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Abstract

AI systems are often used to make or contribute to impor-
tant decisions in a growing range of applications, including
criminal justice, hiring, and medicine. Since these decisions
impact human lives, it is important that the AI systems act in
ways which align with human values. Techniques for prefer-
ence modeling and social choice help researchers learn and
aggregate peoples’ preferences, which are used to guide AI
behavior; thus, it is imperative that these learned preferences
are accurate. These techniques often assume that people are
willing to express strict preferences over alternatives; which
is not true in practice. People are often indecisive, and es-
pecially so when their decision has moral implications. The
philosophy and psychology literature shows that indecision is
a measurable and nuanced behavior—and that there are sev-
eral different reasons people are indecisive. This complicates
the task of both learning and aggregating preferences, since
most of the relevant literature makes restrictive assumptions
on the meaning of indecision. We begin to close this gap by
formalizing several mathematical indecision models based on
theories from philosophy, psychology, and economics; these
models can be used to describe (indecisive) agent decisions,
both when they are allowed to express indecision and when
they are not. We test these models using data collected from
an online survey where participants choose how to (hypothet-
ically) allocate organs to patients waiting for a transplant.

Introduction
AI systems are currently used to make, or contribute to,
many important decisions. These systems are deployed in
self-driving cars, organ allocation programs, businesses for
hiring, and courtrooms to set bail. It is an ongoing challenge
for AI researchers to ensure that these systems make deci-
sions that align with human values.

A growing body of research views this challenge through
the lens of preference aggregation. From this perspective, re-
searchers aim to (1) understand the preferences (or values)
of the relevant stakeholders, and (2) design an AI system
that aligns with the aggregated preferences of all stakehold-
ers. This approach has been proposed recently in the context
of self-driving cars (Noothigattu et al. 2018) and organ al-
location (Freedman et al. 2020). These approaches rely on
a mathematical model of stakeholder preferences–which is
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typically learned using data collected via hypothetical de-
cision scenarios or online surveys.1 There is a rich litera-
ture addressing how to elicit preferences accurately and effi-
ciently, spanning the fields of computer science, operations
research, and social science.

It is critical that these observed preferences accurately
represent peoples’ true preferences, since these observations
guide deployed AI systems. Importantly, the way we mea-
sure (or elicit) preferences is closely tied to the accuracy of
these observations. In particular, it is well-known that both
the order in which questions are asked, and the set of choices
presented, impact expressed preferences (Day et al. 2012;
DeShazo and Fermo 2002).

Often people choose not to express a strict preference,
in which case we call them indecisive. The economics lit-
erature has suggested a variety of explanations for indeci-
sion (Gerasimou 2018)—for example when there are no de-
sirable alternatives, or when all alternatives are perceived as
equivalent. Moral psychology research has found that peo-
ple often “do not want to play god” in moral situations, and
would prefer for somebody or something else to take respon-
sibility for the decision (Gangemi and Mancini 2013).

In philosophy, indecision of the kind discussed in this pa-
per is typically linked to a class of moral problems called
symmetrical dilemmas, in which an agent is confronted with
the choice between two alternatives that are or appear to the
agent equal in value (Sinnott-Armstrong 1988).2 Much of
the literature concerns itself with the morality and rational-
ity of the use of a randomizer, such as flipping a coin, to re-
solve these dilemmas. Despite some disagreements over de-
tails (McIntyre 1990; Donagan 1984; Blackburn 1996; Hare
1981), many philosophers do agree that flipping a coin is
often a viable course of action in response to indecision3.

The present study accepts the assumption that flipping a
coin is typically an expression of one’s preference to not
decide between two options, but goes beyond the received

1The MIT Moral Machine project is one example: https://www.
moralmachine.net/

2Sophie’s Choice is a well-known example: a guard at the con-
centration camp cruelly forces Sophie to choose one of her two
children to be killed. The guard will kill both children if Sophie re-
fuses to choose. Sophie’s reason for not choosing one child applies
equally to another, hence the symmetry.

3With some exceptions: for example, see (Railton 1992).
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view in philosophy by suggesting that indecision can also
be common and acceptable when the alternatives are asym-
metric. We show that people often do adopt coin flipping
strategies in asymmetrical dilemmas, where the alternatives
are not equal in value. Thus, the use of a randomizer is likely
to play a more complex role in moral decision making than
simply as a tie breaker for symmetrical dilemmas.

Naturally, people are also sometimes indecisive when
faced with difficult decisions related to AI systems. How-
ever it is commonly assumed in the preference modeling lit-
erature that people always express a strict preference, unless
(A) the alternatives are approximately equivalent, or (B) the
alternatives are incomparable. Assumption (A) is mathemat-
ically convenient, since it is necessary for preference transi-
tivity.4 Since indecision is both a common and meaningful
response, strict preferences alone cannot accurately repre-
sent peoples’ real values. Thus, AI researchers who wish to
guide their systems using observed preferences should be
aware of the hidden meanings of indecision. We aim to un-
cover these meanings in a series of studies.
Our Contributions. First, we conduct a pilot experiment
to illustrate how different interpretations of indecision lead
to different outcomes (§ ). Using hypothesis testing, we re-
ject the common assumption (A) that indecision is expressed
only toward equivalent—or symmetric—alternatives.

Then, drawing on ideas from psychology, philosophy, and
economics, we discuss several other potential reasons for in-
decision, drawing (§ ). We formalize these ideas as mathe-
matical indecision models, and develop a probabilistic inter-
pretation that lends itself to computation (§ ).

To test the utility of these models, we conduct a second
experiment to collect a much larger dataset of decision re-
sponses (§ ). We take a machine learning (ML) perspective,
and evaluate each model class based on its goodness-of-fit
to this dataset. We assess each model class for predicting in-
dividual peoples’ responses, and then we briefly investigate
group decision models.

In all of our studies, we ask participants who should re-
ceive the kidney? in a hypothetical scenario where two pa-
tients are in need of a kidney, but only one kidney is avail-
able. As a potential basis for their answers, participants are
given three “features” of each patient: age, amount of alco-
hol consumption, and number of young dependents.

We chose this task for several reasons: first, kidney ex-
change is a real application where algorithms influence—
and sometimes make—important decisions about who re-
ceives which organ.5 Second, organ allocation is a difficult
problem: there are far fewer donors organs than there are
people in need of a transplant.6 Third, the question of who

4My preferences are transitive if “I prefer A over B” and “I
prefer B over C” implies “I prefer A over C”.

5Many exchanges match patients and donors algorithmically,
including the United Network for Organ Sharing (https://unos.
org/transplant/kidney-paired-donation/) and the UK national ex-
change (https://www.odt.nhs.uk/living-donation/uk-living-kidney-
sharing-scheme/).

6There are around 100, 000 people in need of a transplant today
(https://unos.org/data/transplant-trends/), and about 22, 000 trans-
plants have been conducted in 2020.

should receive these scarce resources raises serious ethical
dilemmas (Scheunemann and White 2011). Kidney alloca-
tion is also a common motivation for studies of fair resource
allocation (Agarwal et al. 2019; McElfresh and Dickerson
2018; Mattei, Saffidine, and Walsh 2018). Furthermore, this
type of scenario is frequently used to study peoples’ prefer-
ences and behavior (Freedman et al. 2020; Furnham, Sim-
mons, and McClelland 2000; Furnham, Thomson, and Mc-
Clelland 2002; Oedingen, Bartling, and Krauth 2018). Im-
portantly, this prior work focuses on peoples’ strict prefer-
ences, while we aim to study indecision.

Study 1: Indecision is Not Random Choice
We first conduct a pilot study to illustrate the importance
of measuring indecision. Here we take the perspective of a
preference-aggregator; we illustrate this perspective using a
brief example: Suppose we must choose between two alter-
natives (X or Y), based on the preferences of several stake-
holders. Using a survey we ask all stakeholders to express a
strict preference (to “vote”) for their preferred alternative; X
receives 10 votes while Y receives 6 votes, so X wins.

Next we conduct the same survey, but allow stakeholders
to vote for “indecision” instead; now, X receives 4 votes, Y
receives 5 votes, and “indecision” receives 7 votes. If we as-
sume that voters are indecisive only when alternatives are
nearly equivalent (assumption (A) from Section ), then each
“indecision” vote is analogous to one half-vote for both X
and Y, and therefore Y wins. In other words, in the first sur-
vey we assume that all indecisive voters choose randomly
between X and Y. However, if indecision has another mean-
ing, then it is not clear whether X or Y wins. Thus, in or-
der to make the best decision for our constituents we must
understand what meaning is conveyed by indecisive voters.
Unfortunately for our hypothetical decision-maker, assump-
tion (A) is not always valid.

Using a small study, we test—and reject—assumption
(A), which we frame as two different hypotheses, H0-1: if
we discard all indecisive votes, then both X and Y receive the
same proportion votes, whether or not indecision is allowed.
A second related hypothesis is H0-2: if we assign half of a
vote to both X and Y when someone is indecisive, then both X
and Y receive the same proportion votes, whether or not in-
decision is allowed. We conducted the hypothetical surveys
described above, using 15 kidney allocation questions (see
Appendix ?? for the survey text and analysis). Participants
were divided into two groups: participants in group Indeci-
sive (N=62) were allowed to express indecision (phrased as
“flip a coin to decide who receives the kidney”), while group
Strict (N=60) was forced to choose one of the two recipi-
ents. We test H0-1 by identifying the majority patient, “X”
(who received the most votes) and the minority patient “Y”
for each of the 15 questions (details of this analysis are in
Appendix ??). Overall, group Indecisive cast 581 (74) votes
for the majority (minority) patient, and 275 indecision votes;
the Strict group cast 751 (149) votes for the majority (mi-
nority) patient. Using a Pearson’s chi-squared test we reject
H0-1 (p < 0.01). According to H0-2, we might assume that
all indecision votes are “effectively” one half-vote for both
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the minority and majority patient. In this case, the Indeci-
sive group casts 718.5 (211.5) “effective” votes for the ma-
jority (minority) patients; using these votes we reject H0-2
(p < 0.01).

In the context of our hypothetical choice between X and
Y, this finding is troublesome: since we reject H0-1 and H0-
2, we cannot choose a winner by selecting the alternative
with the most votes—or, if indecision is measured, the most
“effective” votes. If indecision has other meanings, then the
“best” alternative depends on which meanings are used by
each person; this is our focus in the remainder of this paper.

Models for Indecision
The psychology and philosophy literature find several rea-
sons for indecision, and many of these reasons can be ap-
proximated by numerical decision models. Before present-
ing these models, we briefly discuss their related theories
from psychology and philosophy.
Difference-Based Indecision In the preference modeling
literature it is sometimes assumed that people are indecisive
only when both alternatives (X and Y) are indistinguishable.
That is, the perceived difference between X and Y is too
small to arrive at a strict preference. In philosophy, this is
referred to as “the possibility of parity” (Chang 2002).
Desirability-Based Indecision In cases where both alter-
natives are not “good enough”, people may be reluctant to
choose one over the other. This has been referred to as “sin-
gle option aversion” (Mochon 2013), when consumers do
not choose between product options if none of the options
is sufficiently likable. Zakay (1984) observes this effect in
single-alternative choices: people reject an alternative if it
is not sufficiently close to a hypothetical “ideal”. Similarly,
people may be indecisive if both alternatives are attractive.
People faced with the choice between two highly valued op-
tions often opt for an indecisive resolution in order to man-
age negative emotions (Luce 1998).
Conflict-Based Indecision People may be indecisive when
there are both good and bad attributes of each alternative.
This is phrased as conflict by Tversky and Shafir (1992):
people have trouble deciding between two alternatives if nei-
ther is better than the other in every way. In the AI literature,
the concept of incomparability between alternatives is also
studied (Pini et al. 2011).

While these notions are intuitively plausible, we need
mathematical definitions in order to model observed pref-
erences. That is the purpose of the next section.

Indecision Model Formalism
In accordance with the literature, we refer to decision-
makers as agents. Agent preferences are represented by bi-
nary relations over each pair of items (i, j) ∈ I×I , where I
is a universe of items. We assume agent preferences are com-
plete: when presented with item pair (i, j), they expresses
exactly one response r ∈ {0, 1, 2}, which indicates:

• r = 1, or i � j: the agent prefers i more than j

• r = 2, or i ≺ j: the agent prefers j more than i

• r = 0, or i ∼ j: the agent is indecisive between i and j

When preferences are complete and transitive,7 then the
preference relation corresponds to a weak ordering over all
items (Shapley and Shubik 1974). In this case there is a util-
ity function representation for agent preferences, such that
i � j ⇐⇒ u(i) > u(j), and i ∼ j ⇐⇒ u(i) = u(j),
where u : I → R is a continuous function. We assume each
agent has an underlying utility function, however in general
we do not assume preferences are transitive. In other words,
we assume agents can rank items based on their relative
value (represented by u(·)), but in some cases they consider
other factors in their response—causing them to be inde-
cisive. Next, to model indecision we propose mathematical
representations of the causes for indecision from Section .

Mathematical Indecision Models
All models in this section are specified by two parameters: a
utility function u(·) and a threshold λ. Each model is based
on scoring functions: when the agent observes a query they
assign a numerical score to each response, and they respond
with the response type that has maximal score; we assume
that score ties are broken randomly, though this assumption
will not be important. In accordance with the literature, we
assume the agent observes random iid additive error for each
response score (see, e.g., Soufiani, Parkes, and Xia (2013)).
Let Sr(i, j) be the agent’s score for response r to compari-
son (i, j); the agent’s response is given by

R(i, j) = argmax
r∈{0,1,2}

Sr(i, j) + εrij .

That is, the agent has a deterministic score for each response
Sr(i, j), but when making a decision the agent observes a
noisy version of this score, Sr(i, j) + εrij . We make the
common assumption that noise terms εrij are iid Gumbel-
distributed, with scale µ = 1. In this case, the distribution of
agent responses is

p(i, j, r) =
eSr(i,j)

eS0(i,j) + eS1(i,j) + eS2(i,j)
. (1)

Each indecision model is defined using different score func-
tions Sr(·, ·). Score functions for strict responses are always
symmetric, in the sense that S2(i, j) = S1(j, i); thus we
need only define S1(·, ·) and S0(·, ·). We group each model
by their cause for indecision from Section .
Difference-Based Models: Min-δ, Max-δ Agents are in-
decisive when the utility difference between alternatives is
either smaller than threshold λ (Min-δ) or greater than λ
(Max-δ). The score functions for these models are

Min-δ :

{
S1(i, j) ≡ u(i)− u(j)
S0(i, j) ≡ λ

Max-δ :

{
S1(i, j) ≡ u(i)− u(j)
S0(i, j) ≡ 2|u(i)− u(j)| − λ

Here λ should be non-negative: for example with Min-δ,
λ ≤ 0 means the agent is never indecisive, while for Max-δ
this means the agent is always indecisive. Model Max-δ
seems counter-intuitive (if one alternative is clearly bet-
ter than the other, why be indecisive?), yet we include it

7Agent preferences are transitive if i � j and i � k iff i � k.
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for completeness. Note that this is only one example of a
difference-based model: instead the agent might assess al-
ternatives using a distance measure d : I × I → R+, rather
than u(·).
Desirability-Based Models: Min-U , Max-U Agents are
indecisive when the utility of both alternatives is below
threshold λ (Min-U ), or when the utility of both alterna-
tives is greater than λ (Max-U ). Unlike the difference-based
models, λ here may be positive or negative. The score func-
tions for these models are

Min-U :

{
S1(i, j) ≡ u(i)
S0(i, j) ≡ λ

Max-U :

{
S1(i, j) ≡ u(i)
S0(i, j) ≡ 2min{u(i), u(j)} − λ

Both of these models motivated in the literature (see § ).
Conflict-Based Model: Dom In this model the agent is inde-
cisive unless one alternative dominates the other in all fea-
tures, by threshold at least λ. For this indecision model, we
need a utility measure associated with each feature of each
item; for this purpose, let un(i) be the utility associated with
feature n of item i. As before, λ here may be positive or neg-
ative. The score functions for this model are

Dom :

{
S1(i, j) ≡ minn∈[N ] (un(i)− un(j))
S0(i, j) ≡ λ

This is one example of a conflict-based indecision model,
though we might imagine others.

These models serve as a class of hypotheses which de-
scribe how agents respond to comparisons when they are
allowed to be indecisive. Using the response distribution
in (1), we can assess how well each model fits with an
agent’s (possibly indecisive) responses. However, in many
cases agents are required to express strict preferences—they
are not allowed to be indecisive (as in Section ). With slight
modification the score-based models from this section can
be used even when agents are forced to express only strict
preferences; we discuss this in the next section.

Indecision Models for Strict Comparisons
We assume that agents may prefer to be indecisive, even
when they are required to express strict preferences. That is,
we assume that agents use an underlying indecision model
to express strict preferences. When they cannot express in-
decision, we assume that they either resample from their de-
cision distribution, or they choose randomly. That is, we as-
sume agents use a two-stage process to respond to queries:
first they sample a response r from their response distribu-
tion p(·, ·, r); if r is strict (1 or 2), then they express it, and
we are done. If they sample indecision (0), then they flip a
weighted coin to decide how to respond:

(heads) with probability q they re-sample from their re-
sponse distribution until they sample a strict re-
sponse, without flipping the weighted coin again

(tails) with probability 1−q they choose uniformly at ran-
domly between responses 1 and 2.

That is, they respond according to distribution

pstrict(i, j, r) ≡


q
(

eS(i,j)+(1/2)eS0(i,j)

C

)
+ 1−q

D

(
eS1(i,j)

) if r = 1

q
(

eS2(i,j)+(1/2)eS0(i,j)

C

)
+ 1−q

D eS2(i,j)
if r = 2

(2)

Here, C ≡ eS0(i,j) + eS1(i,j) + eS2(i,j) , and D ≡ eS1(i,j) +
eS(2(i,j). The (heads) condition from above has another in-
terpretation: the agent chooses to sample from a “strict”
logit, induced by only the score functions for strict re-
sponses, S1(i, j) and S1(i, j). We discuss this model in more
detail, and provide an intuitive example, in Appendix ??.

We now have mathematical indecision models which de-
scribe how indecisive agents respond to comparison queries,
both when they are allowed to express indecision (§ ), and
when they are not (§ ). The model in this section, and re-
sponse distributions (1) and (2), represent one way indeci-
sive agents might respond when they are forced to express
strict preferences. The question remains whether any of
these models accurately represent peoples’ expressed pref-
erences in real decision scenarios. In the next section we
conduct a second, larger survey to address this question.

Study 2: Fitting Indecision Models
In our second study, we aim to model peoples’ responses
in the hypothetical kidney allocation scenario using indeci-
sion models from the previous section as well as standard
preference models from the literature. The models from the
previous section can be used to predict peoples’ responses,
both when they are allowed to be indecisive, and when they
are not. To test both class of models, we conducted a survey
with two groups of participants, where one group was were
given the option to express indecision, and the other was
not. Each participant was assigned to 1 of the 150 random
sequences, each of which contains 40 pairwise comparisons
between two hypothetical kidney recipients with randomly
generated values for age, number of dependents, and number
of alcoholic drinks per week. We recruited 150 participants
for group Indecisive, which was given the option to express
indecision8. 18 participants were excluded from the analysis
for failing attention checks, leaving us with a final sample
of N=132. Another group, Strict (N=132), was recruited to
respond to the same 132 sequences, but without the option
to express indecision.

We remove 26 participants from Indecisive who never
express indecision, because it is not sensible to compare
goodness-of-fit for different indecision models when the
agent never chooses to be indecisive. This study was re-
viewed and approved by our organization’s Institutional Re-
view Board; please see Appendix ?? for a full description of
the survey and dataset.
Model Fitting. In order to fit these indecision models to
data, we assume that agent utility functions are linear: each
item i ∈ I is represented by feature vector xi ∈ RN ;

8As in Study 1, this is phrased as “flip a coin.”
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agent utility for item i is u(i) = u>xi, where u ∈ RN

is the agent’s utility vector. We take a maximum likelihood
estimation (MLE) approach to fitting each model: i.e., we
select agent parameters u and λ which maximize the log-
likelihood (LL) of the training responses. Since the LL of
these models is not convex, we use random search via a
Sobol process (Sobol’ 1967). The search domain for utility
vectors is u ∈ [−1, 1]N , the domain for probability param-
eters is (0, 1), and the domain for λ depends on the model
type (see Appendix ??). The number of candidate parame-
ters tested and the nature of the train-test split vary between
experiments. All code used for our analysis is available on-
line, 9 and details of our implementation can be found in
Appendix ??.

We explore two different preference-modeling settings:
learning individual indecision models, and learning group
indecision models.

Individual Indecision Models
The indecision models from Section are indented to de-
scribe how an indecisive agent responds to queries—both
when they are given the option to be indecisive, and when
they are not. Thus, we fit each of these models to responses
from both participant groups: Indecisive and Strict. For each
participant we randomly split their question-response pairs
into a training and testing set of equal size (20 responses
each). For each participant we fit all five models from Sec-
tion , and two baseline methods: Rand (express indeci-
sion with probability q and chooses randomly between al-
ternatives otherwise), MLP (a multilayer perceptron classi-
fier with two hidden layers with 32 and 16 nodes). We use
MLP as a state-of-the-art benchmark, against which we com-
pare our models; we use this benchmark to see how close our
new models are to modern ML methods.

For group Indecisive we estimate parameter q for
NaiveRand from the training queries; for Strict q is 0. For
MLP we train a classifier with one class for each response
type, using scikit-learn (Pedregosa et al. 2011): for Indeci-
sive responses we train a three-class model (r ∈ {0, 1, 2}),
and for Strict we train a two-class model (r ∈ {1, 2}).
Goodness-of-fit. Using the standard ML approach, we se-
lect the best-fit models for each agent using the training-set
LL, and evaluate the performance of these best-fit models
using the test-set LL. Table 1 shows the number of partici-
pants for which each model was the 1st-, 2nd-, and 3rd best-
fit for each participant (those with the greatest training-set
LL), and the median test and train LL for each model. First
we observe that no indecision model is a clear winner: sev-
eral different models appear in the top 3 for each participant.
This suggests that different indecision models fit different
individuals better than others — there is not a single model
that reflects everyone’s choices. However, some models per-
form better than others: Min-δ and Max-δ appear often in
the top 3 models, as does Max-U for group Indecisive.

It it is somewhat surprising the Max-δ fits participant re-
sponses, since this model does not seem intuitive: in Max-δ,

9https://github.com/duncanmcelfresh/indecision-modeling
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Figure 1: Best-fit parameters for each indecision model, for
participants in group Indecisive (top) and Strict (bottom). El-
ements of the agent utility vector correspond to patient age
(u1), alcohol consumption (u2), and number of dependents
(u3); the interpretation of λ depends on the model class.
Only participants for which the model is the 1st-best-fit are
included (see Table 1).

agents are indecisive when two alternatives have very differ-
ent utility—i.e. one has much greater utility than the other.
It is also surprising the Max-U is a good fit for group In-
decisive, but not for Strict. One interpretation of this fact is
that some people use (a version of) Max-U when they have
the option, but they do not use Max-U when indecision is
not an option. Another interpretation is that our modeling as-
sumptions in Section are wrong—however our dataset can-
not definitively explain this discrepancy.

Finally, MLP is the most common best-fit model for all
participants in both groups, though it is rarely a 2nd- or 3rd-
best fit. This suggests that the MLP benchmark accurately
models some participants’ responses, and performs poorly
for others; we expect this is due to overfitting. While MLP
is more accurate than our models in some cases, it does not
shed light on why people are indecisive.

It is notable that some indecision models (Min-δ and
Max-δ) outperform the standard logit model (Logit), both
when they are learned from responses including indecision
(group Indecisive), and when they are learned from only
strict responses (group Strict). Thus, we believe that these
indecision models give a more-accurate representation for
peoples’ decisions than the standard logit, both when they
are given the option to be indecisive, and when they are not.
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Group Indecisive (both indecision and strict responses) Group Strict (only strict responses)

Model #1st #2nd #3rd Train/Test LL # 1st # 2nd # 3rd Train/Test LL

Min-δ 29 (27%) 23 (22%) 13 (12%) -0.82/-0.85 26 (20%) 53 (40%) 34 (26%) -0.44/-0.47
Max-δ 11 (10%) 12 (11%) 19 (18%) -0.81/-0.90 31 (23%) 57 (43%) 25 (19%) -0.44/-0.47
Min-U 8 (8%) 32 (30%) 17 (16%) -0.83/-0.88 1 (1%) 5 (4%) 20 (15%) -0.53/-0.56
Max-U 22 (21%) 23 (22%) 12 (11%) -0.81/-0.83 1 (1%) 5 (4%) 15 (11%) -0.53/-0.55
Dom 0 (0%) 3 (3%) 9 (8%) -0.88/-0.95 2 (2%) 4 (3%) 3 (2%) -0.57/-0.58

Logit 5 (5%) 12 (11%) 31 (29%) -0.84/-0.90 4 (3%) 5 (4%) 27 (20%) -0.53/-0.55
Rand 1 (1%) 0 (0%) 3 (3%) -1.10/-1.10 6 (5%) 0 (0%) 1 (1%) -0.69/-0.69
MLP 30 (28%) 1 (1%) 2 (2%) -0.04/-1.15 61 (46%) 3 (2%) 7 (5%) -0.03/-0.49

Table 1: Best-fit models for individual participants in group Indecisive (left) and Strict (right). The number of participants for
which each model has the largest test log-likelihood (#1st), second-largest test LL (#2nd), as well as third-largest (#3rd) are
given for each model, and the median training and test LL over all participants.

Since these indecision models may be accurate represen-
tations of peoples’ choices, it is informative to examine the
best-fit parameters. Figure 1 shows best-fit parameters for
participants in group Indecisive (top) and Strict (bottom);
for each indecision model, we show all learned parameters
for participants for whom the model is the 1st-best-fit (see
Table 1). Importantly, the best-fit values of u1, u2, and u3

are similar for all models, in both groups. That is, in general,
people have similar relative valuations for different alterna-
tives: u1 < 0 means younger patients are preferred over
older patients, u2 < 0 means patients who consume less al-
cohol are preferred more; u3 > 0 means that patients with
more dependents are preferred more. We emphasize that the
indecision model parameters for group Strict (bottom panel
of Figure 1) are learned using only strict responses.

These models are fit using only 20 samples, yet they pro-
vide useful insight into how people make decisions. Impor-
tantly, our simple indecision models fit observed data better
than the standard logit—both when people can express in-
decision, and when they cannot. Thus, contrary to the com-
mon assumption in the literature, not all people are indeci-
sive only when two alternatives are nearly equivalent. This
assumption may be true for some people (participants for
which Min-δ is a best-fit model), but it is not always true.

Group Models
Next we turn to group decision models, where the goal is
for an AI system to make decisions that reflect the values
of a certain group of humans. In the spirit of the social
choice literature, we refer to agents as “voters”, and sug-
gested decisions as “votes”. We consider two distinct learn-
ing paradigms, where each reflects a potential use-case of an
AI decision-making system.

The first paradigm, Population Modeling, concerns a large
or infinite number of voters; our goal is to estimate responses
to new decision problems that are the best for the entire
population. This scenario is similar to conducting a national
poll: we have a population including thousands or millions
of voters, but we can only sample a small number (say, hun-
dreds) of votes. Thus, we aim to build a model that repre-
sents the entire population, using a small number of votes

from a small number of voters. There are several ways to
aggregate uncertain voter models (see for example Chapter
10 of Brandt et al. (2016)); our approach is to estimate the
next vote from a random voter in the population. Since we
cannot observe all voters, our model should generalize not
only a “known” voter’s future behavior, but all voters’ fu-
ture behavior.

In the second paradigm, Representative Decisions, we
have a small number of “representative” voters; our goal is
to estimate best responses to new decision problems for this
group of representatives. This scenario is similar to multi-
stakeholder decisions including organ allocation or public
policy design: these decisions are made by a small number
of representatives (e.g., experts in medicine or policy), who
often have very limited time to express their preferences. As
in Population Modeling we aim to estimate the next vote
from a random expert—however in this paradigm, all voters
are “known”, i.e., in the training data.

Both voting paradigms can be represented as a machine
learning problem: observed votes are “data”, with which we
select a best-fit model from a hypothesis class; these mod-
els make predictions about future votes.10 Thus, we split all
observed votes into a training set (for model fitting) and a
test set (for evaluation). How we split votes into a training
and test set is important: in Representative Decisions we aim
to predict future decisions from a known pool of voters—
so both the training and test set should contain votes from
each voter. In Population Modeling we aim to predict future
decisions from the entire voter population—so the training
set should contain only some votes from some voters (i.e.,
“training” voters), while the test set should contain the re-
maining votes from training voters, and all responses from
the non-training voters.

We propose several group indecision models, each of
which is based on the models from Section ; please see Ap-
pendix ?? for more details.
VMixture Model. We first learn a best-fit indecision
(sub)model for each training voter; the overall model gen-

10Several researchers have used techniques from machine learn-
ing for social choice (Doucette, Larson, and Cohen 2015; Conitzer
et al. 2017; Kahng et al. 2019; Zhang and Conitzer 2019).

5980



Model Name Represenatitives (20) Population (100)

Indecisive Strict Indecisive Strict

2-Min-δ -0.90/-0.88 -0.46/-0.47 -0.87/-0.88 -0.54/-0.52
2-Mixture -0.87/-0.86 -0.45/-0.47 -0.87/-0.88 -0.53/-0.52
VMixture -0.92/-0.90 -0.49/-0.51 -0.93/-0.94 -0.57/-0.56

Min-δ -0.92/-0.90 -0.46/-0.48 -0.87/-0.87 -0.54/-0.53
Max-δ -0.95/-0.90 -0.45/-0.46 -0.96/-0.95 -0.54/-0.52
Min-U -0.96/-0.95 -0.52/-0.54 -0.98/-0.99 -0.58/-0.57
Max-U -0.87/-0.86 -0.54/-0.54 -0.94/-0.94 -0.58/-0.57
Dom -1.08/-1.07 -0.57/-0.58 -1.05/-1.06 -0.61/-0.60

MLP -0.40/-1.55 -0.15/-0.85 -0.71/-0.77 -0.42/-0.51
Logit -0.91/-0.88 -0.53/-0.54 -0.93/-0.94 -0.57/-0.56
Rand -1.03/-1.00 N/A -1.07/-1.07 N/A

Table 2: Average train-set and test-set LL per question (re-
ported as “train/test”) for Representative Decisions with 20
training voters, (left) and Population Modeling with 100
training voters (right), for both the Indecisive and Strict par-
ticipant groups. The greatest test-set LL is highlighted for
each column. For Representatives, the test set includes only
votes from the representative voters; for Population, the test
set includes all voters.

erates responses by first selecting a training voter uniformly
at random, and then responding according to their submodel.
k-Mixture Model. This model consists of k submodels,
each of which is an indecision model with its own util-
ity vector u and threshold λ. The type of each submodel
(Min/Max-δ, Min/Max-U , Dom) is itself a categorical vari-
able. Weight parameters w ∈ Rk indicate the importance of
each submodel. This model votes by selecting a submodel
from the softmax distribution11 on w, and responds accord-
ing to the chosen submodel.
k-Min-δ Mixture. This model is equivalent to k-
Mixture, however all submodels are of type Min-δ. We
include this model since Min-δ is the most-common best-
fit indecision model for individual participants (see § ).

We simulate both the Population Modeling and Represen-
tative Decisions settings using various train/test splits of our
survey data. For Population Modeling we randomly select
100 training voters; half of each training voter’s responses
are added to the test set, and half to the training set. All re-
sponses from non-training voters are added to the test set.12

For Representative Decisions we randomly select 20
training voters (“representatives”), and randomly select half
of each voter’s responses for testing; all other responses are
used for training; all non-training voters are ignored.

For both of these settings we fit all mixture models (2-
Mixture, 2-Min-δ, and VMixture), each individual in-
decision model from Section , and each each baseline model.
Table 2 shows the training-set and test-set LL for each

11With the softmax distribution, the probability of selecting i
is ewi/

∑
j e

wj . We use this distribution for mathematical conve-
nience, though it is straightforward to learn the distribution directly.

12Each voter in our data answers different questions, so all ques-
tions in the test set are “new.”

method, for both voting paradigms. Most indecision models
achieve similar test-set LL, with the exception of Dom. In
the Representatives setting, both mixture models and (non-
mixture) indecision models perform well (notably, better
than MLP. This is somewhat expected, as the Representa-
tives setting uses very little training data, and complex ML
approaches such as MLP are prone to overfitting—this is cer-
tainly the case in our experiments. In the Population setting
the mixture models outperform individual indecision mod-
els; this is expected, as these mixture models have a strictly
larger hypothesis class than any individual model. Unsur-
prisingly, MLP achieves the greatest test-set LL in the Popu-
lation setting—yet provides no insight as to how these deci-
sions are made.

Discussion

In many cases it is natural to feel indecisive, for example
when voting in an election or buying a new car; people are
especially indecisive when their choices have moral conse-
quences. Importantly, there are many possible causes for in-
decision, and each conveys different meaning: I may be in-
decisive when voting for a presidential candidate because I
feel unqualified to vote; I may be indecisive when buying a
car because all options seem too similar. Using a small study,
in Section we demonstrate that indecision cannot be inter-
preted as a “flipping a coin” to decide between alternatives.
This violates a key assumption in the technical literature, and
it complicates the task of selecting the best alternative for an
individual or group. Indeed, defining the “best” alternative
for indecisive agents depends on what indecision means.

These philosophical and psychological questions have be-
come critical to computer science researchers, since we now
use preference modeling and social choice to guide deployed
AI systems. The indecision models we develop in Section
and test in Section provide a framework for understanding
why people are indecisive—and how indecision may influ-
ence expressed preferences when people are allowed to be
indecisive (§ ), and when they are required to express strict
preferences (§ ). The datasets collected in Study 1 (§ ) and
Study 2 (§ ) provide some insight into the causes for inde-
cision, and we believe other researchers will uncover more
insights from this data in the future.

Several questions remain for future work. First, what are
the causes for indecision, and what meaning do they con-
vey? This question is well-studied in the philosophy and so-
cial science literature, and AI researchers would benefit from
interdisciplinary collaboration. Methods for preference elic-
itation (Blum et al. 2004) and active learning (Freund et al.
1997) may be useful here.

Second, if indecision has meaning beyond the desire to
“flip a coin”, then what is the best outcome for an indecisive
agent? ... for a group of indecisive agents? This might
be seen as a problem of winner determination, from a
perspective of social choice (Pini et al. 2011).
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Ethics Statement
Many AI systems are designed and constructed with the goal
of promoting the interests, values, and preferences of users
and stakeholders who are affected by the AI systems. Such
systems are deployed to make or guide important decisions
in a wide variety of contexts, including medicine, law, busi-
ness, transportation, and the military. When these systems go
wrong, they can cause irreparable harm and injustice. There
is, thus, a strong moral imperative to determine which AI
systems best serve the interests, values, and preferences of
those who are or might be affected.

To satisfy this imperative, designers of AI systems need
to know what affected parties really want and value. Most
surveys and experiments that attempt to answer this ques-
tion study decisions between two options without giving par-
ticipants any chance to refuse to decide or to adopt a ran-
dom method, such as flipping a coin. Our studies show that
these common methods are inadequate, because providing
this third option—which we call indecision—changes the
preferences that participants express in their behavior. Our
results also suggest that people often decide to use a ran-
dom method for variety of reasons captured by the models
we studied. Thus, we need to use these more complex meth-
ods—that is, to allow indecision—in order to discover and
design AI systems to serve what people really value and see
as morally permitted. That lesson is the first ethical implica-
tion of our research.

Our paper also teaches important ethical lessons regard-
ing justice in data collection. It has been shown that biases
can, and are, introduced at the level of data collection. Our
results open the door to the suggestion that biases could be
introduced when a participant’s values are elicited under the
assumption of a strict preference. Consider a simple case of
choosing between two potential kidney recipients, A and B,
who are identical in all aspects, except A has 3 drinks a week
while B has 4. Throughout our studies, we have consistently
observed that participants would overwhelmingly give the
kidney to patient A who has 1 fewer drink each week, when
forced to choose between them. However, when given the
option to do so, most would rather flip a coin. An argument
can be made here that the data collection mechanism under
the strict-preference assumption is biased against patient B
and others who drink more than average.

Finally, our studies also have significant relevance to ran-
domness as a means of achieving fairness in algorithms. As
our participants were asked to make moral decisions regard-
ing who should get the kidney, one interpretation of their
decisions to flip a coin is that the fair thing to do is often
to flip a coin so that they (and humans in general) do not
have to make an arbitrary decision. The modeling techniques
proposed here differ from the approach to fairness that con-
ceives random decisions as guaranteeing equity in the dis-
tribution of resources. Our findings about model fit suggest
that humans sometimes employ random methods largely in
order to avoid making a difficult decision (and perhaps also
in order to avoid personal responsibility). If our techniques
are applied to additional problems, they will further the dis-
cussion of algorithmic fairness by emphasizing the role of
randomness and indecision. This advance can improve the
ability of AI systems to serve their purposes within moral
constraints.
Experiment Scenario: Organ Allocation. Our experiments
focus on a hypothetical scenario involving the allocation of
scarce donor organs. We use organ allocation since it is a
real, ethically-fraught problem, which often involves AI or
other algorithmic guidance. However our hypothetical organ
allocation, and our survey experiments, are not intended to
reflect the many ethical and logistical challenges of organ
transplantation; these issues are settled by medical experts
and policymakers. Our experiments do not focus on a real-
istic organ allocation scenario, and our results should not be
interpreted as guidance for transplantation policy.
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