic band local path plan-
ner (EBand) (Quinlan and Khatib 1993) operating at a rate
of approximately 20 Hz. For GBSA, the local goal locations
are provided by the goal-blending algorithm described in the
previous section, and the motion command computed from
the planner directly goes to the robot’s motor controller. For
PBSA, the local goal locations are set 2 meters ahead of the
robot (Urdiales et al. 2011), and the motion command com-
puted from the planner is the robot command that is then
arbitrated with the human command to determine a blended
motion command for the robot’s motor controller. In our sys-
tem, the robot’s motor controller is a differential-drive veloc-
ity controller.

The user interface is a standard gamepad-like controller
that allows the human participants to provide control sig-
nals: steering angle, start, brake, and backup. The partici-
pants can move the joystick forward to start the robot, and
then the wheelchair would drive forward autonomously (in
shared autonomy mode) even if the joystick is released. The
participants can communicate the steering angle by moving
the 2D joystick to any angle between [90, -90] degrees. The
steering angle signals are sampled at a fixed rate of 20Hz to
create the user steering command ut for the shared auton-
omy algorithms. The participants can stop the wheelchair
by pulling the joystick backward (i.e., giving a brake com-
mand). They can back up the wheelchair manually by press-
ing a button to set the reverse gear and then pulling the joy-
stick backward. To resume forward motion, they can press
another button and the wheelchair would drive in shared au-
tonomy mode again.

We asked our human participants to follow, as closely
as possible, the guidance paths marked in red dots on the
ground in two scenes. In Scene 1, the marked path guides the
wheelchair user to turn the wheelchair well before the door-
way (Fig. 3a), whereas in Scene 2 the marked path guides
the wheelchair user to turn the wheelchair just in front of
the doorway (Fig. 3b). The guidance path is collision-free,
and it is regarded as the user’s ground truth intention in the
experiments. When the participants find it difficult to move
the robot along the guidance path, they may deviate from
the guidance path temporarily or back the robot up to cor-
rect its path. Before the experiment begins, the participants
have about one minute of practice for each system. They
can move the wheelchair around the environment freely.

During this phase they can (and often do) test whether the
wheelchair collides with an obstacle if they deliberately try
to make it do so. We recorded the user commands and the
wheelchair trajectories in the experiment in order to com-
pute the performance metrics (defined in the next subsec-
tion) for analyzing both systems. After the experiments were
done, the participants were given a questionnaire to rate their
experiences with both systems.2

The participants comprised 15 male and 5 female students
of ages ranging from 20 to 35 years old. None of the partici-
pants had prior experience with the system. The participants
were told which system they were going to use before each
driving task. In order to avoid sequential bias, half of the
participants were asked to pilot the PBSA system first, and
the other half were asked to pilot the GBSA system first.

Performance Evaluation Metrics
The driving data collected during these experiments allow us
to quantitatively measure the responsiveness of the shared
autonomy systems. The metrics include: (1) the Hausdorff
distance between the user’s actual path (i.e., wheelchair tra-
jectory) and the guidance path, (2) overall travel time, (3)
intervention time, (4) total number of backups, and (5) total
number of collisions.

Hausdorff distance measures how far two subsets of
data are from each other. In our experiment, we calculate
the Hausdorff distance between the user’s actual path (i.e.,
wheelchair trajectory) and the guidance path. Formally, the
Hausdorff distance is defined as

h(A,B) = max
a∈A
{min
b∈B
{d(a, b)}} (5)

where a and b are points on the user’s actual trajectory A
and the guidance path B, respectively, and d(a, b) is the Eu-
clidean distance between points a and b. Ideally, the Haus-
dorff distance between the guidance path and the user’s ac-
tual trajectory is low.

Travel time is the total time required to complete the driv-
ing task.

Intervention time is defined as in Cooperstock et al.
(Cooperstock et al. 2007). Specifically, it is calculated as the
percentage of non-zero user steering commands issued dur-
ing the driving task. The lower this metric, the more we can
say that the user finds the system’s behavior acceptable.

Total number of backups is recorded as the total number
of times that the user had to shift into reverse in order to
move away from obstacles. Ideally, this metric is as low as
possible, indicating that the system did not get stuck.

Finally, participants were also asked to provide their de-
gree of agreement with several subjective statements about
each system.The statements include: (a) “The wheelchair
goes to my intention correctly,” (b) “The wheelchair was
responsive to my commands,” (c) “I felt confident that the
vehicle would not collide with obstacles,” and (d) “I pre-
fer this system of driving over the other system.” Ratings
of each statement were collected on a Likert scale of five
responses: strongly disagree (1), disagree (2), neither agree

2The experimental paradigm was reviewed and approved by our
university’s institutional review board.
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nor disagree (3), agree (4), and strongly agree (5). The av-
erage answers of all the participants are calculated for each
survey question.

Implementation Details
We implemented GBSA in ROS for our experiments. Our
implementation leverages many standard modules available
in the ROS repositories, with custom modules for computing
the costmap and, of course, the local navigation goals that
the robot should use.

Costmap computation The costmap computed for the
perception block is a local 2D map cetered at the robot,
where a lethal cost is placed in cell locations that the Lidar
indicates to be an obstacle.

Blended goal refinement Computing the blended goal Gb

via Eq. 4 provides a reasonable blended local goal for the
robot in most cases, but the goal position may still exhibit
instability over time due to the complexity of the environ-
ment. To provide a smoother trajectory of blended goals,
we further refine the blended goal positions using a sample-
based technique that employs the method described by Jiang
et al. (Jiang, Warnell, and Stone 2018). At each time-step,
we create a set of N samples as shifted user goals, G′u,t
∈ G, each of which is spatially offset from the nominal user
goal Gu,t by a small amount. We then transform each of
these samples into a corresponding blended goal G′b,t based
on Eq. (4). Next, we find a refined blended goal G∗b,t by try-
ing to 1) minimize the distance between the nominal user
goal Gu,t and an optimized user goal G∗u,t for tracking the
nominal user goal, and 2) minimize the deviation between
the optimized blended goal G∗b,t and previous blended goal
G∗b,t−1 for maintaining temporal consistency over consec-
utive blended goals. The optimized user goal G∗u,t is com-
puted as:

G∗u,t = arg min
G′

u,t∈G
(
∑

w1|∆xGu|2 +
∑

w2|∆tGb|2)

= arg min
G′

u,t∈G
(

T∑
i=0

w1|G′u,t−i −Gu,t−i|2

+
T−1∑
i=0

w2|G′b,t−i −G′b,t−i−1|2)

(6)

where w1 and w2 are specified coefficients for the two devi-
ation terms (empirically chosen as w1 = 1 and w2 = 10 in
our experiments). The blended goal corresponding to the op-
timized user goal G∗u is used as the local goal position in the
subsequent motion planning step. Algorithm 2 implements
this blended goal optimization procedure.

Experimental Results
The results of our study validated our hypothesis, i.e., GBSA
is a more responsive shared autonomy system than the
PBSA system. By using the proposed shared goal setting
concept, the shared autonomy navigation system can control

Algorithm 2 Blended Goal Optimization.

procedure OPTIMIZEGB(Gu,t,Gb,t)
2: Emin ← inf

Create a set of G′u,t ∈ G from Gu,t

4: for each G′u,t ∈ G do
~v′r,t ← gradient of C(G′u,t)

6: G′b,t ← arg minl C(G′u,t +
l(~vi,t+k ~v′

r,t)

|~vi,t+k ~v′
r,t|

)

E ←
∑
w1|∆xGu|2 +

∑
w2|∆tGb|2 . Eq. (6)

8: if E < Emin then
Emin ← E

10: G∗b,t ← G′b,t
end if

12: end for
return G∗b,t

14: end procedure

the vehicle to perform desired navigation behaviors in re-
sponse to user-supplied control commands in complex envi-
ronments (e.g., Fig. 3b). The results showed GBSA outper-
formed PBSA in responsiveness, efficiency, and workload
reduction (Fig. 4), while maintaining collision-free opera-
tion. In Scene 1, both systems perform well for users follow-
ing the guidance path, and all three metrics are comparable
(Figs. 3a and 4). However, in Scene 2—which represents a
more cluttered environment—the PBSA system failed to al-
low users to follow the guidance path whereas the GBSA
system led to trajectories closer to the guidance path. The
performance metrics for each system are shown in Fig. 4.

We additionally compared the two systems with an Ora-
cle system that represents entirely autonomous control with
access to the guidance path as the goals for local path plan-
ning in Fig. 4. In the ideal case, both the Oracle and a human
following the guidance path will exhibit the exact same be-
havior. The Oracle system uses the same perception module
and motion planner as those in GBSA and PBSA systems,
except that the goals given to the motion planner are way-
points of the guidance path that are presented at about 2m
ahead of the moving wheelchair. Note that even the Oracle
system’s trajectory deviated from the guidance paths (i.e.,
the Hausdorff distance is not zero) because the local motion
planner is not perfect for tracking curved paths.

Finally, in the post-experiment questionnaire, the partic-
ipants selected one of the five Likert scale ratings for each
system. On average, the users gave better ratings in all the
questions for the GBSA system than they gave for the PBSA
system (Fig. 5).

Discussion and Future Work
The proposed goal-blending scheme ensures that the shared
autonomy system is responsive to users because user com-
mands always result in goal changes, whereas user com-
mands in typical servo-level shared control schemes (e.g.,
PBSA) often have to be ignored due to safety constraints.

GBSA performs almost exactly the same as PBSA in free
space or simple scenarios such as Scene 1. In these scenar-
ios, PBSA allocates high weights to the user commands be-
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(a) Responsiveness (b) User workload (c) Efficiency

Figure 4: Performance comparison for the Oracle, PBSA, and GBSA systems for (a) Hausdorff distance for characterizing
responsiveness, (b) intervention time for characterizing user workload, and (c) travel time for characterizing efficiency. The
Oracle system is a fully autonomous system where the robot has access to the ground-truth guidance paths. The t-test results
show that the GBSA system outperforms the PBSA system significantly in the cluttered environment (p ≤ 0.05).

Figure 5: Survey response results for the questionnaire given
to participants. On average, GBSA received better ratings
(Agree) for all questions than PBSA did (Disagree for re-
sponsiveness and preference, and Neutral for correctness
and safety).

cause the safety constraints are not a concern. The perfor-
mance of GBSA is similar in these scenarios as long as the
local path planner generates an optimized trajectory that re-
sembles manual driving behaviors in free space. In cluttered
scenarios such as Scene 2, however, PBSA may discard the
user’s commands due to safety concerns. In this scenario,
the user gives a command to turn right in front of the door-
way, but the human command is effectively discarded be-
cause, according to the safety metrics defined in Urdiales
et al. (Urdiales et al. 2011), the command is unsafe. Thus,
the user effectively loses their control of the wheelchair (i.e.,
the system is not responsive), and the user cannot coerce the
vehicle to closely follow the specified guidance path.

One interesting phenomenon that we observed was that al-
most all of the participants operating the PBSA system failed
to drive through the doorway in their initial attempt in Scene
2, and they often needed to backup the wheelchair in order to
complete the driving task, while only a few users operating
the GBSA system needed to back up the wheelchair in the

same scene. The average number of backups for the PBSA
system in Scene 2 is 2.29, versus 0.12 for the GBSA system.
All the participants would have been able to pass the door-
way without backing up the wheelchair with the forward-
looking blending algorithm of GBSA—for those that per-
formed backups, all of them are in the group that used the
PBSA system first and had experienced a failure in Scene 2
before using the GBSA system. They all gave feedback, say-
ing that they intervened early with GBSA in order to avoid
a predicted failure.

One limitation of the proposed GBSA method is that it
still requires a fairly high user workload. That is, given
the dynamics of the environment, the user will likely have
to provide commands fairly frequently. The user workload
might be reduced further by trying to infer navigation goals
at longer ranges (i.e., larger ρ), but we conjecture that may
subsequently reduce the responsiveness of the system.

To apply GBSA to applications with more environmental
contraints, such as assistive driving for automotives, addi-
tional development will be necessary. For example, the user
goal inference method needs to take into account how hu-
mans interact with different user interfaces (e.g., the throt-
tle, the brake, or a turn signal switch), and the computation
of blended goals needs to be subject to traffic rules and cul-
tural factors. This paper opens up these topics as interesting
and potentially fruitful avenues for further research towards
making autonomous systems better able to work with people
across a range of domains.

Conclusion
This paper introduced a novel goal-blending concept for
shared autonomy navigation systems, called goal-blending
shared autonomy (GBSA) to enable responsive control in
cluttered environments. GBSA blends the user and robot in-
put at the level of local navigation goals rather than at the
level of motor commands. We showed experimentally that
this new concept can lead to greater responsiveness to hu-
man commands in a cluttered environment compared to a
state-of-the-art servo-level shared control paradigm, while
maintaining similar performance for those scenarios that the
existing paradigm already handled well.
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