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Abstract

Narrative Generation has attracted significant interest as a
novel application of Automated Planning techniques. How-
ever, the vast amount of narrative material available opens the
way to the use of Deep Learning techniques. In this paper, we
explore the feasibility of narrative generation through self-
supervised learning, using sequence embedding techniques
or auto-encoders to produce narrative sequences. We use
datasets of well-formed plots generated by a narrative plan-
ning approach, using pre-existing, published, narrative plan-
ning domains, to train generative models. Our experiments
demonstrate the ability of generative sequence models to pro-
duce narrative plots with similar structure to those obtained
with planning techniques, but with significant plot novelty in
comparison with the training set. Most importantly, gener-
ated plots share structural properties associated with narrative
quality measures used in Planning-based methods. As plan-
based structures account for a higher level of causality and
narrative consistency, this suggests that our approach is able
to extend a set of narratives with novel sequences that display
the same high-level narrative properties. Unlike methods de-
veloped to extend sets of textual narratives, ours operates at
the level of plot structure. Thus, it has the potential to be used
across various media for plots of significant complexity, be-
ing initially limited to training and generation operating in the
same narrative genre.

Introduction
Narrative Generation has attracted significant attention in
the Entertainment AI community for its potential to develop
new media genres such as Interactive Narrative or provide
new gameplay content in computer games (Riedl and Bu-
litko 2012). There has been substantial work in the use of
Planning technologies (Riedl and Young 2010) to support
the generation of consistent plots, in particular preserving
the causality of narrative actions (Young et al. 2013). Plan-
ning technologies can support generation in various media,
from 3D graphics to text or even video, as they are essen-
tially media neutral. It has also been demonstrated, through
various user evaluations of the end-product narrative, that
plan-based narratives are recognized as realistic by users
and that sophisticated aspects such as sub-plots (Porteous,
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Charles, and Cavazza 2016) or narrative trajectories (Por-
teous et al. 2011), which play an important role in story
quality, can be captured by Planning representations. With
the increasing availability of large-scale narrative resources
(Finlayson 2013), an alternative approach could be to har-
ness Deep Learning (DL) methods that have demonstrated
their appropriateness for sequence generation.

In this paper, we wish to first demonstrate the basic abil-
ity of DL methods, learning from a dataset of well-formed
plots, to produce novel narrative sequences, which preserve
those story properties that justified the previous use of plan-
ning in narrative generation. We thus use as a dataset plot
sequences produced by a narrative planning approach that
adopts a plot-centric perspective (Riedl and Young 2010), to
train Generative Recurrent Neural Networks. We then ana-
lyze the generated plots for their plan well-formedness, di-
versity, and narrative properties. This method for training
DL networks with ”synthetic” data is also inspired from the
use of computer graphics to train DL models in computer
vision (Qiu et al. 2017).

Previous and Related Work
The use of planning techniques is well-established in narra-
tive generation (Riedl and Young 2010), and has been used
to represent complex structures such as narrative arcs (Por-
teous et al. 2011) and discourse-level phenomena (Young
et al. 2013). It is primarily intended to generate a plot struc-
ture in which planning operators represent core narrative
actions. Wang et al. (2017) have complemented traditional
plan-based narrative generation with a deep Reinforcement
Learning (RL) component, aimed at personalizing narra-
tive generation. Finlayson (2015) is one of the earliest ex-
amples of applying Machine Learning (ML) to plot struc-
tures, using Propp’s narrative functions as elementary nar-
rative units. Finlayson’s system operates through annotation
of textual stories with narrative functions and aims to extract
a plot structure independent of its linguistic realization. Sub-
sequent ML approaches directly process textual stories with-
out narrative annotation, thereby acquiring simultaneously
plot structure and semantic aspects: their plot structures are
however often of limited length. Xu et al. (2018) gener-
ate a short textual narrative from a one-sentence thematic
description using a combination of Seq2Seq (Sutskever,
Vinyals, and Le 2014) encoder-decoders with RL to con-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

5984



Figure 1: Narrative plan and function labelling for an exam-
ple medical drama domain. Planning domain and problem
properties. Plans are obtained for problem instances with
initial state and goal created randomly using thematic cat-
egories (e.g. character mood) and relationships (e.g. social
network as shown).

nect to a plot-like (“skeleton”) extraction module. Roem-
mele and Gordon (2018) describe an encoder-decoder ap-
proach to predict causal relations in stories. Martin et al.
(2018) use a recurrent multilayer encoder-decoder network
(event2event) to generate the next event from a given nar-
rative sequence. This work has been extended (Tambwekar
et al. 2019) to improve plot generation by including a RL
component, so that the generated plot could be goal-driven,
as with planning approaches. Ammanabrolu et al. (2020)
have further enhanced the approach by extending the event-
to-sentence models to ensure semantic and narrative coher-
ence. Liu et al. (2020) use story character embeddings as
a skeleton and use next-step prediction to generate actions
at the event level. In a similar fashion but applied to the
visual domain, Asai and Muise (2020) narrow the gap be-
tween high-dimensional image data and symbolic planning
states by using an encoder-decoder architecture combined
with a classical planner to solve visual n-puzzle tasks. Re-
cent work by Yao et al. (2019) has investigated simultane-
ously short plot structures and textual descriptions in their
“Plan-and-Write” system. Like Martin et al. (2018) they de-
compose story generation into story structure modeling and
structure to surface generation. Storyline planning uses bidi-
rectional Gated Recurrent Units (GRU (Cho et al. 2014))
while story generation uses a Seq2Seq approach with Long
Short-Term Memory (LSTM (Hochreiter and Schmidhuber
1997)) decoding and bidirectional-LSTM encoding. Finally,
Wang and Wan (2019) developed a story completion model
that generates the final sentence of a short textual story,
using a transformer-based conditional Variational Autoen-
coder (VAE). Our work aims to revisit the larger-scale plot
generated by planning approaches from a DL perspective,
separating plot structure from its media or linguistic realiza-
tion; we will still seek inspiration from some of the above-
described sequence generation models, but instead learn rep-
resentations of plot structures with generative neural net-
works.

Plot Dataset Preparation
For the purpose of training a DL model, 4 synthetic plot
datasets were created for use in experiments: using 4 differ-
ent previously published narrative planning domains to gen-
erate well-formed narrative plans via random search sam-
pling. Details of the narrative planning domains and the pro-
cess of narrative plan dataset generation are given in the next
two sections.

Narrative Planning Domains
Our approach is based on the formal equivalence between
narrative annotation (e.g., based on a narrative ontology such
as narrative functions) and planning operators to describe
the sequence of actions constituting a plot. In a plot-based
approach, a planning operator corresponds to an elementary
narrative action that may coordinate several characters: this
corresponds to the structure of a narrative function (without
necessarily fully subscribing to a Proppian approach). The
sequence of operators in a narrative plan constitutes the plot
representation.

As an example, consider a medical drama domain, sim-
ilar to (Porteous, Charles, and Cavazza 2016), shown in
Figure 1. In this domain the operators are drawn from the
narrative modelling of this drama and represent narrative
actions such as {shout-at-colleague, ignore-instructions}
and {misdiagnose-patient} which are actually similar to the
Proppian functions used in narrative annotation work (Fin-
layson 2015) being domain-specific instantiations of proto-
typical narrative functions such as “villainy” or “erroneous
judgement”. There are long distance effects within the story
arc: early choices (e.g. the action {shout-at-family}) force
later choices (those not greyed out in the search).

For the experiments in this paper we selected a range of
narrative planning domains based on the following criteria:
they had appeared in the literature; provided a range of nar-
rative contexts; and had been modelled independently by
different authors for different purposes. These domains are:
Aladdin (Riedl and Young 2010); Western (Ware 2014); Red
(Riedl 2009); and Medical (Porteous, Charles, and Cavazza
2016). For experiments we used PDDL 2.1 variants of these,
which have been made available by the authors (Aladdin,
Red and Medical), or automatically translated from an ADL
encoding1 (Western).

For these domain models the number of ground actions
(i.e., when all parameters in actions are instantiated to do-
main objects) and the average length of goal-directed narra-
tive plans (e.g., using a classical planner such as METRIC-
FF2) are shown in Table 1.

The process of Narrative Dataset preparation is illustrated
in Figure 2 (part 1). Input to the narrative generator is the
narrative domain model and a planning problem. The ran-
dom selection of initial state predicates and goal conditions
for these problem instances was mitigated via the use of
thematic categories such as narrative themes (e.g. romance,

1Using the translation from (Gazen and Knoblock 1997).
2Available to download from:

https://fai.cs.uni-saarland.de/hoffmann/metric-ff.html
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pressure of work), narrative outcomes (happy or sad), per-
sonal relationships (e.g. enemy, friend), to ensure balanced
coverage of narrative topics and themes in the resulting gen-
erated plots. The same process is repeated for all domains in
our experiments to generate a dataset for each.

Narrative Plan Dataset Generation
We developed a bespoke mechanism (referred to herein
as Narrative Generator) for generating plot datasets in this
work based on the fact that applying a classical planner3

to the given problems does not generate a sufficiently di-
verse set of plans, also considering that strict optimality is
not a concern when generating plan-based narratives. The
aim with our approach was to generate plans which balance
goal directedness while allowing for sufficient variation. The
generated plans are constituted by a sequence of operators
corresponding to narrative actions, therefore each plan in
turn corresponds to one plot (we will use the terms plan and
plot interchangeably in this context). Domains which were
originally defined using the Action Description Language
(ADL), which allows for parametrizable actions, were in-
stantiated4 into PDDL.

The Narrative Generator constructs plans for problem in-
stances through a process of forward random search sam-
pling (Figure 2.1), without using a structural distance heuris-
tic as follows: forward search from the initial state (current
state) with repeated random selection of the next applica-
ble action and advancing the current state via action appli-
cation. The search terminates with either success (reach a
state satisfying the goal condition) or failure (a dead end
i.e., no applicable actions, or a previously visited state). On
success, unique plans are added to the plot dataset, other-
wise the search is repeated for the same problem instance.
This process was repeatedly called and resulted in a training
dataset (DS) of 3072 (3 ∗ 210) unique plans each (exclud-
ing validation dataset), for each domain, which were ran-
domly shuffled. Subsets of each dataset were used to ex-
plore model performance with less data (i.e. dataset sizes:
small = 1024, medium = 2048, large = 3072). The
properties of datasets of narrative plans are listed for each
domain in Table 1.

Our narrative generator proved effective at generating
plots of different lengths that exhibit high variation. With
regard to plan length, from the properties listed above it can
be seen that the random generation method tends to produce
longer plans, in particular through repetition of non-critical
actions, which is in contrast to those generated by a classical
planner such as METRIC-FF2 which generates plans of much
shorter length for the same domain, as the default planning
mechanism tends towards optimality (shortest plan) even if
it has been shown not to be a requirement for narrative gen-
eration (Porteous et al. 2011). The narrative generator also
proved very effective at generating plots with high variation
in terms of operators used, despite domain difficulty.

Finally, for evaluation purposes, we manually tagged the

3Using an iterative top-k planning approach (Katz et al. 2018).
4adl2strips software available to download from:

http://fai.cs.uni-saarland.de/hoffmann/adl2strips.zip

Aladdin Medical Red Western

lDS 23.4 (5.2) 26.8 (2.8) 11.5 (3.7) 37.7 (3.8)
aDS 38 109 70 285

lCP 11.3 (0.5) 20.0 (0.0) 6.0 (0.5) 9.0 (0.0)
aADL 11 N/A 5 19
aPDDL 72 141 106 350
repeat 3 7 3 3
BFπ 7.08 (2.75) 27.65 (14.47) 5.10 (2.81) 41.80 (3.22)

Table 1: Synthetic dataset characteristics. Top part illustrates
the average length of plans (and standard deviation) in the
Dataset (lDS) created with the Narrative Generator as well
as the number of actions (aDS) that appear in these plans.
At the bottom are the average lengths (and standard devi-
ations) of plans found by the Classical Planner (lCP ), fol-
lowed by the number of parametrizable operators (aADL)
and their instantiations (aPDDL), whether these actions can
be performed more than once (repeat), and finally the aver-
age branching factors (and standard deviation) for each do-
main (BFπ , analysis of branching factor sampled from a
plan).

decisive operators in each of those domains used for our ex-
periment. These are referred to as beats5 and their distribu-
tion can serve as a means to measure the narrative interest
within the generated plots (Mateas and Stern 2005; Young
et al. 2013).

Neural Architectures
Our goal is to obtain a generative method that performs
well without relying on prior expert knowledge of the dif-
ficulty and properties of the domain. To avoid bias from spe-
cific hyperparameters (e.g. number of layers, hidden state
size, etc) which might lead to an advantage when tuning for
each particular dataset, we use instead a common framework
(Neural Model, depicted in Figure 2.2) across all experi-
ments with identical hyperparameters. The Neural Model
explored herein follows, in a broad sense, the sequence-
to-sequence architecture, an encoder-decoder architecture
which has been commonly used for both supervised and un-
supervised learning and has proven particularly successful
in language modeling tasks (Seq2Seq (Sutskever, Vinyals,
and Le 2014)). In order to experiment with various regu-
larities and dependencies in narrative plots, we opted for a
spectrum of sequence embedding encoder-decoder models
inspired from previous work. To this end, the framework is
then instantiated to obtain the architecture variants used in
this paper. In the following we discuss each model instance
and provide essential implementation details.

The Neural Model (Figure 2, part 2) consists of an en-
coder which maps a narrative plot to a single latent vector,
and a decoder which generates a plot from this vector. Local

5We have adopted a conservative approach to the distribution
of beats, only tagging as beats some of the most dramatic operators
that introduce significant new information in the narrative progres-
sion also relying on the PDDL structure.
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Figure 2: System Overview: Narrative Plan Dataset Preparation (1), Model Training (2) and Plan generation (3). Unique nar-
rative plans are generated via forward random search sampling (see text) (1). The resulting dataset is used for model training
which consists in a Plan-level encoding, which is afterwards used to initialize the hidden state of the decoder. During training,
the decoder is trained semi-supervised on the same input of the encoder, but by forcing next-step prediction (2). For sampling
new sequences from a trained model, the decoder subnetwork is used with noise (zG) as substitute for the latent vector to
recurrently generate complete narrative plots (illustrated with dotted arrows in 3). Finally, generated sequences are checked for
plan well-formedness.

structure in plans, for instance, non-critical actions that are
performed in-between major beat events contribute to story
variation but have less effect on the overall outcome. The en-
coder uses a one-dimensional convolutional layer (Conv 1D)
over the operator embeddings, before feeding information
into the RNN that traverses the sequence. This helps cap-
turing intermediate-level regularities in sequences, which in
narrative plots could correspond to various narrative phases
of story evolution. The encoding vector z is obtained by
transforming the last hidden state of the RNN into a vector
using a fully-connected layer. Decoding a latent vector con-
sists in initializing the hidden state of a separate RNN with a
linear transformation of the previously obtained latent vec-
tor (z) and traversing the same input sequence while trying
to predict the next operator in the sequence (i.e. output is
shifted by one).

Generating sequences with the common encoder-decoder
framework generally consists in next-step predictions con-
ditioned on past inputs, but is limited in generative ability
(i.e. the output is deterministically conditioned only on past
input). Recently, Ghosh et al. (2020) have shown that Regu-
larized Autoencoders (RAE) allow random sampling of the
latent space of deterministic models which increases the sta-
bility of training generative models. We combine Seq2Seq
model with the RAE sampling approach to obtain the first
framework instance used in our experiments, a generative re-
current autoencoder (AE) model. To quantify the importance
of encoder-decoder architecture and of the adopted sampling
method, we utilize a simplified variant of this approach as a
baseline, which represents a middle ground between previ-
ous works and AE, by applying the same sampling method
but removing the encoder. This results in an LSTM gen-
erative model whose initial hidden state is computed from
a random latent code z, denoted as LSTM in experiments.
As a second baseline, we compare our results with a repre-
sentative of the VAE generative model family. Since recur-
rent VAE models which incorporate LSTM were proposed
for modeling speech and handwriting and the importance of

including randomness to generate novel outputs was high-
lighted (Chung et al. 2015), there have been extensive ef-
forts to improve their sampling quality and training stability
(Shen and Su 2018). One such strategy (named VAE in our
experiments) to address this challenge is to gradually adjust
the importance of the KL divergence term in the Evidence
Lower Bound (ELBO) objective (i.e. annealing) in combi-
nation with input dropout in the decoder as shown by (Bow-
man et al. 2016), which is suitable for generating diversity
from limited sample sizes. The construction of z in VAE fol-
lows the variational interpretation (z = µ + σ ∗ N(0, 1),
which represents a sample from a multivariate Gaussian
distribution with mean µ and variance σ). Other variants
from the family of Variational Autoencoders were consid-
ered, notably β-VAE (Higgins et al. 2017) which introduces
a hyperparameter to control the importance of the KL di-
vergence in the ELBO objective similar to (Bowman et al.
2016), while Zhao et al. (2019) introduced InfoVAE, a gen-
eralization of β-VAE and Adversarial Autoencoders (AAE)
(Makhzani et al. 2016). Generative Adversarial Networks
(GAN) have also been extended to sequence modeling (Seq-
GAN (Yu et al. 2017)) which employ RL training, with vary-
ing levels of convergence stability.

To generate novel samples from the trained models (Fig-
ure 2.3), we use samples from a random distribution as a
substitute for the latent vector (zG) to prime the decod-
ing RNN. The resulting plan is then constructed in an au-
toregressive fashion. Models used in our experiments use
weight decay through the AdamW optimization algorithm
(Loshchilov and Hutter 2019) and Dropout (Hinton et al.
2012) for model-wise regularization. All hyperparameters
were kept the same for all models, which led to an identi-
cal decoder responsible for the process of generating novel
sequences. To stabilize training of VAE, dropout was ap-
plied on the tokens of the sequence, forcing the model to
learn to reconstruct missing inputs as described in (Bowman
et al. 2016) and used GRU and sigmoid KL term anneal-
ing centered at 10000 epochs. The latent space (z) and RNN
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Domain Average fG
name dataset AE LSTM VAE

Aladdin
small 3.46 (0.40) 3.78 (0.59) 3.39 (1.06)
medium 1.56 (0.59) 1.02 (0.14) 1.63 (0.36)
large 0.91 (0.29) 0.44 (0.09) 0.94 (0.36)

Medical
small 2.14 (0.73) 0.84 (0.26) 2.43 (1.74)
medium 1.94 (0.28) 0.38 (0.19) 1.55 (0.94)
large 1.57 (0.28) 0.17 (0.08) 0.96 (0.48)

Red
small 2.18 (0.26) 3.10 (0.60) 1.04 (0.37)
medium 1.38 (0.23) 1.21 (0.36) 0.66 (0.16)
large 0.93 (0.25) 0.71 (0.14) 0.45 (0.15)

Western
small 0.21 (0.17) 0.06 (0.14) <0.01
medium 0.23 (0.24) 0.01 (0.01) <0.01
large 0.25 (0.25) 0.11 (0.25) <0.01

Cross-domain robust 3 7 7

Table 2: Model performance comparison across domains.
The generative factor (fG) is the ratio between the number
of well-formed plans (out of 10000 generated samples) and
the dataset size. Average and standard deviation reported,
with statistically significant best values in bold (p < 0.05,
two-sample t-test).

hidden state were kept at fixed sizes of 16 and 64 neurons
respectively to preserve a consistent information bottleneck
throughout all experiments. A kernel of size 5 was used in
all experiments in the 1-dimensional convolutional layer fol-
lowed by a size 3 max pooling layer in the encoder to capture
local structure in plans. Hyperparameter values were chosen
so that the decoder, which is identical in all tested variants,
does not overfit on any of the datasets (i.e. the generative
potential of all variants is essentially the same, as only the
decoder is used in the generation step).

Plot Generation Experiments
The main objective of our approach is to generate novel,
well-formed plans that preserve narrative consistency and
also retain the structural characteristics necessary for narra-
tive interest, from a limited training dataset. In the following
we first evaluate the ability of generative models to capture
the constraints that underlie planning domains, followed by
an analysis of the quality of generated samples.

Generated Plan Novelty

In order to attain target properties for the plans generated by
our approach, we rely on the exploration of the learned latent
representations of plans within the trained model; i.e. per-
forming common random sampling of the latent code allows
us to check whether generated sequences are novel and well-
formed plans. We trained the aforementioned model variants
on each Planning domain, relying on the validation Negative
Log Likelihood (NLL) loss and number of unique sequences
over total generated (efficiency). A well-formedness valida-

tor6 was used as an oracle to quantify the amount of plans
among the unique sequences (accuracy).

Model performance on the task of generating novel nar-
rative plots relies not only on the percentage of well-formed
plans, but on a balance between the accuracy, the capabil-
ity to generate a reasonable number of novel sequences with
desirable narrative properties and the ability to capture long-
term dependencies. In our plan novelty experiments, the re-
sults of which are detailed in Table 2, we aim to evaluate this
balance by introducing a ”generative factor” (fG), defined
as the ratio between the number of well-formed plans gener-
ated by each model variant and the size of the dataset, which
measures novelty with respect to the training dataset. Let us
consider the practical significance of fG: a value of 2 for
a small dataset (1024 training plots) indicates the ability to
generate over 2000 novel plots, which compares favourably
with the generative ability of plan-based approaches7.

Although well-formedness is not a strict requirement for
narrative storytelling, imposing this additional constraint
sets stricter requirements on the model performance in our
experiments. The previously proposed fG integrates well-
formedness accuracy as well as the efficiency of plan gen-
eration. In Table 2 we report the fG values obtained by the
three model variants on different amounts of data. Statisti-
cally significant (p < 0.05) best values in bold show that the
most promising of the tested architectures is AE which is
able to generate a significant proportion of completely novel
sequences which are formally well-formed plans (all con-
straints of the planning domain are satisfied), without pos-
ing stability issues. We note that for Aladdin and Medical,
AE matches VAE which is able to accurately generate more
plans compared to our LSTM baseline, while on Red and
Western AE matches the stable increased performance of
LSTM. We also note that LSTM and VAE achieve good re-
sults, both in terms of accuracy and overall fG, on Red and
Aladdin respectively, but their performance is not consistent
throughout the entire suite of tests, which is due to a lack
of context information at initialization in the case of LSTM
and training instability in the case of VAE. In contrast, AE is
consistently and accurately capturing long-term dependen-
cies between actions and is robust across all planning do-
mains as it can be seen from significantly high fG for diverse
planning domains and dataset sizes. These results show that
generative models are indeed a suitable approach to narra-
tive plan generation, as all variants are able to obtain qual-
ity results on at least one planning domain. An analysis of
the remaining accuracy potential of all models showed that
this is due to narrative sequences which revisit one or more
planning states (i.e. subsequent actions lead to a state Sj
which is equivalent to state Si where i precedes j in time),
or repeated actions which do not satisfy the strict planning
constraint of well-formedness but still constitute acceptable

6We use an alternative implementation to (Rintanen 2008) to
compute predecessor states by action formula (i.e., pre- and post-
condition) manipulation and test applicability of the sequence in
the resulting state to show domain rule compliance.

7As for future availability and size of real-world datasets we
can note anecdotally that The Simpsons have reached over 600
episodes and NCIS over 300.
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Aladdin Medical Red Western

BCP 0.20 (0.04) 0.10 (0.00) 0.39 (0.10) 0.44 (<0.01)
BAE 0.15 (0.03) 0.12 (0.02) 0.39 (0.09) 0.29 (0.06)

DCP 0.35 (0.08) 0.15 (0.0) 0.29 (0.13) 0.22 (0.03)
DAE 0.43 (0.16) 0.11 (0.02) 0.19 (0.05) 0.22 (0.07)

Table 3: Analysis of beat content in plots from each source:
Classical Planner (CP ) and AE, illustrating averages and
standard deviations of the number of beats per length (B),
and the distance between beats per length (D).

narratives. This is likely due, at least in part, to the modest
training dataset sizes, with more data being necessary to de-
rive all the rules behind the narratives, as indicated by the
significant increase in accuracy with larger amounts of data
which we observed in our experiments. We also note there
is a slight decrease of fG with larger datasets, which is pri-
marily due to a limit in generating new plans as the larger
the dataset the more plans are visited, as well as a limit of
the chosen model capacity which is suitable for increase for
AE, but leads to overfitting in LSTM and to relatively high
instability in VAE.

All experiments were performed on a setup of 8
NVIDIA™ GTX 1080 Ti GPUs, 32 Intel™ Xeon CPUs with
128GB RAM running Ubuntu OS. The PyTorch 1.6.0 library
(Paszke et al. 2019), which made possible the implementa-
tion and control of key aspects for each of the models and
experiments herein, and the NVIDIA™ CUDA Toolkit 10.1
were used for all experiments. In the novelty experiments,
random initialization was used for neural network parame-
ters and sampling, and experiments were rerun deterministi-
cally with consistent random number generator seeds (0−7)
and results were averaged, while quality analysis was per-
formed on the previously trained AE model.

Evaluating the Quality of Generated Plots
We evaluate our approach on its ability to generate novel
plots not part of any training set, as well as the narrative
quality of those generated plots, the latter being measured
through structural properties identified by previous work in
narrative generation (Porteous, Charles, and Cavazza 2016;
Amos-Binks, Roberts, and Young 2016). Previous work in
DL-based generation has relied on user evaluations to rate
generated narratives (Martin et al. 2018; Yao et al. 2019),
however this is only achievable in practice if the number
of narratives is limited, and the narrative has a discourse-
level presentation, often as text, instead of symbolic plot
sequences. Our system generates a sizeable number of plot
sequences represented as a list of operators, which make it
difficult to envision user evaluation as described above. Pre-
vious work in plan-based narrative generation has identified
a number of structural criteria for narrative quality that can
be subject to automated testing. Interestingly, even user eval-
uations have confirmed the importance of structural quality
criteria, such as plot coherence (Yao et al. 2019), which are
largely guaranteed when the plot is a well-formed plan. As a
tentative measure of narrative quality, we use overall struc-

Aladdin Medical Red Western

Kt
+0.412 +0.570 +0.388 +0.119
p < 10−3 p < 10−4 p < 10−4 p < 0.03

Ld
11.66 (2.33) 16.15 (3.28) 9.49 (2.8) 10.80 (2.2)
m:0 M:18 m:3 M:25 m:0 M:17 m:3 M:20

Table 4: Agreement and diversity analysis between Classi-
cal Planner and AE. Comparison of operator ranks using
Kendall’s tau (Kt) with statistic value (+ indicates posi-
tive agreement). Plan diversity indicated by pair-wise Lev-
enshtein distance (Ld) average and standard deviation, and
minimum (m) and maximum (M) distances.

tural properties that give an indication over story pacing us-
ing the distribution of beats (Mateas and Stern 2005; Young
et al. 2013) within the plot sequence. In addition, we also in-
vestigate the composition of plots in terms of individual ac-
tions (operators) for AE-generated and plan-generated plot
sequences.

We have annotated specific operators as beats, i.e. events
that have significant impact in the story from a narrative
point of view, post-training (i.e. the model does not have
access to beat information). Narrative sequences generated
during our experiments using AE were used in compari-
son to plans found by a Classical Planner (CP ) under the
aforementioned quality metrics (results in Table 3). The first
metric (B) consists in the overall occurrence of beats within
the generated plot, which acts as a high-level measure of
dramatic content (these have to be normalised according to
plot length). The second metric (D) which is the average dis-
tance between beats, approximates story pacing. These two
metrics are used not as absolute values but for their com-
parison to plan-based generation, as in the latter such struc-
tural properties have been shown to be indicators of narra-
tive quality and believability. The generated plots maintain
characteristics within an acceptable range (i.e. the number
of beats per length (B) does vary between AE and CP but
lies within close proximity, with no statistically significant
difference for Red and roughly within one and two stan-
dard deviations for Medical and Aladdin respectively, while
the higher discrepancy in Western is likely to be caused by
the difference in plan length (previously reported in Table
1, i.e. lDS and lCP ). The distance between beats (D) varies
as well, but again lies roughly within one standard deviation
across most sources, with no major discrepancies. Consid-
ering the average length of generated plot sequences, these
results are compatible with recommendations for story pac-
ing (Porteous et al. 2011)) of existing classical approaches
to narrative plot generation, and strongly suggest that AE-
based generation is able to produce story paced in a similar
way to plan-generated sequences thus preserving important
narrative properties associated with story quality.

Moreover, to estimate whether operators have similar
prevalence in generated plans, we ranked each operator ac-
cording to its occurrence frequency in each source. The ob-
tained histograms were used to compute the Kendall rank
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correlation coefficient (Kt) to verify whether there is indeed
a significant level of agreement between plans found by the
classical planner and those generated by AE in terms of their
use of available narrative actions represented by those opera-
tors. Results in Table 4 (top) strongly indicate positive agree-
ment between the frequency rankings of operators from the
two sources, which means that operators used in CP plans
are as prevalent in the model output, suggesting that AE gen-
eration preserves narrative content by making use of narra-
tive actions without introducing bias in action selection.

Finally, to evaluate how varied novel generated plots are,
in comparison with plans found by CP , we rely on a dis-
tance metric between plot sequences themselves. Measuring
distances between narratives is a standard method to inves-
tigate their diversity (Roberts et al. 2007). Here we relied
on the Levenshtein distance (Ld) (Levenshtein 1966; Porte-
ous, Charles, and Cavazza 2016). Results in Table 4 show
high average numbers of edits between CP and AE plots
with particularly wide variability. For instance, high num-
bers of possible edits (Table 4 maximum values), such as for
the Medical domain, indicate that the model learns to re-
structure entire plots without sacrificing quality criteria. It is
interesting to note that, in some instances where the random
search dataset contained a number of plans that coincided
with those generated by the classical planner (Aladdin and
Red), the model generated novel plans (i.e. not part of its
training dataset) which were also generated by the planner
(e.g. Ld minimum of 0 for Aladdin and Red). This sug-
gests an ability to generalize over the constraints which un-
derlie the planning domains (i.e. there is no overlap of CP
samples and the training dataset). This indicates the fact that
in addition to generating plot sequences exhibiting relevant
structural properties, the model is also able to produce plans
with high levels of diversity.

Finally, beyond the overall number of beats and their
average distribution within plot sequences, we also have
observed anecdotal, yet interesting, phenomena regarding
comparative beats localization. For instance, in the Medi-
cal domain, when comparing the set of generated sequences
of similar lengths (20+) produced by AE to those generated
by CP, we noted a striking similarity in the occurrence of
beats primarily towards the last 2/3 of the plot. This suggests
that AE generation has been able to capture some narrative
evolution properties of this more constrained domain, which
tends to produce narratives with a climax and resolution.

Conclusions and Further Work
Our results suggest that DL methods can indeed be used to
generate novel plot variants from a training set of formalized
plots while preserving structural properties associated with
narrative interest, such as beat distribution. This approach
to narrative generation is intended to be genre-specific, like
those based on Planning techniques. It makes no claim to
open story generation, and its paradigm would be the gener-
ation of new episodes for drama series, or new stories in typ-
ical narrative genres. The workflow presented in this paper
can be adapted for practical plot generation through auto-
matic filtering of the AE-generated sequences using quality
criteria such as those used in our evaluation sections. This

would hide the noisy aspects of generation to users, only
presenting them with the most relevant candidates to be fur-
ther sorted by automatic structural quality criteria. It should
be noted that future use of DL-based generation could relax
the requirement for the generated plots to be well-formed
plans: this constraint has been imposed as part of this study
to ensure that structural properties and long-distance depen-
dencies could be captured and was justified by the use of
plan-based “synthetic data” for DL experiments rather than
actual annotated narratives.

Compared to other recently published applications of DL
methods to narrative generation (Tambwekar et al. 2019;
Yao et al. 2019; Ammanabrolu et al. 2020; Liu et al. 2020),
which have primarily used text generation, our approach
focuses on plot structure, aiming at retaining media inde-
pendence, as well as full plot generation rather than story
completion or continuation. This work contributes to DL-
based narrative generation and takes advantage of the grow-
ing interest in narrative corpora, being increasingly avail-
able in various media (Finlayson 2013). Narrative annota-
tion can itself be complex and time-consuming (Finlayson
2015). This is why our approach, with its ability to train on
modest amounts of data8, could prove even more relevant.
Moreover, narrative annotation could be partially automated
by information extraction methods (Winer and Young 2017),
or using similar methods to those previously described for
event extraction from textual stories or even directly ana-
lyzing media content in terms of actions using convolutional
networks as initial layers, in a way similar, yet more complex
to research on automatic captioning. The end-product of nar-
rative generation will eventually consist of a media represen-
tation of the story, for instance through game engine-based
animated sequences (Porteous, Charles, and Cavazza 2016).
Another interesting line of improvement consists in adding
controllable latent codes to enable generation focused on
particular plot characteristics, either objective such as length
or pace, or subjective tags such as mood, based on user pref-
erences, by conditioning the DL model on such metrics.

One limitation of our work, which it shares with some pre-
vious plan-based generation approaches is to devise meth-
ods to explore the set of generated plots to potentially select
the best candidates. A first step in this direction is the use
of beat distribution in the generated narratives. Other auto-
matic quality metrics (e.g. computing the ”plan trajectory” in
a way not dissimilar to (Porteous et al. 2011) by approximat-
ing it through the variation of the planning heuristic function
calculated post hoc on the generated plan) could provide in-
sight into high-level elements of the narrative, if supported
by appropriate visualization and data analysis tools.

Acknowledgements

Contributions of Julie Porteous were supported, in part, by
funds from DSI Collaborative Grant CR-0016.

8For some planning domains, we were able to train our model
with even smaller datasets, e.g. 500 sequences.

5990



References
Ammanabrolu, P.; Tien, E.; Cheung, W.; Luo, Z.; Ma, W.;
Martin, L. J.; and Riedl, M. O. 2020. Story Realization:
Expanding Plot Events into Sentences. In Proceedings of
the 34th AAAI Conference on Artificial Intelligence, 7375–
7382.
Amos-Binks, A.; Roberts, D. L.; and Young, R. M. 2016.
Summarizing and comparing story plans. In 7th Work-
shop on Computational Models of Narrative (CMN 2016).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
Asai, M.; and Muise, C. 2020. Learning Neural-Symbolic
Descriptive Planning Models via Cube-Space Priors: The
Voyage Home (to STRIPS). In Proceedings of the 29th
International Joint Conference on Artificial Intelligence,
2676–2682. AAAI Press.
Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A.; Jozefowicz,
R.; and Bengio, S. 2016. Generating Sentences from a Con-
tinuous Space. In Proceedings of the 20th SIGNLL Confer-
ence on Computational Natural Language Learning, 10–21.
Berlin, Germany: Association for Computational Linguis-
tics. doi:10.18653/v1/K16-1002.
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