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Abstract

Although artificial intelligence has revolutionized data anal-
ysis, significantly less work has focused on using AI to im-
prove scientific data collection. Past work in AI for data col-
lection has typically assumed the objective function is well-
defined by humans before starting an experiment; however,
this is a poor fit for scientific domains where new discoveries
and insights are made as data is being collected. In this paper
we present a new framework to allow AI systems to work
together with humans (e.g. scientists) to collect data more
effectively in simple scientific domains. We present a novel
algorithm, TESA, which seeks to achieve good performance
by learning from past human behavior how to direct data to
places that are likely to become scientifically interesting in
the future. We analyze the problem theoretically, defining a
novel notion of regret in this setting and showing that TESA
is zero regret. Next, we show that TESA outperforms other
related algorithms in simulations using real data drawn from
three diverse domains (economics, mental health, and cog-
nitive psychology). Finally, we run experiments with human
subjects across these scientific domains to compare our iter-
ative human-in-the-loop process to a (more standard) work-
flow in which information is communicated to the AI a priori.

Introduction
Scientists in domains such as psychology, behavioral eco-
nomics, and ecology spend a large amount of time and ef-
fort designing experiments and collecting large datasets. Al-
though artificial intelligence (AI) has dramatically impacted
the process of scientific data analysis (Ardila et al. 2019;
Weinstein et al. 2019), it has not yet had a similar impact on
scientific data collection. Indeed, in many scientific domains
the typical process for collecting data is simply to sample the
space uniformly as possible; for instance, by allocating an
equal number of participants to each condition. While this
approach makes intuitive sense, the truth is that not all data
are created equal - some datapoints are inherently more sci-
entifically interesting. For example, in general reaction time
tends to increase with the number of stimuli (Hick 1952),
but say a psychologist is running an experiment varying the
number of stimuli (N) between 1 and 20. After collecting
some initial data, they find that in general reaction time does
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increase as expected, except for N=10, where reaction time
is very low. In this case, they would want to confirm the
anomaly by gathering more data at N=10. So a datapoint
from a trial with N=10 would be much more scientifically
interesting than one with N=5 or N=15. We wish to direct
more data towards the interesting conditions, but this is dif-
ficult to do manually, especially if data is collected at a rapid
pace. Therefore, this is an ideal fit for AI systems, which can
process large amounts of data in real-time.

Past work in using AI to guide data collection, such as
active learning (Settles 2009), reinforcement learning (Sut-
ton and Barto 1998), and online learning (Erraqabi et al.
2017) assume a known and fully-defined (estimation) objec-
tive, which is extremely difficult to define in settings where
the goal is to uncover new and unexpected phenomena. Pre-
vious work focusing on using AI to achieve scientific objec-
tives (Liu 2015) requires humans to instead specify expected
experimental results; however, specifying such a prediction
accurately for a novel experiment is difficult.

Specifying precise scientific objectives a priori is partic-
ularly difficult because the most impactful scientific discov-
eries are often unrelated to the main purpose of the exper-
iment. For example, Alexander Fleming was running ex-
periments to study Staphylococcus and noticed that one of
his samples was unexpectedly dying off due to an unknown
contaminant - that contaminant turned out to be penicillin.
Such completely unexpected discoveries cannot be captured
by pre-programmed objectives, but instead must come from
keeping humans “in the loop” of scientific data collection,
leveraging their background knowledge, experience, and in-
tuition to help the AI system collect the most useful data.

In this paper, we investigate a new paradigm for scien-
tific data collection that allows humans (e.g. scientists) to
periodically provide feedback to the AI system to help it
more efficiently collect data1 . Specifically, as an AI collects
data, humans will iteratively add points (called “keypoints”)
indicating areas which appear to be scientifically interest-
ing based on the data collected so far. This complicates the
role of the AI system, which must tradeoff sampling existing
keypoints more to increase confidence in their values, while

1We consider both cases where an AI system collects data di-
rectly (e.g. an online experiment) and cases where it collects data
indirectly (e.g. by directing scientific divers).
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sampling elsewhere to find new keypoints. To address these
challenges, we develop a new algorithm, Threshold Estimat-
ing Sampling Algorithm (TESA), which we show (asymp-
totically) achieves zero regret in this setting. We examine
the empirical performance of TESA, finding that it is supe-
rior to previously-proposed approaches in simulations based
on real-world datasets, as well as in a human subject exper-
iment.

Related Work
Optimal Experimental Design (OED) (Pukelsheim 1993)
and active machine learning (Settles 2009) both seek to opti-
mally direct data collection, but the objective of these frame-
works is to most quickly learn an accurate model. This re-
quires the prespecified model parameters to perfectly cap-
ture what a scientist finds interesting, which seems unlikely
when seeking novel and unexpected discoveries.

Value of Information (VoI) (Howard 1966), and more gen-
erally, reinforcement learning (Sutton and Barto 1998) allow
users to collect data in order to optimize arbitrary objective
functions. However, these areas require users to prespecify
an accurate objective function, which is difficult (Thomaz
and Breazeal 2006), especially given the fact that scientists
tend to make unexpected discoveries when analyzing data.

Given that objective functions are difficult to prespecify,
much interest in AI has focused on automatically learning
these objective functions (Noothigattu et al. 2018; Hadfield-
Menell et al. 2016). Common approaches involve learn-
ing objective functions from positive or negative feed-
back on behaviors (Griffith et al. 2013), trajectory pref-
erences (Akrour, Schoenauer, and Sebag 2011; Christiano
et al. 2017), or near-optimal demonstrations (Zhifei and
Meng Joo 2012). Unfortunately, when the goal is to uncover
new and unexpected scientific insights in a novel experi-
ment, these methods of feedback are not feasible.

The most closely related work is Liu (2015). Liu proposes
Uncertainty Weighted Posterior Sampling (UWPS) to direct
scientific data collection towards regions that are scientifi-
cally interesting. Liu requires humans to specify beforehand
what the expected results for the experiment will be, and
then data is directed towards points that are maximally dif-
ferent from this expectation. Although reasonable, specify-
ing accurate predictions can be extremely difficult and time-
consuming in real-world settings. Additionally, a difference
from a prior prediction does not capture the fact that inter-
esting points may change as scientists learn more about the
domain over the course of the experiment (and some of these
changes may be more intersting than others). This motivates
our human-in-the-loop framework, where humans provide
iterative feedback to AI systems over the course of the ex-
periment. We compare to UWPS and Liu’s framework in our
experiments.

Problem Setup
We consider problems in which a human H and an AI A
work together to gather the most scientifically useful data
from an environment E (which maps x values to (noisy)
y values). At each time step t ≥ 0, A selects an x value

jt ∈ X , where X is represented as the set of integer val-
ues {1, . . . , N}, receives a sampled y value yt ∈ [0, 1] from
E , and adds it to a set of samples Sjt . H is asked to provide
feedback every I time steps. Specifically, when t mod I =

0, A will generate a visualization tuple (fh, fl, f̂), where
fh : X → [0, 1] is a higher bound function, fl : X → [0, 1]

is a lower bound function and f̂ : X → [0, 1] is an estimated
function, which are estimated using the sample sets Si (for
all i ∈ X ).2 After observing the visualized tuple (fh, fl, f̂),
H sendsA a set of keypoints K̂t ⊆ X (these are intended to
represent scientifically interesting x-values of the curve, and
the set will ideally grow as more information is uncovered
about the true curve).

Let K be the true set of keypoints, which is unknown to
bothH and A initially. We make the following assumption:
Assumption 1. There exists some unknown ni such that if
|Si,t| ≥ ni then i ∈ K̂t if and only if i ∈ K.

Note that Assumption 1 is not particularly strong, as it
only requires H to make correct decisions in a long-term
sense (i.e. if |Si,t| ≥ ni). With smaller numbers of samples,
H could make mistakes, for instance marking something a
keypoint when it is not or deleting a true keypoint.

The goal of A is to optimize the following score (zeta):

ζ (K,St) =
|K|∑

i∈K C (|Si,t|)
−
∑
i/∈K

|Si,t| (1)

where St is the vector of sample set sizes for all x values at
timestep t: 〈|S1,t|, . . . , |SN,t|〉, and

C (x) =

√
ln
(
2
δ

)
2x+ ε

(2)

represents the confidence interval, ε > 0 represents a (gen-
erally small) smoothing term, and 1−δ represents the confi-
dence level given δ ∈ (0, 1]. This is similar to the Chernoff-
Hoeffding bounds, except for the addition of ε in the denom-
inator to prevent divide-by-zero issues.3

The motivation for equation (1) is that we want more iden-
tified keypoints (hence the |K| numerator), but we also want
to be certain of the value of each keypoint (hence the sum
of keypoint confidence interval sizes in the denominator).
Also, we want to minimize the number of samples devoted to
places that are not scientifically interesting, hence the term
which subtracts the number of non-keypoint samples.

Defining Regret
Since our problem involves running AI systems online in
an unknown environment, theoretical guarantees are partic-
ularly important. Here we provide proof sketches for these
results. The full proofs can be found in the appendix.4

2In our experiments f̂(i) =
∑

y∈Si
y

|Si|
, fl(i) = f̂(i)− C(|Si|),

and fh(i) = f̂(i)+C(|Si|), where C is as defined in equation (2).
3We let δ = 0.1 and ε = 0.02 in our experiments. Also, ifK =

∅, we simply let ζ (K,St) = 0 to avoid divide-by-zero issues.
4The appendix can be found at

https://datadrivengame.science/aaai21/.
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Properties of the Score Function ζ
Here we show some properties of the score function ζ that
will be useful for later results. First, we define a function d:

d (St) =
∑
i∈K

C (|Si,t|) (3)

In other words, d is the denominator of the first term of ζ.

Lemma 1. d is monotonically decreasing with t, and
ζ(K,St) is monotonically increasing on t such that jt ∈ K.

Proof Sketch This follows directly from analyzing the
partial derivative of d.

Lemma 2. C(x) is monotonically decreasing and convex
for all x ≥ 0.

Proof Sketch This follows directly from analyzing the
first and second derivatives of C.

In the next lemma we show that there are diminishing
returns. That is, if we choose a keypoint, the denominator
shrinks less if there are more samples:

Lemma 3. A sample w ∈ [0, 1], was collected at timestep
tw at x-value iw ∈ K, and similarly, a sample q ∈ [0, 1],
was collected at timestep tq at x-value iq ∈ K. Then for any
two (possibly equal) algorithms A and B it must be that, if
|Stw,iw,A| ≤ |Stq,iq,B |, then

d(Stw,A)− d(Stw−1,A) ≤ d(Stq,B)− d(Stq−1,B)

Proof Sketch From Lemma 2 we know C is monotoni-
cally decreasing and convex, which implies C shrinks less
for iq than for iw (since iq has more samples). Since d is the
same at tw except for the change to iw’s confidence intervals
(and same for iq), d likewise shrinks less for iq than for iw.

Comparing Regret Definitions
Analyzing performance based on ζ itself is challenging,
since the maximum achievable score depends on E and H.
Therefore, we analyze regret compared to an optimal algo-
rithm. In this setting the optimal algorithm is not immedi-
ately obvious, so we introduce Theorem 1.

Theorem 1. LetA be an algorithm which selects the x value
argmini∈K |Si|. A is optimal according to the ζ score.

Proof Sketch For a contradiction, assume there is some
algorithm B and timestep T such that ζ (K,SB,T ) >
ζ (K,SA,T ). Now, B must have more samples than A on
certain x-values (those samples are denoted by the set η) and
less samples on other x-values (the extra samples collected
byA on those x-values are denoted by the set Ω). Since both
algorithms have the same number of total samples, one can-
not add a sample to one location without removing a sample
from another location, and so |η| = |Ω|. This allows us to
define a bijection m : Ω → η. Next we argue that every
sample in Ω (from A) reduces d more than (or equal to) the
corresponding sample in η (from B). If the sample in η is
not a keypoint, then d will not decrease for B but will for
A (since A always samples keypoints), so this is trivial. If
on the other hand, the sample in η is a keypoint, then the
corresponding sample in Ω must have been a keypoint with

fewer than (or equal) samples, since A samples keypoints as
evenly as possible. So by Lemma 3, d must shrink less in
this case as well. Since d shrinks less (or equal) for B than
for each corresponding sample collected by A, and A never
samples any non-keypoints, ζ must be less (or equal) for B
compared to A.

Given Theorem 1, we wish to define regret of some al-
gorithm D relative to A. Perhaps the most natural defini-
tion of regret would be ζ (K,ST,A) − ζ (K,ST,D). How-
ever, since the ζ metric incorporates information from all
timesteps (and not just the current one), this does not quan-
tify how much regret we incur on each timestep t. This can
be achieved by computing the change in score from t− 1 to
t for both algorithms:

r′D (t) = [ζ (K,St,A)− ζ (K,St−1,A)]

− [ζ (K,St,D)− ζ (K,St−1,D)] (4)

Note that, since our problem setup allows some quantities
to be chosen adversarially (for instance, the addition and re-
moval of keypoints), equation (4) measures regret with re-
spect to the best possible policy in the face of these adver-
sarial decisions, in other words, it is very similar to policy
regret (Arora, Dekel, and Tewari 2012). An alternative is to
use a notion closer the external regret (Auer et al. 2002):

rD (t) = [ζ (K,St−1,D ∪A (St−1,D))− ζ (K,St−1,D)]

− [ζ (K,St,D)− ζ (K,St−1,D)] (5)
rD (t) = [ζ (K,St−1,D ∪A (St−1,D))− ζ (K,St,D)]

(6)

whereA (St−1,D) denotes the sample algorithm A would
have received if it was initialized at St−1,D.5

In other settings, policy regret (i.e. Equation (4)) is
thought to be strictly stronger than external regret (i.e. Equa-
tion (6)) (Arora, Dekel, and Tewari 2012). Therefore, in
most adversarial settings, regret guarantees with respect to
the policy regret would be preferred to guarantees related
to the external regret. But in this situation, policy regret is
actually weaker in some sense than external regret. This un-
usual property arises from the fact that, as long as an algo-
rithm (asymptotically) samples only keypoints, the increase
in the ζ score will go to zero due to the fact that the confi-
dence intervals shrink towards zero. So an algorithm could
conceivably be zero-regret (in a policy regret sense) if it sim-
ply found (and endlessly sampled) one keypoint while ignor-
ing all others. In contrast, this algorithm would not be zero-
regret under an external regret definition (as we show for-
mally in Theorem 3 and Corollary 2) since A would choose
one of the low-sampled keypoints, and thus it would always
be able to increase ζ by much more than the single-keypoint
algorithm. Therefore, we adopt the external regret definition
of Equation (6) in the rest of this paper.

We define a zero-regret algorithm as follows:
An algorithm B is zero-regret if and only if

limT→∞E [rB (T )] = 0

5ζ does not depend on y-values, so one can look at the x-value
A would select given St−1,D and increment the size of that set.
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This problem setup is unusual: The typical bandit-style
assumption is that the algorithm observes the reward/loss it
receives after making its decision, and simply needs to keep
that reward high enough relative to the optimal reward. In
our case, however, the algorithm does not know the true key-
points, and yet regret is evaluated with respect to the true set
of keypoints K. Therefore the true reward for each action is
unobserved, making the problem more difficult.

Properties of Zero-Regret Algorithms
To further illuminate this problem, we lay out some neces-
sary properties of zero-regret algorithms. First, in Theorem 2
we show that an algorithm is zero-regret only if the propor-
tion of samples assigned to non-keypoints converges to zero.
Theorem 2. If |K| > 0, limT→∞E [rB (T )] = 0 only if:

lim
T→∞

E

[∑
i/∈K |Si,T,B |∑
i∈X |Si,T,B |

]
= 0

Proof Sketch Since A selects only keypoints, ζ mono-
tonically increases under A (Lemma 1). However, when a
non-keypoint is sampled, ζ decreases by 1. Therefore the re-
gret on these timesteps is at least 1, so the fraction of time
this occurs must go to zero in order to be zero-regret.
Corollary 1. If |K| > 0, an algorithm which samples key-
points with probability (1− εg) and non-keypoints (if there
exist any) with probability εg cannot be zero regret.

Proof. This follows immediately from Theorem 2,
as if we assign probability εg to non-keypoints,

limT→∞E
[∑

i/∈K |Si,T,B |∑
i∈X |Si,T,B |

]
= εg .

Theorem 3. An algorithm B is zero-regret only if, for any
number `, for all i ∈ K, limT→∞P (|Si,T,B | ≥ `) = 1 .

Proof Sketch If there is some constant probability that
some set of x-values Kn ⊆ K are all sampled less than `
times, then in those cases there must be some corresponding
set of x-values Kp that are sampled an infinite number of
times. If Kp contains non-keypoints, Theorem 2 applies, so
Kp ⊂ K. Now, for each arm in Kp, the confidence function
C shrinks to zero as we sample it more, so the increase in
ζ on those timesteps also shrinks towards zero. However,
for sufficiently large T , the optimal algorithm A would have
preferred to sample keypoints in Kn since they have fewer
samples. And since we do not sample Kn more than ` times
in this case, the increase in ζ on these timesteps is constant.
On an infinite number of timesteps, the x-value chosen by
A would result in a constant positive increase in ζ, but the
x-value chosen by B leads to an increase in ζ that vanishes
towards zero. So, B cannot be zero-regret.
Corollary 2. An algorithm which samples round-robin until
the first keypoint is found, then samples that keypoint forever
(perhaps reverting to round-robin if that keypoint is deleted),
is not zero regret if |K| > 1.

Proof. This follows directly from Theorem 3: if we have H
such that the first true keypoint ic is revealed after `c sam-
ples, and not removed thereafter, and for all j ∈ K such that

j 6= ic, more than `c + 1 samples are required to identify it
as a keypoint, then
P (|Sj,t| > `c + 1) = 0 for j ∈ K, j 6= ic and all t.

A Zero-Regret Bayesian Algorithm
In developing an AI algorithm to solve this problem, we face
an explore-exploit dilemma: Should we exploit the existing
keypoints by sampling them more, or should we explore to
find new keypoints? Since the set of x-values are discrete,
at first this seems like a good fit for a multi-armed bandit
(MAB) (Robbins 1952) algorithm such as epsilon-greedy or
Thompson sampling (Thompson 1933). However, the deci-
sion to place a keypoint at a given x-value is unlikely to be
a purely stochastic choice at each timestep, making these
methods a poor fit. An alternative is to try to predict where
scientists will place keypoints, but this is an extremely chal-
lenging problem, as the space of phenomena scientists could
find interesting is vast and scientist interaction data is sparse.

We develop Threshold Estimating Sampling Algorithm
(TESA), which takes a different approach. Instead of pre-
dicting where key points will be placed, it predicts the up-
per limit of how much data the human needs to deter-
mine whether a point is scientifically interesting, specifically
nmax = maxi∈K ni. Then TESA is able to exploit this in-
formation to determine how to sample, since it is pointless
to sample non-keypoints with more than nmax samples.

To estimate nmax, TESA takes a Bayesian approach. It
models the unknown ni for each x-value as being drawn
from a Uniform(0, θ) distribution, with θ corresponding to
the unknown nmax. The conjugate prior to aUniform(0, θ)
is a Pareto distribution. Given a prior shape hyperparamter
a > 0 and a prior scale hyperparameter b0 > 0, after ob-
serving a set of keypoints K̂ the posterior distribution is
Pareto

(
max

(
b0,maxi∈K̂ ni

)
, a+ |K̂|

)
. Since TESA does

not know the true ni, it substitutes bi, which is the number
of samples that belonged to x-value i at the time it was (most
recently) made a keypoint. One complication in calculating
bi is that we do not ask the user for keypoints every timestep,
rather we ask the human to update these periodically (ev-
ery I steps). Since if a keypoint is acquired on time t, the
true number of samples to identify it could be anywhere
between |Si,t| and |Si,t−I |, therefore we use the midpoint
of this quantity as our estimate. Similar to other Bayesian
exploration approaches (Thompson sampling, UWPS, etc.),
TESA draws a sample from the Pareto posterior distribution
at each step to produce a threshold h which estimates nmax.

Given the threshold h, TESA will not select any non-
keypoints with more than h samples. However, it still needs
to determine how to tradeoff sampling keypoints versus sam-
pling non-keypoints with fewer than h samples. Empirically,
it is better to primarily exploit existing keypoints, but ex-
ploration is also important to uncover new keypoints. To
achieve good performance early on, TESA defines an εp
such that we select the least sampled non-keypoint with
probability εp and select the least sampled keypoint other-
wise. The pseudocode for TESA is shown in Algorithm 1.

Although some parts of TESA are similar to epsilon-
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Algorithm 1 Threshold Estimating Sampling Algorithm
(TESA)

1: Input: Tradeoff parameter εp ∈ [0, 1), prior scale b0 >
0, prior shape a > 0

2: K̂ ← ∅; ∀i∈XSi,0 ← ∅, Si,1 ← ∅
3: for t = 1 to T do
4: if t mod I = 0 then
5: Send (fh, fl, f̂) to humanH, get keypoints K̂t

6: for all i ∈ K̂t − K̂ do
7: bi ← |Si,t|+|Si,t−I |

2

8: K̂ ← K̂t

9: xm ← max
(
b0,maxi∈K̂ bi

)
10: h ∼ Pareto

(
xm, a+ |K̂|

)
11: ik ← argmini∈K̂ |Si,t|
12: ih ← argmini∈X |Si,t|
13: r ∼ Uniform (0, 1)

14: if |K̂| > 0 and (r ≥ εp or |Sih,t| ≥ h) then
15: ic ← ik
16: else
17: ic ← ih
18: Choose x value ic; Receive new sample yt
19: Sic,t+1 ← Sic,t ∪ {yt}
20: ∀i∈X s. t. i6=icSi,t+1 ← Si,t

greedy, the Bayesian threshold-learning procedure6 im-
proves performance. Specifically, although epsilon-greedy
is not zero-regret (Corollary 1), TESA is a zero-regret al-
gorithm.
Theorem 4. TESA (Algorithm 1) is zero regret.

Proof Sketch First we show that TESA samples all x-
values an infinite number of times. To show this we argue
that if Xn ⊂ X is the set of x-values that TESA does not
sample an infinite number of times, then there must be an
only finite number of timesteps twhere |Xn∩K̂t| > 0, since
TESA samples keypoints with probability at least (1 − εp).
If on the other hand |Xn ∩ K̂t| = 0 but |Xn| > 0, then
every time TESA samples a non-keypoint it will prefer to
sample ih ∈ Xn, since the number of samples on x-values
in X − Xn go to infinity. The probability TESA samples a
non-keypoint is at least εpP (|Sih,t| < h). Since h is drawn
from a Pareto distribution, the only way for this probabil-
ity to shrink to zero (without sampling ih infinitely often)
is for the Pareto posterior parameters to update in such a
way that the tail of the distribution becomes increasingly un-
likely. Yet, since TESA updates the Pareto hyperparameters
only when an x-value becomes a keypoint, there are only a
finite number of x-values all with the bounded number of
samples required to reveal whether or not they are keypoints

6Note that TESA does not use the sampled y-value, only look-
ing at the number of samples and where the keypoints are located.
However, this approach has practical benefits, such as being agnos-
tic to the criteria used to select keypoints, and also being somewhat
robust to delayed y-values, which occur in many real-world scien-
tific domains.

(by Assumption 1). Therefore, the Pareto tail cannot shrink
indefinitely, meaning TESA will select jt ∈ Xn infinitely
often, contradicting the definition ofXn. Therefore, the only
case that can occur is |Xn| = 0, meaning TESA samples all
x-values an unbounded number of times. Since the number
of samples on all x-values goes to infinity, K̂t will eventu-
ally converge to K by Assumption 1. Further, since all non-
keypoints are sampled infinitely often, |Sih,t| → ∞ and thus
P (|Sih,t| < h) → 0 by the properties of the Pareto com-
plementary CDF (recall h is drawn from a Pareto). So for
TESA, P (jt ∈ K)→ 1, and also K̂t → K. On steps where
K̂t = K and jt ∈ K, TESA selects an identical x-value to
the optimal algorithm A, thus incurring zero regret. So the
expected regret of TESA goes to 0 as t→∞.

Simulated Experiments
Scientific Domains To evaluate empricial performance, we
simulate data collection using public datasets from various
domains. Specifically, we extract x and y values, and store
the raw samples (y-values) for each x-value in sets. When
the AI selects an x-value i, data is “replayed” by sampling
a y-value (with replacement) from the set associated with i.
This helps ensure that properties of the original data (vari-
ance, etc.) are preserved, while allowing us to simulate dif-
ferent AI algorithms.

Economics We replayed data collected by the Hass Avo-
cado Board, relating price to weekly organic Avocado sales
from 2015-2018 (Kiggins 2018). The independent variable
was (discretized) price of organic avocados on a given week,
while the dependent variable was demand (as measured by
the number of avocados sold on that week). Although such
an analysis is imperfect because it does not hold other fac-
tors constant (for instance, the avocado supply), it does give
a sense of how well (or poorly) avocados historically sell
at different price points, making for a (simulated) scientific
experiment which has the potential to reveal interesting phe-
nomena that differ from the commonly accepted view (that
as price increases, demand decreases).

Mental Health We replayed data from the Open Sourcing
Mental Illness 2016 Mental Health in Tech Survey (OSMI
2016). For our dependent variable we used responses of tech
workers to the question of whether or not they had been
diagnosed with a mood disorder (depression, bipolar disor-
der, etc.). For the independent variable, we examined (dis-
cretized) worker age, since a survey can be targeted towards
different ages (e.g. student interns vs veteran employees).
Each y-value represented one binary response of an individ-
ual that fell into the designated range. Although the highest
rates of mood disorders are thought to occur among young
adults (NIMH 2017), it is interesting to investigate whether
this pattern holds across a population of tech workers.

Cognitive Psychology We replayed data from cognitive
psychology experiments by Petzold et al. (2004). Partici-
pants were shown squares of various sizes and asked to make
judgments about the square size. The reaction time of partic-
ipants’ responses forms the dependent variable in our anal-
ysis. For our independent variable, we use the (signed) dif-
ference between the size of the current square and the size
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Figure 1: Results comparing various AI data collection algorithms with various combinations of scientific domains (Economics,
Mental Health, or Cognitive Psychology) and user simulators (Critical Points, Difference Based, and Target Range).

of the previous square, which the original experiment was
designed to examine (Petzold and Haubensak 2001).
AI Algorithms

Round Robin This simply selects jt = (t mod |X |) + 1
to ensure that all x-values are sampled evenly.

Epsilon-Greedy Keypoint Sampler This selects a (uni-
formly) random jt ∈ K̂t with probability 1 − εg and a ran-
dom jt ∈ X otherwise. We used εg = 0.1 in all of our
experiments (this was not tuned).

Thompson Sampling This algorithm (Thompson 1933)
performs well on bandit problems (Chapelle and Li 2011),
and can outperform adversarial bandit algorithms such as
EXP3 (Auer et al. 1995), even in certain adversarial set-
tings (Lykouris, Mirrokni, and Leme 2020). Thompson sam-
pling receivies immediate rewards in the range [0,1] and
keeps track of a posterior distribution for each arm. When
selecting an arm, it samples each posterior distribution and
then selects the arm with the maximum sample. In our case,
“arms” correspond to x-values, and for “rewards”, we use
the difference in ζ-score after processing that sample. Since
these rewards are continuous, we use a variant with Normal
posteriors (Agrawal and Goyal 2013).7

UWPS Uncertainty Weighted Posterior Sampling (Liu
2015) is an algorithm that asks H to provide a prior the-
ory function τ which estimates the true response function,
and uses that to determine what is scientifically interesting.
Specifically, it maintains Bayesian posteriors over the value

7To translate the rewards into [0,1] we use a reward lower bound
of −1 and a reward upper bound of |X|

C(1)
− |X|

C(0)
.

of each x-value i, draws a sample µi from each posterior at
the current timestep, and and estimatesDi = τ(i)−µi. Then
it calculates Ui as the variance of the posterior and picks the
i that maximizes DiUi, thereby directing samples to points
that are uncertain and different from the prediction. Similar
to Thompson Sampling, UWPS uses Normal posteriors.

TESA-b0 We used TESA with εp = 0.1 (to match
epsilon-greedy) and a = 1. We try various values of b0,
which equates to an initial guess of the threshold nmax.
Simulated Users To simulate specifying a prior function es-
timate (for UWPS) based on an incomplete understanding
of the domain, 10 samples from the environment (at various
x values) are interpolated. We then examine the following
simulated keypoint selection methods:

Target Range This approach marks as keypoints x-values
whose mean samples fall between a minimum y value ylow
and a maximum y value yhigh, and where difference be-
tween the high and low confidence intervals is less than
oconf . In our simulations we rescale the y-values to [0,1]
and use oconf = 0.7. For the cognitive psychology domain
we set ylow = 0.1 and yhigh = 0.5, and for the mental health
domain we set ylow = 0 and yhigh = 0.33.

Difference Based This method marks keypoints that are
less than some threshold odist away from a prior func-
tion8. We set odist = 100000 in the Economics domain and
odist = 50 in the Mental illness domain (due to the different

8The prior used by the Difference Based user is identical to the
one used by UWPS, making experiments with this simulated user
essentially a “best case” case for UWPS since the keypoints are
placed at the maximum distance from this prior function.
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Figure 2: Our keypoint selection interface. We visualize the current estimated function (purple dotted line) and confidence
region (blue area). Users can add and delete keypoints as well as drag them to interesting regions of the function.

y-axis scales).
Critical Points This approach looks for points that are

either higher (by more than a threshold odiff ) than both
neighboring points, or lower (by at least odiff ) than both
neighboring points, and where the size of the confidence in-
tervals of all three involved points are less than oconf .We
scaled the samples between [0,1] and set odiff = 0.05 and
oconf = 0.7 in all domains.

Results
Our results (shown in Figure 1) are averaged over 500 runs,
with a fixed seed.9 Normal confidence intervals are not
shown as they are too small; the maximum size of TESA’s
confidence intervals are roughly 3% of the graph height.
TESA shows lower cumulative regret than other related al-
gorithms across a variety of scientific domains and methods
of placing keypoints. Using b0 = 10 works well, but TESA
is robust to variations of that parameter. In contrast, UWPS
tends to perform relatively poorly, even in simulations with
the Difference Based user. Part of the reason for this is that
uncertainty term tends to dominate the calculation (a fact
acknowledged by Liu (2015)), limiting its ability to direct

9Source code used to generate the graphs is available at
https://datadrivengame.science/aaai21/.

samples effectively. Multi-armed bandit algorithms such as
Thompson sampling also show mediocre performance, high-
lighting the differences between this domain and more stan-
dard explore-exploit problems. 10

Human Subject Experiment
Experiment Setup We constructed a web-based task de-
signed to compare TESA and our method of keypoint se-
lection to previously proposed methods (prior function es-
timation and UWPS). Users are randomly assigned to one
of our three replayed scientific domains (economics, mental
health, or cognitive psychology) described above.

First, participants are asked to draw a graph (for UWPS)
representing the expected results. Next, users are shown a
visualized function (as well as upper and lower confidence
intervals, Figure 2) and asked to drag stars (representing
keypoints) to the scientifically interesting locations. After
selecting keypoints, TESA is invoked to allocate samples
for the next phase of data collection and process the re-
ceived samples into a user-friendly visualization. This key-
point selection process was repeated three times. Users with

10The epsilon-greedy keypoint sampler outperforms Thompson
sampling in part because it switches to new keypoints immediately,
while Thompson sampling slowly updates its posteriors.
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zero keypoints after the second round were given an extra
prompt to confirm this was intentional. In the final phase of
the task, users were presented with two randomly-placed un-
labelled graphs: one generated by TESA (which used their
keypoints but not their prior curve) and one generated by
UWPS (which used their prior curve but not their keypoints).
The user’s latest keypoints were overlaid over each graph,
and underneath was a count of how many datapoints each
method had collected at non-keypoints. Users were asked:
“Do you think the left or right experiment did a better job
of collecting datapoints in place(s) that were scientifically
interesting?”.

Although the end goal is to use this interface with human
scientists, recruiting sufficient subjects of this expert popula-
tion can be difficult. The availability of non-experts is much
higher, but the major limitation is that they do not have the
same background knowledge or skills as an expert.

To mitigate this issue, we framed the task as one where
laypeople would play the role of a scientist running an exper-
iment. We included instructions on the particular domain, as
well a short (two-question) multiple choice quiz to confirm
retention. These were reviewed by domain experts to ensure
they were correct and complete: The questions and instruc-
tions for the economics domain were reviewed by an asso-
ciate professor of economics, the mental health domain was
reviewed by an associate professor of psychology (specializ-
ing in counseling psychology), and the cognitive psychology
domain was reviewed by a full professor of psychology (spe-
cializing in cognitive psychology). We also included instruc-
tions (and a two-question quiz) to help users understand the
visualizations and the task of marking keypoints. Users were
instructed to place keypoints on places they found scientif-
ically interesting as long as they had enough data, but were
never told exactly what “enough” was, nor told a precise def-
inition for “scientifically interesting”. If users got any ques-
tions wrong in either quiz, their results were excluded.11

We recruited participants from Amazon Mechanical Turk.
In a small pilot study, we found that the task took 14.4 min-
utes on average, therefore workers were paid $2.34 to en-
sure a reasonable hourly wage. Each worker was not allowed
to do more than one task to ensure independent results. We
simulated the collection of 100 datapoints per round per the
economics and mental health domains, and 30 datapoints per
round for the cognitive psychology domain (since this re-
quired brining subjects into a lab, there would naturally be
fewer participants).

Results Out of 101 total subjects, 21 managed to correctly
answer all quiz questions. The high exclusion rate was likely
due to the well-known difficulty of getting laypeople to rea-
son accurately about uncertainty (Kahneman et al. 1982).
Nevertheless, the 21 users also tended to behave reasonably
in the rest of the task; for instance, they placed more key-
points as more data was gathered, from an average of 1.9
keypoints initially to 3.4 keypoints by the final round.

Our main result is that 20 out of 21 subjects (95%) se-

11The full text of the quizzes and screenshots of all three parts
of the task can be found in the appendix at
https://datadrivengame.science/aaai21/.

lected TESA when asked which graph did a better job of
collecting datapoints in places that were scientifically inter-
esting. This preference was significant, as judged by the two-
tailed Binomial test (p < 0.001). It also tended to match the
ζ score, UWPS (average ζ = −243) never achieved a better
ζ score than TESA (average ζ = −113). This result indi-
cates that our human-in-the-loop paradigm appears to be a
better method of directing data collection than specifying a
prior function estimate, and that TESA effectively directs
data so as to maximize the satisfaction of real human users.

Discussion and Conclusion
In this paper, we have explored how humans and AI systems
can work together to more effectively collect data in scien-
tific spaces. We are one of the first to consider incorporat-
ing human feedback about what is scientifically interesting
iteratively throughout the process, eliminating the difficult
task of having to provide the AI with a complete set of ob-
jectives a priori. We developed TESA, an zero-regret algo-
rithm which carefully balances the task of gathering more
data about places which are known to be interesting while
searching for places that might become interesting in the fu-
ture. We show TESA performs well using real-world scien-
tific data, both in simulation and in a human study.

A limitation of our human study is that the subjects were
laypeople instead of scientists. Although we used quizzes
(reviewed by domain experts) to mitigate this, we acknowl-
edge that it is unlikely that the marked keypoints exactly
matched scientists’ preferences. Even so, our experiments
demonstrate the flexibility of our framework to direct data
towards a broader set of human preferences.

While we show TESA is zero-regret, we leave regret
bounds for future work. We feel that the zero-regret guar-
antee combined with comprehensive experiments should be
sufficient to cause practitioners to consider adopting TESA.

Also, here we have primarily considered one dimensional
response functions with a discretized set of x-values. Al-
though we feel TESA is immediately useful in many real-
world scientific problems, there are also many scientific
domains for which this representation is too simple. For
instance, domains such as aerial surveillance have unique
challenges, such as needing to consider the cost and fea-
sibility of movement in physical space (Lipor et al. 2017),
or needing more complex methods to visualize these high-
dimensional spaces. An interesting future direction is how
to extend TESA to these more challenging scenarios.

Although there is work to be done, this paper takes the
first steps towards developing AI systems that can work as
teammates with human scientists, thereby helping greatly
accelerate the process of scientific discovery and innovation,
especially in cases where data is scarce or expensive.
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Ethics Statement
The chief ethical concern of the framework proposed in this
paper is its potential to introduce bias. Indeed, the main idea
of algorithms such as TESA is to bias scientific data col-
lection towards places that are scientifically interesting. Al-
though this can be extremely valuable to maximize the ef-
ficiency of the collected data, it should also be used with
caution when trying to make broad claims that cut across
conditions (e.g., the framework would not be the best fit for
trying to determine which x-value results in the highest re-
sponse as that requires understanding the mean responses of
all x-values, but it would be a good fit if the objective was
simply to identify some x-value with an abnormally high re-
sponse). Time is also a factor here: allocating samples based
on keypoints devotes samples differently based on time, and
since experiments (especially with human subjects), may
not be identically distributed across time, this is a signifi-
cant concern compared to A/B testing type experiments in
which change across time affects all conditions evenly. In
most cases, once the scientifically interesting phenomena are
found using our method, these (and other related) problems
can be resolved by confirming the findings with a more tradi-
tional follow-up experiment (usually involving only a subset
of the x-values).

Another potential issue is that some settings of the in-
dependent variable, while perhaps scientifically interesting,
may cause harm. For instance, while it would be interest-
ing to see how many people would buy avocados if they
were priced at $300, one must also consider the negative
effect that price point would have on the general public (and
on their perception of the avocado industry). We feel that it
is the responsibility of the experiment designer to consider
these issues carefully and ensure that the experimental setup
is in some sense sound with respect to harm, prior to handing
control to an AI system.

We also wish to note that our human subject experiment
was approved by our Institutional Review Board (IRB).
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