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Abstract

Deep learning models have achieved state-of-the-art perfor-
mance in semantic image segmentation, but the results pro-
vided by fully automatic algorithms are not always guar-
anteed satisfactory to users. Interactive segmentation offers
a solution by accepting user annotations on selective areas
of the images to refine the segmentation results. However,
most existing models only focus on correcting the current im-
age’s misclassified pixels, with no knowledge carried over to
other images. In this work, we formulate interactive image
segmentation as a continual learning problem and propose a
framework to effectively learn from user annotations, aim-
ing to improve the segmentation on both the current image
and unseen images in future tasks while avoiding deterio-
rated performance on previously-seen images. It employs a
probabilistic mask to control the neural network’s kernel ac-
tivation and extract the most suitable features for segment-
ing images in each task. We also apply a task-aware embed-
ding to automatically infer the optimal kernel activation for
initial segmentation and subsequent refinement. Interactions
with users are guided through multi-source uncertainty esti-
mation so that users can focus on the most important areas to
minimize the overall manual annotation effort. Experiments
are performed on both medical and natural image datasets
to illustrate the proposed framework’s effectiveness on basic
segmentation performance, forward knowledge transfer, and
backward knowledge transfer.

Introduction
Deep learning (DL) based methods have been increasingly
applied to semantic image segmentation in recent years with
superior performance (Long, Shelhamer, and Darrell 2015;
Ronneberger, Fischer, and Brox 2015; Chen et al. 2017; He
et al. 2017). However, large-scale annotated images are usu-
ally required to properly train a complex DL model to en-
sure a good segmentation performance. Fully annotating an
image is a lengthy and laborious process. In many special-
ized domains (e.g., medicine and biology), image annota-
tion may only be performed by expert users with special ex-
pertise. Thus, the availability of large-scale fully annotated
images is usually rather limited in these domains, which
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poses a key challenge of applying state-of-the-art DL mod-
els. Furthermore, segmentation results provided by fully au-
tomatic algorithms are not always guaranteed satisfactory to
users. For example, in medical image analysis, physicians
may form different opinions on the boundary of segments.
It is vital to provide an effective means for users to adjust
the segmentation results. Finally, domain shift may cause
severe deterioration of segmentation results if training im-
ages vary significantly from the testing ones due to differ-
ent imaging devices, environments, and other factors, which
may frequently occur in many applications.

Interactive segmentation offers a promising direction by
leveraging users’ knowledge to refine the segmentation re-
sults. It allows users to interact with the system by annotat-
ing a few pixels, which are then used by the model to update
the segmentation results. However, most existing algorithms
process images and user annotations as isolated cases. They
mainly focus on correcting the current image’s misclassified
pixels but ignore carrying over knowledge learned from user
annotations to other images. In a practical setting, new im-
ages are usually provided to a model in sequential order. The
model should effectively learn from user annotations to im-
prove segmentation performance and reduce users’ (repeti-
tive) annotation effort in the future. Besides, most existing
algorithms leave the decision of selective annotation alto-
gether to the users, i.e., users may make edits on any areas
without knowing which edit is most useful to the model for
improving the results. A fundamental challenge of interac-
tive segmentation is how to provide users informative guid-
ance to improve the segmentation accuracy with minimum
annotation effort.

To address the above challenges, we formulate interactive
segmentation as a continual learning problem. The segmen-
tation tasks are organized as a sequence. In each task, the
model is trained with only one or a few images and along
with limited user annotations. This is different from con-
ventional continual learning, where one task usually con-
tains a large batch of data instances, because interactive seg-
mentation aims to leverage limited user annotations to im-
prove performance. We also design a training-testing pro-
tocol to evaluate how a model can effectively learn from
user annotations to improve the segmentation performance
on 1) the current image and 2) the unseen images in fu-
ture tasks, while mitigating the deteriorated performance on
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3) previously-seen images. We refer to the three objectives
mentioned above as basic performance, forward knowledge
transfer, and backward knowledge transfer.

We propose a Continual Learning framework for
Interactive Segmentation (referred to as CLIS) to achieve
the three objectives simultaneously. It employs a task-
specific probabilistic mask, generated from a Bayesian non-
parametric Indian Buffet Process (IBP), to control the net-
work’s convolutional kernel activation. A different set of
kernels are activated for each task, aiming to extract the most
suitable features for segmenting the corresponding images.
Besides, the IBP prior encourages kernels frequently acti-
vated in previous tasks to be more likely activated in the cur-
rent task, effectively leveraging knowledge learned from the
previous tasks. This prior knowledge of the convolutional
kernels and activation masks is utilized by the model to gen-
erate initial predictions augmented with multi-source uncer-
tainty estimations. If the segmentation deviates from a user’s
opinion, s/he may choose to annotate on selective areas. The
uncertainty estimation guides the user to annotate the most
important areas and minimize the overall manual annotation
effort. The model will be updated based on the annotations
and generate refined segmentation results. At the same time,
new knowledge from the user is encoded as the posterior
probabilistic distributions for the convolutional kernels and
activation masks.

Figure 1 illustrates a typical usage of the proposed frame-
work in one task and demonstrates how user annotations are
leveraged to refine the segmentation on a dermatological im-
age. The model consists of two modules: a segmentation
module (with uncertainty estimation nested), and an inter-
active learning module. The segmentation module performs
pixel-level classification and infers a binary mask that ac-
tivates a subset of the convolutional kernels to extract the
most suitable features for segmentation in each task. It also
performs uncertainty estimation by generating a map that
visualizes the model’s uncertainty on its prediction. A user
may choose to provide additional annotations to refine the
segmentation. As shown in Figure 1 (C), the model makes
uncertain predictions on the marked areas. Users are guided
to edit those areas, and then the interactive learning module
propagates from user annotations to other pixels and updates
the network. This process may iterate multiple rounds until
the user is satisfied with the refined results, and then moves
on to the next task.

The major contribution of this paper is three-fold: (i)
formulating interactive segmentation as a continual learn-
ing problem and designing an evaluation protocol regarding
basic performance and forward/backward knowledge trans-
fer, (ii) a task-aware segmentation framework with a binary
mask that activates a subset of the convolutional kernels
to extract the most suitable features in each task, and (iii)
introducing uncertainty maps to provide users informative
guidance and effectively improve the segmentation accuracy
with minimum annotation effort.

Related Works
Continual Learning Continual learning aims to train
models to learn over time by encoding new knowledge while

Figure 1: Schematic view of the proposed framework (Top)
and an illustrative example of errors in initial segmentation
of a dermatological image (Bottom). Different colors de-
note different semantic classes: healthy skin (blue), lesion
(green). Areas with high uncertainty are colored red in the
uncertainty map.

retaining previously learned knowledge. Catastrophic for-
getting is a long-standing issue for continual learning (Thrun
and Mitchell 1995). It usually occurs when new data differs
significantly from previous data and causes learned knowl-
edge as the network parameters to be overwritten (French
1999). Existing works address this issue through regulariza-
tion, isolation, or rehearsal.

Isolation-based methods allocate different neural re-
sources to encode the information for different tasks. For
example, progressive networks (Rusu et al. 2017) freeze net-
works modules trained on previous tasks and expand the
network architecture with additional modules for new tasks.
PackNet (Mallya and Lazebnik 2018) uses iterative pruning
to exploit the redundancies in large deep networks and free
up parameters for learning new tasks. However, isolation-
based approaches usually lack a principled way to deter-
mine the optimal sets of parameter when task information
is unknown for new data, or requires storing all the iso-
lated parameters for each task. Regularization-based models
impose constraints on updating the neural weights and pe-
nalizing the changes. Learning without forgetting (LwF) (Li
and Hoiem 2017) uses knowledge distillation to enforce the
network predictions with old parameters to be similar to
those with updated parameters. Elastic weight consolidation
(EWC) (Kirkpatrick et al. 2017) and Synaptic Intelligence
(SI) (Zenke, Poole, and Ganguli 2017) impose a weighted
quadratic penalty on the update of the parameters, where the
weight encodes the relative importance of parameters to the
model’s performance on previous tasks. However, regular-
ization approaches may suffer from the trade-off between
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the model’s performance on the old and new tasks. The pro-
posed framework is closely related to the works of varia-
tional continual learning (Nguyen et al. 2018; Kessler et al.
2019), which leverages Bayesian neural networks to retain a
distribution over model parameters, and IBP priors to auto-
matically determine the complexity of network. The cost of
storage does not significantly grow as tasks accumulate. It
also achieves good performance on both old and new tasks
by balancing the reuse of learned kernels and the generation
of new kernels.

Interactive Segmentation Interactive segmentation allow
user to make edits by clicks (Xu et al. 2016), scrib-
bles (Grady et al. 2005), bounding boxes (Rajchl et al.
2016; Castrejon et al. 2017), or extreme points (Maninis
et al. 2018; Khan et al. 2019). Interactive segmentation mod-
els need to be pre-trained using a hold-out labeled dataset
to make initial predictions before user interactions. After
user annotations are collected, a majority of the models re-
fine segmentation through spatial regularization using post-
processing techniques such as conditional random fields and
graph cuts (Wang et al. 2018; Dhara et al. 2018; Zhou,
Chen, and Wang 2019). Since the network parameters are
not updated, they do not extract knowledge from user anno-
tations for segmenting other images. A few models propa-
gate user annotations to unannotated pixels and retrain the
model (Lin et al. 2016), but they do not incorporate spe-
cific mechanisms for knowledge transfer and thus may suf-
fer from catastrophic forgetting.

Uncertainty quantifies the degree to which a machine
learning model is unconfident about its predictions and im-
plies whether users can trust the results (Gal 2016). The
Bayesian convolutional network is a popular technique of
uncertainty estimation for semantic segmentation (Kendall,
Badrinarayanan, and Cipolla 2015; Jena and Awate 2019).
The model may report high uncertainty on visually-difficult
areas, possibly due to low contrast or brightness, and out-
of-distribution areas due to the different distributions be-
tween training and testing images. Interactive segmentation
poses a new challenge as uncertainty estimation shall be fur-
ther used to inform users for selective annotation. However,
integrating uncertainty with deep learning-based interactive
segmentation is under-explored. One notable work leverages
uncertainty to actively query labels on an entire image (Yang
et al. 2017), but strictly speaking, it is not an interactive seg-
mentation model as it does not refine segmentation results.

The Framework of Continual Learning for
Interactive Segmentation

In this section, we start by presenting the overall architecture
of the proposed CLIS framework. We then describe task for-
mulation in continual learning and a unique training-testing
protocol to best support interactive image segmentation. Fi-
nally, we present the details for continual knowledge learn-
ing through Bayesian nonparametric modeling.

Overview of the Architecture. Segmentation models
such as fully convolutional network (Long, Shelhamer, and
Darrell 2015) and U-Net (Ronneberger, Fischer, and Brox
2015) usually apply an encoder-decoder architecture. The

Figure 2: Architecture of the proposed framework

proposed framework follows the design of encoder-decoder,
but introduces several components uniquely designed for
interactive segmentation and continual learning, which are
presented in Figure 2 and discussed below.

The segmentation module consists of an encoder-decoder
architecture (Block A1-A4 and Block B1-B3). We pro-
pose to use Bayesian nonparametric modeling to incorpo-
rate knowledge learned from previous tasks as probabilis-
tic prior to regularize parameter updates in the current task.
We introduce binary masks to control convolutional kernel
activation of the encoders and decoders, aiming to activate
the optimal set of kernels for each task. The task embed-
ding extracts information from images to determine the op-
timal kernel activation masks with or without user annota-
tions. The uncertainty estimation is naturally obtained from
the Bayesian convolutional layers and visualized as uncer-
tainty maps to guide user annotations. The interactive learn-
ing module is inspired by Markov Random Fields (MRF) to
propagate user annotations to unannotated pixels by mini-
mizing a customized energy function.

Task Formulation for Interactive Segmentation
Interactive segmentation models usually require pre-training
to make initial predictions given new images. We first use a
hold-out dataset that consists of images and pixel-wise la-
bels to pre-train the network. We then formulate interactive
image segmentation as a continual learning problem with
a sequence of T tasks as {T1, T2, ..., TT }. In task Tt, the
model is provided with S new imagesXt = {x1t , x2t , ..., xSt }
and makes initial predictions, and the user provides selec-
tive annotations At = {a1t , a2t , ..., aSt }, which are consid-
ered ground truth and used to update the model’s parame-
ters. This setting can be categorized as continual learning
with new instances (Lomonaco and Maltoni 2017) where
all classes are known in pre-training while each subsequent
task contains instances with a different subset of semantic
classes.

We evaluate an interactive segmentation framework’s per-
formance from three aspects: basic performance, forward
knowledge transfer, and backward knowledge transfer. The
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basic performance measures how the model learns from user
annotations to improve the current image’s segmentation.
The model is trained at task Tt using the images and the cor-
responding annotations and evaluated using the ground truth
of unannotated pixels Ut = {u1t , u2t , ..., uSt }. The forward
knowledge transfer measures how the model leverages user
annotations to improve the segmentation of other unseen im-
ages. After training at task Tt, the model is evaluated using
unseen images from future tasks {Tt+1, ..., TT } in terms of
initial segmentation. The backward knowledge transfer mea-
sures how the model prevents deteriorated performance on
previously-seen images. The model is trained at task Tt and
evaluated using images from previous task {T1, ..., Tt−1} in
terms of initial prediction. In summary, at task Tt, the train-
ing set St and evaluation set Qt are

St = {Xt, At},Basic :Qt = {Xt, Ut}
Forward :Qt = {Xt+1,...,T , Ut+1,...,T }

Backward :Qt = {X1,...,t−1, U1,...,t−1}

Continual Knowledge Learning through Bayesian
Nonparametric Modeling
The proposed framework organizes tasks in a sequential or-
der to facilitate interactive segmentation for knowledge ac-
quisition from users. Thus, it is critical to properly maintain
important (latent) features and knowledge learned through
prior tasks for future unseen tasks. Furthermore, as the tasks
may be highly heterogeneous, not all the learned features
are relevant to a given task. Instead, a specific subset of fea-
tures should be selected to optimize the segmentation per-
formance.

To address these challenges, we propose to allocate the
neural network resources dynamically through Bayesian
nonparametric modeling. The proposed model allows the la-
tent feature space to continuously grow with new tasks while
being capable of extracting a subset of latent features most
relevant to a given task through posterior inference. In par-
ticular, for each convolutional layer l, we introduce a layer-
wise binary mask to determine whether a kernel is activated
or not given a specific image. Given the l-th layer’s input as
hl−1, the k-th convolutional kernel W l

k and the binary mask
zlk, the output feature map hl is

hl = {hlk}k, hlk = zlk(W l
k ~ hl−1) (1)

where ~ denotes the convolution operator. If zlk = 0, the
corresponding channel hlk is 0, indicating that the kernel
does not contribute to this task.

To achieve dynamic architecture evolution and task-
specific feature extraction, we place an Indian Buffet process
(IBP) prior (Ghahramani and Griffiths 2006) on the binary
mask for each layer:

vlk ∼ Beta(a0, b0), πl
k ∼

k∏
j=1

vlj , z
l
k ∼ Bern(πl

k) (2)

where zlk is a Bernoulli variable indicating whether a kernel
is activated or not. The feature space of kernels is potentially

infinite in theory. However, to make the model computation-
ally feasible, we take the finite approximation of IBP and
place a truncation threshold Kl for the maximum number
of features. For each convolutional kernel W l

k, we place an
element-wise Gaussian prior

W l
k = {wl

ki}i, wl
ki ∼ N(µ0, (σ0)2) (3)

where i is the index of elements within the kernel.
The IBP prior allows potentially infinite latent features

to jointly explain the ever-increasing data instances (im-
ages/tasks in our case). It is analogous to customers arriv-
ing at an Indian Buffet restaurant with unlimited dishes. In
our interactive segmentation case, each layer is placed an
IBP prior, where the tasks correspond to customers, and the
convolutional kernels correspond to the dishes. An impor-
tant characteristic of the IBP is that a new customer is more
likely to take dishes that have been taken by a lot of previous
customers, while it is still possible to take some new dishes.
This characteristic is useful in our framework to automati-
cally determine the optimal number of kernels and encour-
age reusing existing kernels in a new task. If the new task
is similar to some previous tasks, the masks should be simi-
lar to the corresponding previous masks, indicating that the
kernel activations are mostly the same. If the task is differ-
ent from any previous tasks, the masks shall have some new
non-zero entries, meaning that some new kernels are acti-
vated for feature extraction and interpretation.

Posterior Inference Since exact inference of the poste-
rior of zlk and W l

k is intractable, we introduce a varia-
tional distribution q to approximate those posteriors. Let
φ = {v, z,W} denote all the corresponding parameters,
and Dt denote the data that the network is fitting at task t.
Assume q(φ) is factorized as

q(φ) =
∏
k,l

q(vlk)q(zlk|vlk)
∏
i

q(wl
ki) (4)

The key idea of variational continual learning is using the
variational posterior distribution of task Tt−1 as a prior dis-
tribution for task Tt: qt−1(φ) = pt(φ). For the first taskT1,
the prior is set to the parameters learned from pre-training.
The total loss function for task t is given as the negative ev-
idence lower bound:

Lt = KL[qt(φ)||qt−1(φ)]− Eqt(φ)[ln p(Dt|φ)] (5)

where the first term is the KL divergence that regularizes
the change of parameters between task Tt and task Tt−1,
and the second term is the expectation of the log likelihood.
Plugging in (4), the loss is expanded as

Lt = KL[qt(v)||qt−1(v)] +KL[qt(z|v)||qt−1(z|v)]

+KL[qt(W)||qt−1(W)]− Eqt(φ)[ln p(Dt|z,W)]
(6)

Eq (6) is the general expression of the loss function. How-
ever, each term may take different forms on different stages
of interactive segmentation, which are detailed in the follow-
ing sections.

We use reparameterization tricks to make the variational
parameters learnable by the network through gradient de-
scent. At task Tt, we plug in the parameters alk,t−1, b

l
k,t−1
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learned from the previous task as a prior and notice that
qt(v

l
k) ∼ Beta(alk,t, b

l
k,t). The first KL divergence term of

(6) is approximated as

KL[qt(v)||qt−1(v)] =
∑
k,l

ln
B(alk,t−1, b

l
k,t−1)

B(alk,t, b
l
k,t)

+ (alk,t − alk,t−1)ψ(alk,t) + (blk,t − blk,t−1)ψ(blk,t)

+ (alk,t−1 + blk,t−1 − alk,t − blk,t)ψ(alk,t + blk,t)

(7)

where B and ψ denote beta and digamma functions, re-
spectively. The discrete nature of Bernoulli variables makes
backpropagation infeasible. Following (Maddison, Mnih,
and Teh 2016), we relax the hard constraint of Bernoulli
variables with continuous ones as a concrete Bernoulli dis-
tribution, which ranges between [0, 1] and is peaked at 0 and
1. Given πl

k in the forward pass, zlk is now sampled from

zlk =
{

1 + exp[−τ−1(lnπl
k − ln(1− πl

k) + ε)]
}−1 (8)

where τ is the temperature controlling the smoothness of
concerte distribution, and ε ∼ Logistic(0, 1) is randomly
sampled from a logistic distribution (Balakrishnan 1991).
With the relaxation, the second term of (6) is approximated
as

KL[qt(z|v)||qt−1(z|v)] =
∑
k,l

πl
k,t(lnπ

l
k,t − lnπl

k,t−1)

+ (1− lnπl
k,t)(ln(1− lnπl

k,t)− ln(1− lnπl
k,t−1))

(9)
At task Tt, we plug in the parameters µl

ki,t−1, σ
l
ki,t−1

learned from the previous task as Gaussian priors, and the
third KL divergence term is estimated similarly.

Before user interaction, the model is pre-trained using a
small set of data to learn the initial weights of the network,
and the total loss is defined in (6), where the log-likelihood
term is the expectation of cross-entropy loss of pixel-wise
labels. During pre-training, we use Monte-Carlo sampling
to draw samples for each layers’ mask and kernels using (2)
and (3), and estimate the output using (1). The total loss can
be back-propagated to optimize z and W.

Predicting Initial Segmentation
Given new images from task Tt, the proposed framework
first generates initial predictions for the user’s reference. At
this time, user annotations are not provided yet, and thus
the ground-truth labels are not available. It poses a question
of how the initial kernel activation for this task can be in-
ferred. To address this problem, we propose to leverage the
image data and task embedding. Each image is embedded
via a variational autoencoder, which stacks three convolu-
tional blocks and two fully-connected layers, to generate a
compact representation. The image embeddings and the cor-
responding masks from previous tasks are stored as pairs.
For a new task, its image embedding is matched to the near-
est neighbor and used to retrieve the corresponding mask for
initial kernel activation. Then the forward pass goes through
the encoders and decoders to generate an initial segmenta-
tion and uncertainty map.

Interactive Segmentation
Once the initial segmentation is generated, users may start to
adjust the initial result through annotations. Our framework
accompanies the prediction with important uncertainty in-
formation to direct users to the most informative parts of the
segmentation map and lessen the overall annotation effort.
After the annotations are provided, they will be used to re-
fine the model to generate an improved segmentation more
consistent with users’ expectations.

Uncertainty Estimation The proposed framework gener-
ates pixel-wise uncertainty estimation and visualizes as un-
certainty maps. We follow the work of (Kendall and Gal
2017), which considers two sources of uncertainty: epis-
temic and aleatoric. Epistemic uncertainty quantifies the un-
certainty in the model parameters and stems from limited
training data, while the aleatoric uncertainty measures the
noise inherent in each data instance. The uncertainty esti-
mation can be naturally implemented via Monte-Carlo sam-
pling with the Bayesian architecture. The total uncertainty is
evaluated using the predictive entropy:

Um = −(θ̄m)T ln θ̄m (10)

where θ̄m is predicted probability vector of pixel m aver-
aged across MC samples.

Propagating User Annotations Given the uncertainty
map, users are guided to focus on segmentation areas with
high uncertainty, which are more likely to be inaccurate. It
reduces users’ effort to check the entire image to locate in-
correct segmentation areas. Then the user annotations are
propagated from annotated areas to unannotated regions to
generate an updated segmentation map θ∗. Intuitively, the
updated segmentation map should not deviate too much
from the original result while being consistent with user an-
notations. Following the work with Markov random field for
propagating user annotations (Lin et al. 2016), we introduce
an energy function G, which consists of a unary term Guna,
an annotation consistency term Gann, and a pairwise simi-
larity term Gpar.

G =
∑
m

Guna(m)+
∑
m

Gpar(m)+
∑
m,n

Gann(m,n) (11)

where m and n are indices of pixels. The unary term en-
courages θ∗ to be similar to the original prediction θ̄ for
each pixel m. It is defined as the KL divergence between
two categorical distributions parameterized by θ∗

m and θ̄m:

Guna(m) = (θ∗
m)T (ln θ∗

m − ln θ̄m) (12)

The pairwise term encourages visually similar pixels to have
similar propagated probability vectors. It takes the form of
weighted symmetric KL divergence:

Gpar(m,n) = exp(−‖rm − rn‖22)× [(θ∗
m)T (ln θ∗

m

− lnθ∗
n) + (θ∗

n)T (ln θ∗
n − lnθ∗

m)]/2
(13)

where (m,n) denotes a pair of pixels and rm denotes the
LAB color vector of pixel m. The annotation consistency
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term enforces a labeled pixel has a probability vector almost
the same as the one-hot user annotation.

Gann(m) = −λm(am)T lnθ∗
m (14)

where am is user annotation at pixel m, the weight λm is
set to a sufficiently large value if pixel m is annotated and
λm = 0 if otherwise.

Learning from User Annotations The propagated map
is used to evaluate the loss and update the network pa-
rameters to adapt to user annotations. The total loss is de-
fined in (6). Notice that z and W now denote the binary
masks and kernels from all the encoders and decoders, and
Dt = {Xt, Y

∗
t } where Y ∗

t denotes the propagated maps,
and the term Eqt(φ) equals the cross-entropy Lce:

Eqt(φ)[ln p(Y
∗
t |φ)] = −Eqt(φ)[

1

M

∑
m

λmy∗
m ln(ŷm)]

(15)
where y∗

m is the one-hot vector of pixel m’s propagated la-
bel, and ŷm is the predicted probability vector. λm is the cor-
responding weights for pixel m. For annotated pixels, λm is
set to a sufficiently large value to enforce they are correctly
predicted after network updates. For the other pixels, it is set
to the default value 1.

The total loss is backpropagated to refine the network
parameters. With the updated parameters of z and W, the
model performs another feed-forward to generate a refined
segmentation map and the corresponding uncertainty esti-
mation for user reference. This process may iterate multiple
rounds until the user is satisfied.

Experiments
In this section, we report our experimental results on three
real-world image datasets to demonstrate the proposed
framework’s performance.

Datasets. The performance of the proposed framework
is evaluated using three image datasets. The first dataset
is Cityscapes (Cordts et al. 2016) containing street scenes
from 50 different cities, with pixel-level annotations of 5000
frames and 8 major semantic categories. The second dataset
is MaSTr1325 (Bovcon et al. 2019) for marine semantic
segmentation and obstacle detection. The third dataset is
from the ISIC challenge for skin lesion analysis towards
melanoma detection (Codella et al. 2018) with dermoscopic
lesion images. Each image corresponds to a binary segmen-
tation map that partitions primary lesion areas and healthy
skins. To reduce potential overfitting, data augmentation is
performed in a similar way as (Ronneberger, Fischer, and
Brox 2015) using horizontal flipping, random shifting, and
distortion of HSV channels.

Experimental setup. For all three datasets, we formulate
twenty task sequences, each of which contains eight consec-
utive interactive segmentation tasks. In each task, we ran-
domly sample one new image and simulate user interactions
with the proposed framework. Given the segmentation re-
sult, sixteen erroneous areas with the high uncertainty are
annotated, and the model is updated to generate a refined

segmentation. We set the maximum iteration of user inter-
actiaons to two, and record the basic performance. The per-
formance on forward and backward knowledge transfer is
evaluated after tasks 4 and 8, respectively. Then the results
are averaged among task sequences. The hyper-parameters
are set to α0 = 1, β0 = 1, µ0 = 0, σ0 = 1, τ = 2.
We use the Slic algorithm (Achanta et al. 2012) to group
visually-similar pixels into superpixels and reduce the com-
putational cost. The Adam optimizer is used for gradient-
based model updates once user annotations are collected. It
should be noted that simulated user interactions are suitable
for quantitative evaluation because they provide a controlled
environment and eliminate the factors that could affect hu-
man actions (e.g., humans usually pay more attention to the
center of images and areas with high-contrast). In the ap-
pendix, we include examples of actual user interactions to
illustrate the framework’s usage in practice1.

Comparison baselines and evaluation metrics. We
compare with LwF (Li and Hoiem 2017), EWC (Kirkpatrick
et al. 2017) and PackNet (Mallya and Lazebnik 2018).
LwF and EWC are representative regularization-based ap-
proaches that introduce additional loss terms for protecting
consolidated knowledge. In contrast, the proposed frame-
work applies variational inference for network updates and
uses KL divergence loss terms to regularize kernels and
masks. PackNet is a representative isolation-based approach
that implements network pruning to allocate different neu-
rons for different tasks, while the proposed framework re-
lies on a task-specific mask to control kernel activation. For
performance evaluation, we use mean intersect-over-union
(IoU) as metric.

Performance comparison. We first present qualitative
comparisons with the baselines in Figure 3. After training
the model at Task 4, the refined segmentation map is visu-
alized for basic performance. We also visualize the initial
predictions of the image from Task 6 for forward knowledge
transfer and the image from Task 2 for backward knowledge
transfer. The proposed framework usually performs better in
identifying boundaries (e.g., the boundaries of buildings in
Dataset 1 Task 4, vehicles in Dataset 2 Task 2, and lesions
in Dataset 3 Tasks 2). The performance may be attributed to
(1) uncertainty-guided user interactions that provide infor-
mative annotations and (2) task-specific mask that activates
suitable kernels for feature extraction and interpretation.

Quantitative comparisons are provided in Table 1. In most
cases, the proposed CLIS framework outperforms the com-
peting baselines. LwF leverages knowledge distillation to
regularize the network update. However, for tasks with small
sizes, it may not be as effective as EWC, which directly
regularizes the update of the parameters. PackNet incorpo-
rates a flexible architecture and performs well on preserving
knowledge, but lacks a principled way of fine-tuning the ex-
isting kernels. Thus some kernels may overfit to the noises.

Discussions. Using a layer-wise binary mask to con-
trol kernel activation also improves the framework’s inter-
pretability because we can track the activated kernels at each

1The source code and the appendix are available at
https://github.com/ritmininglab/CLIS
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Figure 3: Illustrative examples of segmentation results from Dataset 1 (Left) and 2 (Middle) and 3 (Right)

Evaluation CLIS LwF EWC PackNet
Dataset1 Basic

Forward
Backward

0.893
0.836
0.857

0.859
0.818
0.831

0.874
0.825
0.846

0.869
0.827
0.843

Dataset2 Basic
Forward
Backward

0.957
0.928
0.941

0.937
0.914
0.920

0.945
0.923
0.933

0.942
0.919
0.927

Dataset3 Basic
Forward
Backward

0.782
0.697
0.731

0.749
0.674
0.703

0.765
0.689
0.722

0.757
0.684
0.715

Table 1: Quantitative comparison of basic performance, for-
ward and backward knowledge transfer (IoU)

task. In Figure 4, the images from the two tasks reveal dis-
tinct disease morphology. We visualize the kernel activations
as gray-scale matrices for those tasks. Each row of the ma-
trix corresponds to a layer, and each column corresponds to
a kernel. The highlighted seventh kernel from the sixth layer
is activated in the first task (i.e., the corresponding parameter
π is close to 1) but not in the second task (i.e., π is close to
0). We also visualize the related output feature maps of this
kernel in both tasks. It shows that the kernel captures im-
portant features of the disease morphology in the first task
but almost no features in the second task. We also conduct
an ablation study to evaluate the contribution of uncertainty-
guided interaction to model performance. Please refer to the
appendix for details.

Overconfidence in predictions may happen where a mis-
classified region corresponds with low uncertainty. It usually
results from the out-of-distribution (OOD) issue. The un-
certainty estimation method applied to the proposed frame-
work is able to detect OOD. However, it should be noted that
an uncertainty estimation method may not accurately detect

Figure 4: Illustrative examples of kernel activation for two
tasks: Due to space limit, not all kernels are visualized in the
kernel activation map. Dark grid indicates the corresponding
kernel is activated.

all OOD cases. Practically, one solution is to use ensemble
methods (i.e., using multiple uncertainty estimation methods
jointly, because the chance of missing an OOD case by all
methods is lower than relying on a single method). Another
solution is to allow end-users to make final judgments.

Conclusion
In this work, we formulate interactive segmentation as a con-
tinual learning problem and propose a framework to effec-
tively learn from user annotations to improve the segmen-
tation performance on current and future tasks and prevent
catastrophic forgetting on previous tasks. Uncertainty infor-
mation is leveraged to provide users with informative guid-
ance. An interesting future direction is speeding up the net-
work updates to reduce the waiting time during user interac-
tion. Another direction is extending the allowed interaction
from clicks to other types such as scribbles and boxes to
make the interaction process more efficient.
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